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Abstract

The focus of this thesis is the study of relative definability of first-order boolean func-

tions with respect to the language PCF, a paradigmatic typed, higher-order language

based on the simply-typed λ-calculus. The basic core language is sequential. We study

the effect of adding construct that embody various notions of parallel execution. The

resulting set of equivalence classes with respect to relative definability forms a sup-

semilattice analoguous to the lattice of degrees in recursion theory. Recent results

of Bucciarelli show that the lattice of degrees of parallelism has both infinite chains

and infinite antichains. By considering a very simple subset of Sieber’s sequentiality

relations, we identify levels in the lattice and derive inexpressiblity results concerning

functions on different levels. This allows us to explore further the structure of the

lattice of degrees of parallelism and show the existence of new infinite hierarchies.

We also identify four subsemilattices of this structure, all characterized by a simple

property.
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Résumé

Dans ce mémoire nous nous concentrons sur l’étude de la definition relative de fonc-

tions booléennes de premier order à partir du langage PCF, un language typé d’ordre

supérieur paradigmatique, basé sur le λ-calcul simplement typé. Le langage de

base est fondamentalement séquentiel. Nous étudions les conséquences de l’ajout

d’éléments implémentant différent degrés d’exécution parallèle. L’ensemble résultant

de classes d’équivalence de fonctions forme une semilattice supérieure analogue à la

lattice de degrés en théorie de la récursion. Des résultats récents de Bucciarelli mon-

trent que la lattice de degrés de parallélisme possède à la fois des chaines infinies

et des antichaines infinies. En considérant un sous-ensemble très simple de rela-

tions de séquentialité de Sieber, nous identifions des niveaux de la lattice et dérivons

des résultats d’inexpressibilité concernant les fonctions sur différents niveaux. Ceci

nous permet d’explorer plus en profondeur la structure de la lattice de degrés de

parallélisme et de démontrer l’existence de nouvelles hiérarchies infinies. Nous iden-

tifions aussi quatre sous-semilattices de cette structure, toutes caractérisées par une

propriété particulièrement simple.
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Chapter 1

Introduction

The study of relative definability — which functions one needs to add to a program-

ming language in order to be able to implement a given function — is a fundamental

problem in theoretical computer science. The complexity of this problem is in direct

proportion to the complexity of the programming language and the class of functions

one desires to implement. In this thesis, languages are taken to be sequential, and

the functions considered all embody a certain level of parallelism.

This work is the product of a research conducted to investigate such a problem

in a particularly simple context — simple yet rich enough to yield interesting results.

We study the relative definability of continuous first-order boolean functions with

respect to Plotkin’s language PCF [Plo77], which is fundamentally a simply-typed

λ-calculus with recursion, over the ground types of integers and booleans.

Relative definability defines a partial ordering on continuous boolean functions,

and this ordering yields an equivalence relation on continuous boolean functions.

The object of our study will be the structure of the resulting partially ordered set of

equivalence classes of functions (called degrees of parallelism). Work by Trakhtenbrot

[Tra73, Tra75], Sazonov [Saz76] and Bucciarelli and Malacaria [Buc95, BM95] show

that the structure of degrees of parallelism is highly non-trivial: the poset forms in

fact a sup-semilattice — just like degrees of recursion in recursion theory — and
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contains a “two-dimensional” hierarchy of functions, both infinite chains and infinite

antichains of functions.

This thesis consists mostly of a further exploration of the semilattice of degrees

of parallelism. Our main structural results include the following:

• A partition of the class of continuous functions, forming two disjoint subsemi-

lattices, STABLE and UNSTABLE.

• The identification of a third subsemilattice, MONO, orthogonal to the previ-

ous two and intersecting them both, containing the hierarchy discovered by

Bucciarelli in [Buc95].

• The identification of a new “two-dimensional” hierarchy in STABLE, similar to

(yet different from) Bucciarelli’s.

• Minimality results concerning non-sequential continuous functions.

• The identification of a new hierarchy in UNSTABLE.

• The characterization of functions in UNSTABLE in relation to the class of

functions in STABLE that they dominate in the definability ordering. We

identify a class of functions that can implement all the functions in STABLE,

and show that they form a fourth subsemilattice.

• A complete characterization of a known class of functions, subsequential func-

tions, by showing that they are equivalent to functions in the MONO subsemi-

lattice.

In order to prove some of the results referred to above, we introduce a new tech-

nique that (among others) partitions degrees of parallelism in such a way that inex-

pressibility results are immediate between functions in various partitions. The tech-

nique is based on a theorem by Sieber [Sie92] relating relative definability of functions

and sequentiality relations (cf. sections 2.3.1 and 3.2). By considering only a simple
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class of sequentiality relations, we define the notion of the p-level of a function, and

show the inexpressibility of a function from another via a simple criterion on the

p-levels of both functions. The class of sequentiality relations under consideration

being fairly weak, the inexpressibility results we get are strong: the functions are

fundamentally different.

We also discuss possible directions in which to extend the technique in order to

handle the full set of sequentiality relations. This would yield a function-independent

characterization of the semilattice of degrees of parallelism, and provide new insights

into the complexity and structure of the semilattice.

1.1 Overview of the Thesis

• Chapter 2 presents the basic notions from the theory of domains and continuous

functions one needs to follow the work herein. We also introduce the language

PCF and define sequentiality relations.

• Chapter 3 defines the concept of relative definability of a function from another

function via the language PCF. Relative definability forms a partial ordering

on the set of all continuous boolean functions, and we form the poset of the

equivalence classes of the induced equivalence relation. We present the known

results concerning the structure of this poset.

• Chapter 4 introduces the techniques we will use in this thesis to prove some

of our results. We define the concept of p-level, which partitions the class of

continuous boolean functions. We present an inexpressibility criterion relating

functions in different p-levels. Moreover, we characterize the p-level of functions

in various important function classes.

• Chapter 5 presents our results concerning the structure of stable continuous

boolean functions. We identify an important partition of stable functions, and

exhibit a new “two-dimensional” hierarchy. We also discuss minimality results

concerning non-sequential functions.
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• Chapter 6 presents our results concerning the structure of unstable continuous

boolean functions. We exhibit a new hierarchy of unstable functions. We also

start an investigation on the class of stable functions dominated by a given

unstable function. We identify a class of stable-dominating functions that can

express any stable function, and study its structure.

• Chapter 7 indicates some directions in which we could extend the present work

in order to fully characterize the relative definability structure. We note inter-

esting questions that were raised during the course of this research, and give

concluding remarks summarizing both the results obtained and the techniques

developed in the course of the work.

4



Chapter 2

Preliminaries

This chapter introduces the background material necessary to follow this thesis. The

material presented here is well-known, and mostly covers the theory of domains and

continuous functions between domains, as well as the language PCF that we will use.

We assume the reader is familiar with basic mathematical notions like partially

ordered sets (posets), λ-calculus and elementary semantics of programming languages.

2.1 Domains

This section presents the necessary basics of the theory of domains and continuous,

stable and sequential functions. Most of the material can be found in introductory

textbooks on programming language semantics, such as [Gun92].

2.1.1 Partial Orders

Given a poset (D,≤), and a subset X ⊆ D. We say X is consistent (or upperbounded)

iff there is an element y in D such that ∀x ∈ X(x ≤ y). We say X is directed iff it is

non-empty and every pair of elements of X has an upperbound in X. A poset D is
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called a directed-complete partial order (dcpo) — or simply a complete partial order

(cpo) — iff every directed set has a least upperbound. A poset is bounded-complete

iff every non-empty consistent set has a least upperbound. A poset D is pointed iff it

has a least element ⊥D (or simply ⊥ when the poset is understood from the context)

with ∀x ∈ X,⊥D ≤ x.

A sup-semilattice is a poset in which every finite subset has a least upperbound.

Note that a sup-semilattice must be pointed, since the empty set must itself have a

least upperbound.

Given a set A, we can construct a poset A⊥ by adjoining a new element ⊥ to A, and

letting the partial order relation be defined simply by the equations ∀x ∈ A(⊥ ≤ x).

Such a poset is called a flat poset (or flat domain). The flat domain of booleans B⊥

(or simply B when the context is clear) and the flat domain of natural numbers N⊥

(or simply N ) are represented in figure 2.1.

Algebraicity

Given a poset D, we say an element x ∈ D is isolated (finite of compact) iff whenever

it is dominated by a least upperbound
∨

Y of some directed set Y , there exist some

y ∈ X that dominates x. A cpo D is algebraic iff for every x ∈ D, the set of isolated

elements below x is directed, and has x as its least upperbound. A cpo D is ω-algebraic

iff it is algebraic and the set of isolated elements of D is countable. A poset D has

property (I) iff every isolated element dominates finitely many isolated elements. A

poset is distributive iff it is bounded-complete and for every x and consistent pair

tt ff 0 1 2 3 ...

Figure 2.1: The flat domains of booleans and natural numbers
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{y, z},

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

A Scott domain is an ω-algebraic pointed bounded-complete and directed-complete

poset. A dI-domain (or Berry domain) is a distributive Scott domain with property

(I). One can easily check that any flat poset with countably many base elements is a

dI-domain.

2.1.2 Continuous Functions

A function f : D → E between posets is monotone iff for every x, y ∈ D, x ≤D y

implies that f(x) ≤E f(y). A function f : D → E between cpos is Scott-continuous

(or simply continuous) iff it is monotone and it preserves directed least upperbounds:

for every directed X ⊆ D, f(
∨

X) =
∨
{f(x) : x ∈ X}.

A pointed cpo D has the useful property that any continuous function f : D → D

has a least fixed point. One can verify easily that

fix(f) =
∨

{fn(⊥D) : n ≥ 0}

is a fixed point of f and that it is the least such.

Note that a monotone function from a finite poset to an arbitrary poset must

be continuous as well. Given two posets D, E, we can define a partial ordering over

functions from D to E, called the extensional ordering, and that we will denote by

vD,E (dropping the subscripts when the posets are clear from the context), by

f v g ⇔ ∀x ∈ D.f(x) ≤ g(x)

The poset of functions from D to E equipped with the extensional ordering does not

generally form a cpo, but if D and E are cpos, and we consider the poset of continuous

functions from D to E equipped with the extensional ordering — poset denoted by

[D → E] — we do indeed get a cpo, called the continuous function space cpo from D

to E.

7



2.1.3 Stability

A function f : D → E between cpos is said to be stable [Ber76] iff it is continuous

and for all x ∈ D and all y ≤ f(x), there exists a unique z ≤ x such that

∀x′ ≤ x(x′ ≥ z ⇔ f(x′) ≥ y).

A function f : D → E between cpos is said to be completely multiplicative iff for any

consistent X ⊆ D, f(
∧

X) =
∧
{f(x) : x ∈ X}. It is not hard to show that a function

f is stable iff it is completely multiplicative.

If the cpos D and E in question are in fact dI-domains, it is sufficient to have

f(x ∧ y) = f(x) ∧ f(y) for x and y consistent for f to be stable.

Not every continuous function is stable. A function which is not stable is some-

times called unstable. The textbook example of a continuous yet unstable function

is the Parallel OR function (POR), defined as follows:

POR(x, y) =







tt if x or y is tt

ff if x and y are ff

⊥ otherwise

This function is easily seen to be unstable, since

POR((tt,⊥) ∧ (⊥, tt)) = POR(⊥,⊥) = ⊥

but

POR(tt,⊥) ∧ POR(⊥, tt) = tt ∧ tt = tt.

This functions plays an important role in the remainder of this thesis.

2.1.4 Sequentiality

Sequentiality can be defined straightforwardly when one has a strategy for computing

the value of a function — when one views functions as algorithms for computing val-

ues. The concept of sequentiality is well understood for first-order functions. On the
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other hand, defining sequentiality for higher-order functionals is a fundamental prob-

lem in semantics (refer for example to [Gev95]). Intuitively, a function f is sequential

if it may be computed sequentially, according to some sequential computation strat-

egy. Many definitions of sequentiality exist, all defining what it means for a first-order

function to be sequential. Early definitions of sequentiality (M-sequentiality [Mil77]

and V-sequentiality [Vui73]) have been given for functions from products of flat posets

to a flat poset, and relied heavily on positional information of the arguments involved

in subcomputations. Kahn and Plotkin’s definition (KP-sequentiality [KP78]) used

special structures called concrete domains (which are more general than flat posets)

and defined sequential functions between concrete domains. Although Kahn and

Plotkin’s definition is more generally applicable, it is straightforward to show that for

first-order functions whose arguments are taken in flat domains, all three sequential-

ity definitions are equivalent. In view of this, and because we will be working with

flat posets, we shall use Milner’s sequentiality definition, which is by far the simplest

to state and use.

A function f : Bk → B is said to be sequential in the sense of Milner or M-

sequential if it is constant or if there exists an integer i (called an index of sequentiality)

with 1 ≤ i ≤ k such that xi = ⊥ implies that f(x1, . . . , xk) = ⊥ and such that for

any fixed value xi, the function of the remaining arguments is also M-sequential. An

M-sequential function will from now on be referred to simply as a sequential function.

It is not too hard to show that any sequential function must be stable (in fact,

stability was originally motivated by a desire to generalize the notion of sequential-

ity). However, not every stable function is sequential. The standard example in the

literature is the so-called Gustave function [Ber76], defined as follows, and easily seen

to be stable and not sequential:

GUST (x, y, z) =







tt if x = tt and y = ff

tt if y = tt and z = ff

tt if z = tt and x = ff

⊥ otherwise

9



2.2 The PCF Language

In [Plo77], Plotkin introduced PCF, a simply-typed λ-calculus over the ground types

of integers and booleans. This section focuses on the semantical description of the

language (the syntax is a standard λ-calculus syntax).

The set Type of types τ is defined as

τ :: ι | o | τ1 → τ2

where ι is the integer ground type and o the boolean ground type. Let c range over

a collection of constants and v range over a collection of variables. Let M range

over λ-terms, defined to be the least collection that contains the constants and the

variables, closed under application and abstraction: an application is a term of the

form MM ′ and an abstraction is a term of the form λvτ .M , for terms M and M ′,

variable v and type τ .

The PCF language has denumerably many variables of each type τ , and the fol-

lowing constants (with their associated type):

tt : o

ff : o

n : ι for each n ∈ N

⊃ι : o → ι → ι → ι

⊃o : o → o → o → o

succ, pred : ι → ι

Yτ : (τ → τ) → τ for each τ ∈ Type

PCF-terms are defined as well-typed λ-terms over these variables and constants, via

the standard typing rules. A PCF-program is a closed PCF-term of ground type.

To clarify the presentation of PCF-terms, we use some syntactic notation like if

M then N else P fi instead of ⊃ι MNP or ⊃o MNP (the type being clear from

the context), a syntactic ⊥ that can be taken to be the (diverging) term Yτ (λxτ .xτ ),

and a syntactic conjunction ∧ and disjunction ∨. Moreover, we will often present

PCF-terms in uncurried form, as n-ary functions.

10



2.2.1 Operational Semantics of PCF

The operational semantics of PCF is given by a partial evaluation function taking

programs and returning constants. The evaluation function, Eval, is defined using an

immediate reduction relation → between terms:

Eval(M) = c ⇐⇒ M
∗
→ c, for any program M and constant c

where
∗
→ is the transitive reflexive closure of →. The → reduction relation is just the

standard reduction relation of λ-calculus, along with some extra rules to handle the

additional constants. Among others,

⊃σ ttMσNσ → Mσ (σ ground)

⊃σ ffMσNσ → Nσ (σ ground)

YσM → M(YσM)

Please refer to [Plo77] for a complete description of the operational semantics.

2.2.2 Denotational Semantics of PCF

The goal of denotational semantics is to provide a realm of abstract values, some

of which are denoted by programs. The standard denotational semantics for PCF

associates with each type τ a cpo Dτ (this family of type-indexed cpos is called a

λ-model). The simplest such model is the continuous functions model:

Dι = N (the flat cpo of natural numbers)

Do = B (the flat cpo of truthvalues)

Dτ1→τ2 = (Dτ1 → Dτ2) (the cpo of continuous functions)

The constants are given their standard interpretation. If c is a constant of type

τ , then c is in Dτ . In particular,

tt = tt
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ff = ff

⊃σ (p)(x)(y) =







x if p = tt

y if p = ff

⊥ if p = ⊥

(p ∈ Do, x, y ∈ Dσ and σ a ground type)

Yσ (f) =
⋃

n≥0

fn(⊥) (f ∈ Dσ→σ)

2.2.3 The Full Abstraction Problem

We can define the observable behavior of a PCF-program P by:

beh(P ) =
{

n : P
∗
→ n

}

.

We define two PCF-terms M, N to be observationally equivalent, M ≡ N , if for all pro-

gram contexts C[·] (i.e. with C[M ] and C[N ] PCF-programs) we have beh(C[M ]) =

beh(C[N ]).

A denotational semantics is called computationally adequate if semantic equality

corresponds to observational equivalence: M = N implies M ≡ N . This is a

trivial result if the denotational semantics is defined by induction on the structure of

expressions [Plo77]. A denotational semantics is fully abstract if the converse holds,

expressing the fact that the denotational semantics does not make unobservable dis-

tinctions between any given terms: M ≡ N implies M = N .

The denotational semantics we gave above for PCF — the standard continuous

functions semantics — is not fully abstract. To see that, consider the function POR

(section 2.1.3) which is continuous and hence in Bo→o→o. No function f satisfying the

following equations can however be PCF-definable:

f(tt,⊥) = tt

f(⊥, tt) = tt

f(ff,ff) = ff

12



(a fact we will prove in the next section). To see how full abstraction fails, consider

the following term PORTESTi of type (o → o → o) → o, with i = tt,ff:

λy.if y(tt,⊥) ∧ y(⊥, tt) ∧ ¬y(ff,ff) then i else ⊥ fi

Then

PORTESTi f =







i if f satisfies the above equations

⊥ otherwise

This means that PORTESTtt 6= PORTESTff because they differ on the func-

tion POR, but we must have beh(PORTESTttM) = beh(PORTESTffM) for every

closed PCF-term M .

2.3 Logical Relations

Plotkin [Plo77] used an Activity Lemma to prove that POR was not PCF-definable.

Later in [Plo80], he introduced logical relations to identify non-definable continuous

functions.

Definition 2.1 An n-ary logical relation R on a λ-model (Dτ)τ∈Type is a family of

relation Rτ ⊆ (Dτ )n such that for all types σ,τ and f1, . . . , fn ∈ Dσ→τ ,

Rσ→τ (f1, . . . , fn)⇔∀d1, . . . , dn.Rσ(d1, . . . , dn) ⇒ Rτ (f1d1, . . . , fndn).

Definition 2.2 An element d ∈ Dτ is called invariant under R (or with respect to

R) if Rτ (d, . . . , d) holds.

When a function f : Bk → B is presented in uncurried form, the invariance of f

under a n-ary logical relation R can be restated as follows: for any tuples

(x1
1, . . . , x

1
n) ∈ R

...
(

xk
1, . . . , x

k
n

)

∈ R

13



one has
(

f(x1
1, . . . , x

k
1), . . . , f(x1

n, . . . , xk
n)

)

∈ R

Note that a logical relation R is uniquely determined by its definition on the

ground types. The following theorem, known as the Main Lemma for Logical Relations

[Plo80], is the fundamental theorem from which most of the techniques we will study

are derived:

Theorem 2.3 Let R be a logical relation on a λ-model such that c is invariant

under R for every constant c. Then M is invariant under R for every closed

λ-term M over these constants.

We can now prove that POR is not PCF-definable. Let R be the following 3-ary

logical relation:

Ro(d1, d2, d3) ⇔ (d1 = ⊥) ∨ (d2 = ⊥) ∨ (d1 = d2 = d3)

It is easy to see that c is invariant under R for each PCF constant c. Hence, M

is invariant under R for every closed PCF-term M . But we check that there is not

closed term M with POR = M , since POR is not invariant under R: (tt,⊥,ff) and

(⊥, tt,ff) are in R, but applying POR pointwise to those tuples yields (tt, tt,ff), which

is not in R.

2.3.1 Sequentiality Relations

Sieber [Sie92] gave a semantic characterization of all logical relations under which the

constants of PCF are invariant.

Definition 2.4 For each n ≥ 0 and each pair of sets A ⊆ B ⊆ {1, . . . , n}, the

presequentiality relation SA,B
n ⊆ (Dτ )n, τ = ι, o, is an n-ary logical relation defined

by

SA,B
n (d1, . . . , dn)⇔(∃i ∈ A.di = ⊥)∨(∀i, j ∈ B.di = dj)

An n-ary logical relation R is called a sequentiality relation if R is an intersection of

presequentiality relations.

14



Note that the logical relation we used to determine that POR was not PCF-

definable was a presequentiality relation, namely S
{1,2},{1,2,3}
3 . The following theorem

characterizes sequentiality relations:

Theorem 2.5 The sequentiality relations are the only logical relations under which

the meanings of all constants of PCF are invariant.

Sequentiality relations, as we shall see in the next chapter, play a very important

role in the study of relative definability of first-order functions. In chapter 4, we will

focus our attention on presequentiality relations almost exclusively.
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Chapter 3

The Poset of Degrees of Parallelism

In this chapter we introduce some notions that will allow us to study first-order

boolean functions, and define what it means to say that a function can express an-

other. We also define a partial ordering on functions derived from the expressibility of

a function from another. We start our investigation of the structure of the resulting

poset and identify and describe a hierarchy of functions in the poset discovered by

Bucciarelli showing that the structure of the poset is highly non-trivial.

3.1 First-Order Boolean Continuous Functions

We present in this section various definitions that will help us discuss first-order

boolean functions. Before defining concepts, let us first mention some abuse of no-

tation we shall frequently use: given f : Bk → B a continuous function and x =

(x1, . . . , xk), then f(x) stands for f(x1, . . . , xk), and given A = {x1, . . . , xn} ⊆ Bk,

f(A) is defined to be {f(xi) : xi ∈ A}. Moreover, π1 and π2 are defined respectively

as the first and second projection functions associated to a product operation.

The trace of a function will be the central notion we will focus on to study boolean

functions. The trace of a function is a representation of the minimum input needed

for the function to produce a result.
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Definition 3.1 Given a continuous function f : Bk → B, define the trace of f to be

tr(f) =
{

(v, b)|v ∈ Bk, b ∈ B, b 6= ⊥, f(v) = b and ∀v′ < v, f(v′) = ⊥
}

With such a presentation, we see that a continuous function f : Bk → B is stable if

and only if for all v1, v2 ∈ π1(tr(f)), v1 6↑ v2. Note that the monotonicity of f insures

that if v1 ↑ v2 then f(v1) = f(v2).

Linear coherence is a concept first used to study first-order boolean functions by

Bucciarelli and Erhard [BE91, BE94, Buc95].

Definition 3.2 A subset A = {v1, . . . , vk} of Bn is linearly coherent (or simply co-

herent) if

∀j, 1 ≤ j ≤ n
((

∀l, 1 ≤ l ≤ k. v
j
l 6= ⊥

)

⇒ ∀l1, l2, 1 ≤ l1 ≤ l2 ≤ k. v
j
l1

= v
j
l2

)

The set of coherent subsets of M ⊆ Bn is noted C(M). Recall that an Egli-Milner

lowerbound of a set A is a set B such that

∀x ∈ A∃y ∈ B.y ≤ x and ∀y ∈ B∃x ∈ A.y ≤ x.

it is not hard to show that if A ∈ C(Bn) and B is an Egli-Milner lowerbound of A,

then B ∈ C(Bn).

Closely related to the notion of coherence is the following:

Definition 3.3 A subset A = {v1, . . . , vk} of Bn is ⊥-covering if

∀j 1 ≤ j ≤ n(∃i 1 ≤ i ≤ k v
j
i = ⊥)

It is easy to see that A being ⊥-covering implies that A is coherent.

Definition 3.4 A subset M ⊆ Bn is completely ⊥-covering if for any set A ∈ C(M),

A is ⊥-covering.

17



Abusing the terminology, we will sometimes say that a continuous function f : Bk → B

is ⊥-covering or completely ⊥-covering if π1(tr(f)) has the corresponding property.

Finally, we will also require the notion of a monovalued function:

Definition 3.5 A function f : Bk → B is monovalued if |π2(tr(f))| = 1.

By another abuse of terminology, we will say that a subset A ⊆ π1(tr(f)) is monoval-

ued if |f(A)| = 1. When a function f (or a subset of π1(tr(f))) is not monovalued, it

is said to be bivalued.

Our final remarks about first-order boolean functions concern two operations that

will prove useful in later sections. Given a continuous boolean function f : Bk → B,

we define the function neg(f) : Bk → B to be the function returning tt when f re-

turns ff and returning ff when f returns tt. As for the second operation, given two

continuous boolean functions f : Bk → B and g : Bk′

→ B, we will define a function

f + g : Bmax(k,k′)+1 → B. Without loss of generality, we assume that there exists a

l ≥ 0 such that k′ = k − l. Let the function f + g be defined via the following trace:

tr(f + g) = {((tt, x1, . . . , xk), b) : ((x1, . . . , xk), b) ∈ tr(f)}
⋃

{((ff, . . . ,ff
︸ ︷︷ ︸

l+1

, x1, . . . , xk′), b) : ((x1, . . . , xk′), b) ∈ tr(g)}

3.2 Relative Definability

Relative definability refers to the ability of defining some function using another

function. The intuition behind this statement is that a function can define another

function if there exist some algorithm in some language that uses the former to

compute the latter. The language we will use to specify relative definability will be

the language PCF, introduced in 2.2. Formally,

Definition 3.6 Given two continuous functions f and g, we say that f is PCF-

expressible by g (f� g) if there exists a PCF-term M such that f = M g.

18



An equivalent terminology one finds in the literature is to say that “f is less parallel

than g” for f� g, or that f is g-expressible. The � preorder induces an equivalence

relation ≡ on continuous function such that f≡g iff f�g and g�f . An equivalence

class of the ≡ equivalence relation is called a degree of parallelism, and two functions f

and g with f≡g are called equiparallel. The degree of parallelism of a given continuous

function f is denoted [f ].

We note that given any function f , neg(f)≡f . Moreover, given functions f≡f ′

and g≡g′, then we must have f + g≡f ′ + g′ (f�f ′�f ′ + g′ and g�g′�f ′ + g′ implies

f + g�f ′ + g′, and symmetrically for the other direction).

This thesis is solely concerned with PCF-expressibility of first-order boolean func-

tions, which is fully characterized by Sieber’s sequentiality relations presented in sec-

tion 2.3.1. The following theorem is fundamental and gives the full characterization

of the � preorder.

Theorem 3.7 For any f : Bn → B and g : Bk → B continuous functions, f� g if

and only if for any sequentiality relation R, if g is invariant under R then f is also

invariant under R.

It is interesting to note that this characterization is effective and Stoughton [Sto94]

implemented an algorithm that decides f�g given the functions f and g.

3.3 The Structure of Degrees of Parallelism

We are interested in studying the structure of first-order degrees of parallelism.

Trakhtenbrot [Tra73, Tra75] and Sazonov [Saz76] first investigated the subject and

pointed out finite subposets of degrees (though not necessarily first-order degrees).

Some facts are further consequences of some well-known results: the poset of de-

grees of parallelism must have a top element, by Plotkin’s full abstraction result for

PCF+POR [Plo77]. Moreover, it is easy to check that any sequential function must

be directly PCF-definable.
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We can easily show that first-order degrees of parallelism form a sup-semilattice:

Proposition 3.8 The poset of first-order degrees of parallelism is a sup-semilattice

with a bottom element (the set of PCF-definable functions) and a top element (the

degree of POR).

Proof: The set of PCF-definable (sequential) functions is the bottom element

of degrees by definition ,whereas [POR] is the top element of degrees by

Plotkin’s definability result [Plo77]. We now show that given f : Bk → B and

g : Bk′

→ B, [f + g] = [f ] ∨ [g] (we know [f + g] is well-defined, by an earlier

argument). We need to first show that f�f +g and g�f +g (as before, assume

that there exists a l ≥ 0 such that k′ = k − l). We notice that

f = λhλx1 . . . xk.h(tt, x1, . . . , xk) (f + g)

and

g = λhλx1 . . . xk′.h(ff, . . . ,ff
︸ ︷︷ ︸

l+1

, x1, . . . , xk′) (f + g)

Moreover, let h : Bl → B be such that f, g�h. Then there exist M, N with

f = M h and g = N h. It is easy to see that

F = λpλx1 . . . xk+1.if x1 then M(p, x2, . . . , xk+1) else

if x2 ∨ · · · ∨ xl+1 then ⊥ else N(p, xl+2, . . . , xk+1)

f + g = F h

Hence, [f + g] = [f ] ∨ [g]. ut

We will denote the semilattice of first-order degrees of parallelism by CONT (for

first-order continuous functions).

Let us mention for the sake of completeness a first-order function that both Trakht-

enbrot and Sazonov presented in their finite subposet of degrees — Trakhtenbrot’s
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voting function V introduced in [Tra73] and defined by

V(x1, x2, x3) =







xi if xi = xj for i 6= j

⊥ if ∀i 6= j, xi 6= xj

or equivalently by the following trace (presented in matrix form):

tt tt ⊥ tt

tt ⊥ tt tt

⊥ tt tt tt

ff ff ⊥ ff

ff ⊥ ff ff

⊥ ff ff ff

It is not hard to show that POR and V are equiparallel:

Proposition 3.9 V≡POR.

Proof: V�POR is immediate since POR is maximal. To show POR�V, we note

that

POR = λf.λx1x2.f(x1, x2, tt) V

ut

3.4 Hypergraphs

In [Buc95, BM95] an attempt was made at finding a categorical counterpart to the

semilattice of degrees. Without going into details, the goal was to define a category

whose objects would correspond to first-order boolean functions, and a morphism

between objects F ,G of the category would exist iff the function corresponding to F

were less parallel than the function corresponding to G. The selected category was

the category of so-called hypergraphs. We will not describe here what hypergraphs
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are — since we will not be using them — we will only say that the hypergraph of a

function records the number of elements in the trace of f as well as keeping track of

the return value of each trace element and the linearly coherent subsets of the first

projection of the trace, while forgetting about the arity of f and the actual individual

arguments making up the trace of f . Morphisms are defined as suitable maps between

hypergraphs.

However, this category does not exactly reflect the structure of the degrees of

parallelism semilattice. In fact, the best that was achieved was the following theorem,

proved in [BM95]:

Theorem 3.10 Let f ,g be two continuous functions, and Hf ,Hg be the hypergraphs

corresponding to f and g. Then HOM(Hf , Hg) 6= ∅ ⇒ f�g.

In order to use this result, we will recast it in a non-hypergraph form — since we will

not be using the hypergraph terminology in this thesis.

Corollary 3.11 Let f, g be two continuous functions. If there exists a function

α : tr(f) → tr(g) such that

1. for all A ⊆ tr(f), if π1(A) is non-singleton and linearly coherent, then π1(α(A))

is non-singleton and linearly coherent.

2. for all A ⊆ tr(f) with π1(tr(f)) non-singleton and linearly coherent, and for all

x, y ∈ A, we have π2(x) 6= π2(y) ⇒ π2(α(x)) 6= π2(α(y)).

then f�g.

Proof: This corollary is simply a translation of theorem 3.10, with an explicit

description of what hypergraphs and morphisms look like. ut
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3.5 The Bucciarelli Hierarchy

In [Buc95], Bucciarelli exhibited a non-trivial hierarchy of functions in the CONT

semilattice, thereby showing its highly non-trivial structure.

We define the functions BUCC(n,m) via the following description. The trace of

BUCC(n,m) has m elements and each trace element returns tt. Moreover, for any subset

of less than n elements (and at least two) of the first projection of the trace, there

must exist a column which makes that subset incoherent. The arity of BUCC(n,m) is

∑n−1
i=2




m

i



, and in the jth column only elements corresponding to rows in the jth

subset (with respect to an arbitrary enumeration) will be defined: by tt for the first

row in that subset and by ff for the other rows in the subset.

For example, the following matrix represents the trace of BUCC(3,4):

tt tt tt ⊥ ⊥ ⊥ tt

ff ⊥ ⊥ tt tt ⊥ tt

⊥ ff ⊥ ff ⊥ tt tt

⊥ ⊥ ff ⊥ ff ff tt

and this matrix represents the trace of BUCC(4,4):

tt tt tt ⊥ ⊥ ⊥ tt tt tt ⊥ tt

ff ⊥ ⊥ tt tt ⊥ ff ff ⊥ tt tt

⊥ ff ⊥ ff ⊥ tt ff ⊥ ff ff tt

⊥ ⊥ ff ⊥ ff ff ⊥ ff ff ff tt

If we define the numerical predicate Cm,n′,m′

by

Cm,n′,m′

= min(n′ − 1, m mod m′) ∗
⌈

m

m′

⌉

+

max(0, (n′ − 1) − (m mod m′)) ∗
⌊

m

m′

⌋

we get the following results, whose proof can be found in [Buc95]:
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Proposition 3.12 If n, m, n′, m′ are integers such that 3 ≤ n ≤ m, 3 ≤ n′ ≤ m′ and

n > Cm,n′,m′

,then BUCC(n,m)�BUCC(n′,m′).

Proposition 3.13 If n, m, n′, m′ are integers such that 3 ≤ n ≤ m, 3 ≤ n′ ≤ m′ and

n ≤ Cm,n′,m′

,then BUCC(n,m) 6�BUCC(n′,m′).

Computing various values of Ci,j,k as in [Buc95], we end up with a hierarchy of

functions as pictured in figure 3.1, where the directed edges represent strict relative

definability results.
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(3,3)

(4,4)

(5,5)

(3,4)

(5,6)

(5,7)

(3,5)

(4,5)

(4,6)

Figure 3.1: The Bucciarelli hierarchy
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Chapter 4

Presequentiality Relations

In this chapter, we develop the basic techniques we will use to prove most of the

results of the next chapters. Our focus will be on the presequentiality relations of

section 2.3.1. We know, by theorem 3.7, that we can show that a function f is not

g-expressible if we can exhibit a sequentiality relation R such that g is invariant under

R but f is not. In some cases, the sequentiality relation R used to differentiate f

and g is a presequentiality relation of the form SA,B
n , and hence the functions f and

g are differentiated using a very weak form of sequentiality relation. Our goal for

this chapter is to provide the framework in which we will discuss p-levels, a numerical

characteristic of functions partitioning the poset of degrees of parallelism into classes

of functions invariant under the same presequentiality relations. Inexpressibility of

functions with different p-levels can then be determined via a very simple criterion.

We will conclude with characterizations in terms of p-levels of the important classes

of functions we will be considering.

4.1 Definitions and Fundamental Lemmas

The attractiveness of presequentiality relations stems from the fact that they are much

simpler to use (albeit less discriminating) than the general sequentiality relations. In
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fact, the following two lemmas show that it is not necessary to consider every pre-

sequentiality relations when determining which presequentiality relation a function

is invariant under. The Reduction Lemma (4.1) tells us that is it sufficient to look

at presequentiality relations of the form S{1,...,m},{1,...,m}
m and S

{1,...,m},{1,...,m+1}
m+1 (as op-

posed to the general SA,B
n with A ⊆ B ⊆ {1, . . . , n} form). The Closure Lemma (4.2)

says that if a function is invariant under a presequentiality relation SA,B
n , invariance

holds under any presequentiality relation with “smaller” A and B.

Lemma 4.1 (Reduction Lemma) Given f : Bk → B a continuous function and

A ⊆ B ⊆ {1, . . . , n}, one of the following holds:

1. (A = B) f is invariant under SA,A
n ⇔f is invariant under S

{1,...,|A|},{1,...,|A|}
|A|

2. (A ⊂ B) f is invariant under SA,B
n ⇔f is invariant under S

{1,...,|A|},{1,...,|A|+1}
|A|+1 .

The proof of this lemma can be found in Appendix A.

Lemma 4.2 (Closure Lemma) Given f : Bk → B a continuous function and m

any integer, the following holds:

1. f invariant under S
{1,...,m},{1,...,m+1}
m+1 ⇒ f invariant under S{1,...,m},{1,...,m}

m .

2. f invariant under S
{1,...,m+1},{1,...,m+1}
m+1 ⇒ f invariant under S{1,...,m},{1,...,m}

m

3. f invariant under S
{1,...,m+1},{1,...,m+2}
m+2 ⇒ f invariant under S

{1,...,m},{1,...,m+1}
m+1

Proof: (1) Immediate via lemma A.6.

(2) Given the tuples

(x1
1, . . . , x

1
m) ∈ S{1,...,m},{1,...,m}

m

...
(

xk
1, . . . , x

k
m

)

∈ S{1,...,m},{1,...,m}
m
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we show (y1, . . . , ym) ∈ S{1,...,m},{1,...,m}
m with yi = f(x1

i , . . . , x
k
i ).

Consider the tuples
(

x1
1, . . . , x

1
m, x1

1

)

∈ S
{1,...,m+1},{1,...,m+1}
m+1

...
(

xk
1, . . . , x

k
m, xk

1

)

∈ S
{1,...,m+1},{1,...,m+1}
m+1

By invariance of f under S
{1,...,m+1},{1,...,m+1}
m+1 , we have

(y1, . . . , ym, y1) ∈ S
{1,...,m+1},{1,...,m+1}
m+1

which means that either ∃i ≤ m s.t. yi = ⊥ or ∀i, j ≤ m, yi = yj. Hence

(y1, . . . , ym) ∈ S{1,...,m},{1,...,m}
m .

(3) Given the tuples
(

x1
1, . . . , x

1
m+1

)

∈ S
{1,...,m},{1,...,m+1}
m+1

...
(

xk
1, . . . , x

k
m+1

)

∈ S
{1,...,m},{1,...,m+1}
m+1

we show (y1, . . . , ym+1) ∈ S
{1,...,m},{1,...,m+1}
m+1 , with yi = f(x1

i , . . . , x
k
i ).

Consider the tuples
(

x1
1, . . . , x

1
m, x1

1, x
1
m+1

)

∈ S
{1,...,m+1},{1,...,m+2}
m+2

...
(

xk
1, . . . , x

k
m, xk

1, x
k
m+1

)

∈ S
{1,...,m+1},{1,...,m+2}
m+2

By invariance of f under S
{1,...,m+1},{1,...,m+2}
m+2 , we have

(y1, . . . , ym, y1, ym+1) ∈ S
{1,...,m+1},{1,...,m+2}
m+2

which means either that ∃i ≤ m s.t. yi = ⊥ or ∀i, j ≤ m + 1, yi = yj. Hence,

(y1, . . . , ym+1) ∈ S
{1,...,m},{1,...,m+1}
m+1 .

ut
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These two fundamental lemmas allow us to make the following definition:

Definition 4.3 A continuous function f : Bk → B is said to have a p-level of (i, j) if

f is invariant under S
{1,...,i},{1,...,i}
i and S

{1,...,j},{1,...,j+1}
j+1 but not under S

{1,...,i+1},{1,...,i+1}
i+1

and S
{1,...,j+1},{1,...,j+2}
j+2 .

Not every pair of natural numbers (i, j) can meaningfully be said to be the p-level

of a function. By the Closure Lemma, the p-level (i, j) of a function f must be such

that i ≥ j. We will use the notation (∞, j) (resp. (∞,∞)) if f is invariant under

every presequentiality relation S
{1,...,i},{1,...,i}
i (resp. S

{1,...,i},{1,...,i+1}
i+1 ).

By the Reduction and the Closure Lemma, a function f with a p-level of (i, j) is

invariant under a presequentiality relation SA,B
n iff either

1. |A| = |B| ≤ i

2. |A| < |B|, and |A| ≤ j.

The p-level of the least upperbound of two functions has a direct relationship to

the p-level of the given functions:

Proposition 4.4 Given f : Bk → B, g : Bk′

→ B two continuous functions with p-

levels of (if , jf ) and (ig, jg) respectively. Then the p-level of f + g is

(min(if , ig), min(jf , jg))

.

Proof: Let im = min(if , ig) and jm = min(jf , jg). As before, we assume without

loss of generality that there exists l ≤ 0 with k′ = k − l.

By the Closure Lemma, it is sufficient to show that f + g is invariant un-

der S
{1,...,im},{1,...,im}
im

and S
{1,...,jm},{1,...,jm+1}
jm+1

but not S
{1,...,im+1},{1,...,im+1}
im+1 and

S
{1,...,jm+1},{1,...,jm+2}
jm+2 .
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We first show f + g is invariant under S
{1,...,im},{1,...,im}
im

and S
{1,...,jm},{1,...,jm+1}
jm+1

.

We know f and g are invariant under S
{1,...,im},{1,...,im}
im

and S
{1,...,jm},{1,...,jm+1}
jm+1

(by assumption on the p-levels of f and g). Given tuples

(

x1
1, . . . , x

1
im

)

∈ S
{1,...,im},{1,...,im}
im

...
(

xk+1
1 , . . . , xk+1

im

)

∈ S
{1,...,im},{1,...,im}
im

we want to show that (y1, . . . , yim) ∈ S
{1,...,im},{1,...,im}
im

for yi = (f + g)(x1
i , . . . , x

k+1
i ).

Three cases occur:

1. (x1
1, . . . , x

1
im

) is all tt, then

yi = (f + g)(tt, x2
i , . . . , x

k+1
i )

which is just f(x2
i , . . . , x

k+1
i ) and since f is invariant under S

{1,...,im},{1,...,im}
im ,

we get that (y1, . . . , yim) is in S
{1,...,im},{1,...,im}
im

.

2. (x1
1, . . . , x

1
im

), . . . , (xl+1
1 , . . . , xl+1

im
) are all ff. then

yi = (f + g)(ff, . . . ,ff, xl+2
i , . . . , xk+1)

which is just g(xl+2
i . . . , xk+1

i ) and since g is invariant under S
{1,...,im},{1,...,im}
im

,

we get that (y1, . . . , yim) is in S
{1,...,im},{1,...,im}
im

.

3. (x1
1, . . . , x

1
im

) has a ⊥, or it is all ff and (x2
1, . . . , x

2
im

), . . . , (xl+1
1 , . . . , xl+1

im
)

are not all ff, then one of the yi must be ⊥, and (y1, . . . , yim) is in

S
{1,...,im},{1,...,im}
im

.

Given tuples

(

x1
1, . . . , x

1
jm+1

)

∈ S
{1,...,jm},{1,...,jm+1}
jm+1

...
(

xk+1
1 , . . . , xk+1

jm+1

)

∈ S
{1,...,jm},{1,...,jm+1}
jm+1

we want to show that (y1, . . . , yjm+1) ∈ S
{1,...,jm},{1,...,jm+1}
jm+1 for yi = (f + g)(x1

i , . . . , x
k+1
i ).

Three cases occur:
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1. (x1
1, . . . , x

1
jm+1) is all tt, then

yi = (f + g)(tt, x2
i , . . . , x

k+1
i )

which is just f(x2
i , . . . , x

k+1
i ) and since f is invariant under S

{1,...,jm},{1,...,jm+1}
jm+1 ,

we get that (y1, . . . , yjm+1) is in S
{1,...,jm},{1,...,jm+1}
jm+1 .

2. (x1
1, . . . , x

1
jm+1), . . . , (x

l+1
1 , . . . , xl+1

jm+1) are all ff. then

yi = (f + g)(ff, . . . ,ff, xl+2
i , . . . , xk+1)

which is just g(xl+2
i . . . , xk+1

i ) and since g is invariant under S
{1,...,jm},{1,...,jm+1}
jm+1 ,

we get that (y1, . . . , yjm+1) is in S
{1,...,jm},{1,...,jm+1}
jm+1 .

3. (x1
1, . . . , x

1
jm+1) has a ⊥, or it is all ff and (x2

1, . . . , x
2
jm+1), . . . , (x

l+1
1 , . . . , xl+1

jm+1)

are not all ff, then one of the yi must be ⊥, and (y1, . . . , yjm+1) is in

S
{1,...,jm},{1,...,jm+1}
jm+1 .

We now show that f +g cannot be invariant under S
{1,...,im+1},{1,...,im+1}
im+1 . With-

out loss of generality, let us assume that im = if (the case im = ig is similar).

Then f is not invariant under S
{1,...,im+1},{1,...,im+1}
im+1 (by assumption on the p-

level of f). In other words, there exist tuples

(

x1
1, . . . , x

1
im+1

)

∈ S
{1,...,im+1},{1,...,im+1}
im+1

...
(

xk
1, . . . , x

k
im+1

)

∈ S
{1,...,im+1},{1,...,im+1}
im+1

with (y1, . . . , yim+1) 6∈ S
{1,...,im+1},{1,...,im+1}
im+1 , yi = f(x1

i , . . . , x
k
i ). Consider the

following tuples:

(tt, . . . , tt) ∈ S
{1,...,im+1},{1,...,im+1}
im+1

(

x1
1, . . . , x

1
im+1

)

∈ S
{1,...,im+1},{1,...,im+1}
im+1

...
(

xk
1, . . . , x

k
im+1

)

∈ S
{1,...,im+1},{1,...,im+1}
im+1
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and
(

(f + g)(tt, x1
1, . . . , x

k
1), . . . , (f + g)(tt, x1

im+1, . . . , x
k
im+1)

)

is simply

(y1, . . . , yim+1), which is not in S
{1,...,im+1},{1,...,im+1}
im+1 .

We now show that f + g is not invariant under S
{1,...,jm+1},{1,...,jm+2}
jm+2 . Without

loss of generality, let us again assume that jm = jf (the case jm = jg is

similar). Then f is not invariant under S
{1,...,jm+1},{1,...,jm+2}
jm+2 (by assumption

on the p-level of f). In other words, there exist tuples

(

x1
1, . . . , x

1
jm+2

)

∈ S
{1,...,jm+1},{1,...,jm+2}
jm+2

...
(

xk
1, . . . , x

k
jm+2

)

∈ S
{1,...,jm+1},{1,...,jm+2}
jm+2

with (y1, . . . , yjm+2) 6∈ S
{1,...,jm+1},{1,...,jm+2}
jm+2 , yi = f(x1

i , . . . , x
k
i ). Consider the

following tuples:

(tt, . . . , tt) ∈ S
{1,...,jm+1},{1,...,jm+2}
jm+2

(

x1
1, . . . , x

1
jm+2

)

∈ S
{1,...,jm+1},{1,...,jm+2}
jm+2

...
(

xk
1, . . . , x

k
jm+2

)

∈ S
{1,...,jm+1},{1,...,jm+2}
jm+2

and
(

(f + g)(tt, x1
1, . . . , x

k
1), . . . , (f + g)(tt, x1

jm+2, . . . , x
k
jm+2)

)

is simply

(y1, . . . , yjm+2), which is not in S
{1,...,jm+1},{1,...,jm+2}
jm+2 . ut

Since every function in a degree of parallelism must be invariant under the same

presequentiality relations, it makes sense to talk about the p-level of a degree of

parallelism.

Theorem 3.7 allows us to derive the following non-expressiblity result

Proposition 4.5 Given f : Bk → B and g : Bk′

→ B, continuous functions with p-

levels of (if , jf ) and (ig, jg) respectively. If if > ig or jf > jg, then g 6� f .

Proof: Immediate by definition of p-levels and theorem 3.7. ut

32



4.2 Coefficients of Linear Coherence

Given a continuous function f : Bk → B, we define two numerical properties related

to the linearly coherent subsets of π1(tr(f)).

Definition 4.6 Let f : Bk → B be a continuous function. We define the coefficient

of (linear) coherence of f by

cc(f) = min {|A| : A ⊆ π1(tr(f)), |A| ≥ 2, A coherent}

and cc(f) is defined to be ∞ when π1(tr(f)) has no non-singleton linearly coherent

subset.

Definition 4.7 Let f : Bk → B be a continuous function. We define the bivalued

coefficient of (linear) coherence of f by

bcc(f) = min {|A| : A ⊆ π1(tr(f)) |A| ≥ 3, A coherent and bivalued}

and bcc(f) is defined to be ∞ when π1(tr(f)) has no non-singleton bivalued linearly

coherent subset.

Recall that a coherent bivalued subset of the first projection of a trace must have a

size of at least 3. It is easy to see that cc(f) ≤ bcc(f), where ≤ is extended to account

for the ∞ symbol in the usual way.

The following proposition relates coefficients of coherence and p-levels, and in

conjunction with proposition 4.5 gives a quick way to determine inexpressibility of

various functions.

Proposition 4.8 Let f : Bk → B be a continuous functions. Then f has a p-level of

(bcc(f) − 1, cc(f) − 1), where bcc(f) − 1 is ∞ when bcc(f) = ∞ and cc(f) − 1 is ∞

when cc(f) = ∞.

Proof: We first start by examining cc(f). There are three cases we consider
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1. (cc(f) = 2) We show that f is invariant under S
{1},{1,2}
2 but not S

{1,2},{1,2,3}
3 .

Assume f is not invariant under S
{1},{1,2}
2 . Then there exist tuples

(

x1
1, x

1
2

)

∈ S
{1},{1,2}
2

...
(

xk
1, x

k
2

)

∈ S
{1},{1,2}
2

such that {y1, y2} 6∈ S
{1},{1,2}
2 , with yi = f(x1

i , . . . , x
k
i ). This means that

y1 6= ⊥ and y1 6= y2. It is easy to see that (x1
1, . . . , x

k
1) ≤ (x1

2, . . . , x
k
2),

since for each i ≤ k, either xi
1 = ⊥ or xi

1 = xi
2. So by monotonicity of

f , y1 ≤ y2, contradicting y1 6= ⊥, and y1 6= y2. So f must be invariant

under S
{1},{1,2}
2 . On the other hand, applying f to the tuples

(

x1
1, x

1
2,⊥

)

∈ S
{1,2},{1,2,3}
3

...
(

xk
1, x

k
2,⊥

)

∈ S
{1,2},{1,2,3}
3

where the first two columns are the elements of the first projection of the

trace forming a linearly coherent subset of size 2 (since cc(f) = 2) yields

the tuple (tt, tt,⊥) or (ff,ff,⊥), neither of which is in S
{1,2},{1,2,3}
3 .

2. (3 ≤ cc(f) < ∞) We show f is invariant under S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f)

but not under S
{1,...,cc(f)},{1,...,cc(f)+1}
cc(f)+1 . Assume f is not invariant under

S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f) . Then there exist tuples

(

x1
1, . . . , x

1
cc(f)

)

∈ S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f)

...
(

xk
1, . . . , x

k
cc(f)

)

∈ S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f)

such that
(

y1, . . . , ycc(f)

)

6∈ S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f) with yi = f(x1

i , . . . , x
k
i ).

This means ∀i ≤ cc(f) − 1, yi 6= ⊥ and ∃I, J with yI 6= yJ . Let C ⊆

π1(tr(f)) be an Egli-Milner lowerbound of the first cc(f) − 1 columns

of the given tuples, |C| ≤ cc(f) − 1. We cannot have |C| = {v}, since
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that would imply that v ≤ (x1
cc(f), . . . , x

k
cc(f)) (for each i ≤ k, either one

of xi
j = ⊥ for j ≤ cc(f) − 1 — hence vj = ⊥ — or xi

j = xi
j′ for all

j, j′ ≤ cc(f) − 1 — hence vj ≤ xi
j = xi

cc(f)). But monotonicity of f

would imply that for all i, j, yi = yj, a contradiction. Hence, |C| ≥ 2.

But since the first cc(f)− 1 columns of the given tuples form a coherent

subset, C being an Egli-Milner lowerbound must also be coherent. But

this contradicts the fact that the minimal size for a coherent subset of

π1(tr(f)) is cc(f). So, f is invariant under S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f) . On the

other hand, consider the tuples
(

x1
1, . . . , x

1
cc(f),⊥

)

∈ S
{1,...,cc(f)},{1,...,cc(f)+1}
cc(f)+1

...
(

xk
1, . . . , x

k
cc(f),⊥

)

∈ S
{1,...,cc(f)},{1,...,cc(f)+1}
cc(f)+1

where the first cc(f) columns are the elements of a coherent subset of size

cc(f) of π1(tr(f)) (which exists by assumption). Appplying f to these

tuples yields a tuple (y1, . . . , ycc(f),⊥) with yi 6= ⊥ for i ≤ cc(f), which

cannot be in S
{1,...,cc(f)},{1,...,cc(f)+1}
cc(f)+1 .

3. (cc(f) = ∞) We show that f is invariant under all presequentiality re-

lations of the form S
{1,...,i},{1,...,i+1}
i+1 . Assume that there exists an i such

that f is not invariant under S
{1,...,i},{1,...,i+1}
i+1 . The same reasoning as in

the previous case leads to a contradiction (instead of contradicting the

minimal size of a coherent subset of π1(tr(f)) being cc(f), we contradict

the fact that there is no coherent subset of π1(tr(f))).

We now examine bcc(f). The cases are fundamentally similar.

1. (bcc(f) = 3) We show f is invariant under S
{1,2},{1,2}
2 but not S

{1,2,3},{1,2,3}
3 .

Assume f is not invariant under S
{1,2},{1,2}
2 . Then there exist tuples

(

x1
1, x

1
2

)

∈ S
{1,2},{1,2}
2

...
(

x2
1, x

2
2

)

∈ S
{1,2},{1,2}
2
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such that (y1, y2) 6∈ S
{1,2},{1,2}
2 with yi = f(x1

i , . . . , x
k
i ). This means that

y1, y2 6= ⊥ and y1 6= y2. But (x1
1, . . . , x

k
1) and (x1

2, . . . , x
k
2) are linearly

coherent by assumption, so by monotonicity, y1 = y2, contradicting the

above statement. Hence, f must be invariant under S
{1,2},{1,2}
2 . On the

other hand, consider the tuples

(x1
1, . . . , x

1
3) ∈ S

{1,2,3},{1,2,3}
3

...
(

xk
1, . . . , x

k
3

)

∈ S
{1,2,3},{1,2,3}
3

where each column is an element of the coherent subset of size 3 of

π1(tr(f)) (which exists by assumption). Since the subset is bivalued,

applying f to these tuples yields a tuple (y1, y2, y3) which has no ⊥ and

which has yI 6= yJ for some I, J . So this tuple is not in S
{1,2,3},{1,2,3}
3 .

2. (4 ≤ bcc(f) < ∞) We show f is invariant under S
{1,...,bcc(f)−1},{1,...,bcc(f)−1}
bcc(f)−1

but not under S
{1,...,bcc(f)},{1,...,bcc(f)}
bcc(f) . Assume f is not invariant under

S
{1,...,bcc(f)−1},{1,...,bcc(f)−1}
bcc(f)−1 . Then there exist tuples

(

x1
1, . . . , x

1
bcc(f)−1

)

∈ S
{1,...,bcc(f)−1},{1,...,bcc(f)−1}
bcc(f)−1

...
(

xk
1, . . . , x

k
bcc(f)−1

)

∈ S
{1,...,bcc(f)−1},{1,...,bcc(f)−1}
bcc(f)−1

such that applying f yields
(

y1, . . . , ybcc(f)−1

)

6∈ S
{1,...,bcc(f)−1},{1,...,bcc(f)−1}
bcc(f)−1

with yi = f(x1
i , . . . , x

k
i ). This means ∀i ≤ bcc(f) − 1, yi 6= ⊥ and ∃I, J

with yI 6= yJ . Let C ⊆ π1(tr(f)) be an Egli-Milner lowerbound of the

columns of the given tuples, |C| ≤ bcc(f) − 1. We cannot have |C| = 1,

since that would imply that all yi have the same value. Hence, |C| ≥ 2.

But since the columns of the given tuples form a coherent subset, C being

an Egli-Milner lowerbound must also be coherent, and bivalued since not

all yi have the same value. But this contradicts the fact that the minimal

size for a bivalued coherent subset of π1(tr(f)) is bcc(f). So, f is invariant
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under S
{1,...,bcc(f)−1},{1,...,bcc(f)−1}
bcc(f)−1 . On the other hand, consider the tuples

(

x1
1, . . . , x

1
bcc(f)

)

∈ S
{1,...,bcc(f)},{1,...,bcc(f)}
bcc(f)

...
(

xk
1, . . . , x

k
bcc(f)

)

∈ S
{1,...,bcc(f)},{1,...,bcc(f)}
bcc(f)

where the columns are the elements of a bivalued coherent subset of size

bcc(f) of π1(tr(f)) (which exists by assumption). Applying f to these

tuples yields a tuple (y1, . . . , ybcc(f)) with yi 6= ⊥ for all i, and with yI 6= yJ

for some I, J . This tuple cannot be in S
{1,...,bcc(f)},{1,...,bcc(f)}
bcc(f) .

3. (bcc(f) = ∞) We show that f is invariant under all presequentiality

relations of the form S
{1,...,i},{1,...,i}
i . Assume that there exists an i such

that f is not invariant under S
{1,...,i},{1,...,i}
i . The same reasoning as in

the previous case leads to a contradiction (instead of contradicting the

minimal size of a bivalued coherent subset of π1(tr(f)) being bcc(f), we

contradict the fact that there is no bivalued coherent subset of π1(tr(f))).

ut

Moreover, restricting a function by fixing one of its inputs affects the coefficients

of coherence in a somewhat well-behaved way:

Lemma 4.9 Given f : Bk+1 → B a continuous function and f ′ : Bk → B defined by

f ′(x1, . . . , xk) = f(x1, . . . , y, . . . , xk)

for some fixed y as the ith argument of f . Then cc(f ′) ≥ cc(f) and bcc(f ′) ≥ bcc(f).

Proof: We will prove the result concerning coefficients of coherence. We consider

two cases:

1. (cc(f) = ∞) In this case, there is no linearly coherent subset of π1(tr(f)),

and hence there can be no linearly coherent subset of π1(tr(f
′)) (oth-

erwise, it would yield a linearly coherent subset of π1(tr(f)). Hence,

cc(f ′) = ∞ ≥ cc(f) by definition.
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2. (cc(f) < ∞) Given A ⊆ π1(tr(f
′)) a coherent subset of size cc(f ′). Let

B be the following set:

{(x1, . . . , xk+1) ∈ π1(tr(f)) : (x1, . . . , xi−1, xi+1, . . . , xk+1) ∈ A, xi ≤ y} .

We check that B ⊆ π1(tr(f)) is linearly coherent. First, notice that

|B| = |A|. Moreover, we see that for all tuples in B, the ith position is

either a ⊥ or a value y. Added to the fact that A is linearly coherent, we

see that B must be linearly coherent, and hence cc(f) ≤ cc(f ′).

The proof of the result for bivalued coefficients of coherence is identical. ut

4.3 Characterizations of Function Classes

It is possible to classify boolean functions in various known classes by simply look-

ing at which presequentiality relations they are invariant under — or equivalently,

by looking at their p-level. We give in this section the p-level characterizations of

the most important function classes, namely the continuous, stable and sequential

function classes.

4.3.1 Continuous Functions

There exist some very weak presequentiality relations. In fact, some presequentiality

relations are such that every continuous function is invariant under them.

Proposition 4.10 Let f : Bk → B be a continuous functions. Then f must have a

p-level of the form (i, j) with i ≥ 2, j ≥ 1.

Proof: We consider 3 cases:

1. (cc(f) = ∞) Then bcc(f) = ∞, and the p-level of f is just (∞,∞), by

4.8.
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2. (cc(f) < ∞, bcc(f) = ∞) Then there exists an A ⊆ π1(tr(f)) with |A| ≥ 2

(which is the minimal size for a non-singleton linearly coherent subset).

Hence, cc(f) ≥ 2, and the p-level of f must be of the form (∞, j) with

j ≥ cc(f) − 1 ≥ 1.

3. (bcc(f) < ∞) Then cc(f) < ∞ as well. There exists an A ⊆ π1(tr(f))

with |A| ≥ 2 and a B ⊆ π1(tr(f)) bivalued, with |B| ≥ 3 (the minimal

size for a non-singleton bivalued linearly coherent subset of the trace of

a function). Hence, we must have cc(f) ≥ 2 and bcc(f) ≥ 3, so the

p-level of f must be of the form (i, j) with i ≥ bcc(f) − 1 ≥ 2 and

j ≥ cc(f) − 1 ≥ 1.

ut

Hence, every continuous function must be invariant under the following prese-

quentiality relations:

• S∅,B
n , ∀n, B ⊆ {1, . . . , n}.

• S{i},B
n , ∀n, 1 ≤ i ≤ n, B ⊆ {1, . . . , n}.

• SA,A
n , ∀n, 1 ≤ i ≤ n, A ⊆ {1, . . . , n}, |A| = 2.

If it is known that a function f is monovalued, we can further restrict the p-level

of f via the following proposition.

Proposition 4.11 Let f : Bk → B be a monovalued continuous function. Then f

has a p-level of the form (∞, j) with j ≥ 1.

Proof: If f is monovalued then bcc(f) = ∞, since there can be no bivalued

coherent subset of π1(tr(f)). Moreover, since f is continuous, it must have

a p-level of the form (i, j) with i ≥ 2 and j ≥ 1. We know i = ∞ (since

bcc(f) = ∞), so f must have a p-level of the form (∞, j) with j ≥ 1. ut
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Hence every monovalued function must be invariant with respect to the following

presequentiality relations:

• SA,A
n , ∀n,∀A with A ⊆ {1, . . . , n}.

along with those presequentiality relations under which all continuous functions are

invariant.

4.3.2 Sequential Functions

By theorems 2.3 and 2.5, any sequential (PCF-definable) function must be invariant

under all sequentiality relations — including presequentiality relations — implying

that any sequential function must have a p-level of (∞,∞). Moreover, it is sufficient

for f to have a p-level of (∞,∞) in order to be sequential. To show this, we use

the following lemma that relates sequentiality to the coefficient of coherence of the

function.

Lemma 4.12 Given f : Bk → B a continuous function, f is sequential iff cc(f) = ∞.

Proof: (⇒) We shall prove the contrapositive, namely that if cc(f) < ∞, then f

cannot be sequential.

We prove this by induction on the arity of f . First, note that if f has arity 1,

it cannot have a linearly coherent subset of the first projection of the trace. If

f has arity 2, it is easy to see that π1(tr(f)) having a linearly coherent subset

implies that f is not stable, and hence not sequential.

(induction step) Let f be a function of arity k + 1. Let A ⊆ π1(tr(f)), A

coherent, |A| ≥ 3 (since f is stable). We consider two cases:

1. A is ⊥-covering. Then it is easy to see that f cannot be sequential (no

index of sequentiality).
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2. There exists an index of sequentiality j. Let y be the value of the tuples

of A at position j. Consider the function f ′ = f(x1, . . . , y, . . . , xk+1) of

arity k. The trace of this function must contain the tuples of A (minus

column j), and these form a coherent subset of π1(tr(f
′)). So by induction

hypothesis, f ′ is not sequential, and hence neither is f .

(⇐) We again prove this by induction on the arity of f .

(base case) f : B → B. Consider f(⊥). If f(⊥) 6= ⊥, then by monotonicity

f is constant, and hence sequential. if f(⊥) = ⊥, then consider f(y) for

a fixed y. This must be a constant, so f is sequential (by the definition of

sequentiality). All this to show that any function of arity 1 is sequential — as

should be obvious.

(induction step) Assume result holds for all functions of arity k. Consider

f : Bk+1 → B, with cc(f) = ∞.

1. We first need to show that there exist an index of sequentiality. Assume

not: ∀i, for any fixed xj , ∀j 6= i, f(x1, . . . ,⊥, . . . , xk+1) 6= ⊥. Then

π1(tr(f)) must be ⊥-covering, which contradicts cc(f) = ∞.

2. Given i the index of sequentiality of f , look at the function f ′(z1, . . . , zk) =

f(z1, . . . , y, . . . , zk) for a fixed y in position i. By lemma 4.9, cc(f ′) = ∞,

and the induction hypothesis applies to show that f ′ and thereby f must

be sequential.

ut

The main result now follows easily:

Proposition 4.13 Given f : Bk → B a continuous function. Then f is sequential iff

f has a p-level of (∞,∞).

Proof: (⇒) Immediate, since f sequential implies that f is PCF-definable, and

hence f must be invariant under all sequentiality relations — including prese-

quentiality relations.
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(⇐) f with a p-level of (∞,∞) means that cc(f) = ∞, and this implies by

lemma 4.12 that f is sequential. ut

4.3.3 Stable Functions

Stability also has a nice characterization in terms of p-levels. In fact, a single prese-

quentiality relation is sufficient to determine stability.

Proposition 4.14 Let f : Bk → B be a continuous function. Then f is stable iff f

has a p-level of the form (i, j) with i ≥ 2 and j ≥ 2.

Proof: (⇒) Given f a stable function. Then cc(f) ≥ 3,and by proposition 4.8,

f must have a p-level of the form (i, j) with j ≥ cc(f) − 1 ≥ 2. Since f is

continuous, by proposition 4.10, i ≥ 2.

(⇐) Given f with a p-level (i, j) with j ≥ 2. By proposition 4.8, cc(f)−1 ≥ 2,

so that cc(f) ≥ 3. Hence, f must be stable. ut

In other words, f is stable iff f is invariant under SA,B
n , ∀n, ∀A, B with |A| = 2

and A ⊂ B ⊆ {1, . . . , n} — along with the usual presequentiality relations under

which every continuous function must be invariant. An unstable continuous function

therefore must have a p-level of the form (i, 1) for some i ≥ 2.
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Chapter 5

Stable Boolean Functions

In this chapter, we study stable first-order boolean functions. We are mainly inter-

ested in describing the structure of those functions as a substructure of the larger

CONT semilattice. Among other things, we distinguish a natural partition of sta-

ble functions into 2 classes, and describe two hierarchies of functions, one in each of

the classes. These two hierarchies (the Gustave hierarchy and the Bivalued-Gustave

hierarchy) can be combined to form a “two-dimensional” infinite hierarchy, the Com-

posite hierarchy, spanning the different p-levels. Moreover, the Gustave hierachy

can be shown to be a minimal hierarchy, in the sense that any stable function must

dominate one of the functions in the hierarchy.

5.1 Fundamental Lemmas

In this section, we make some remarks concerning stable functions of low arity. These

will be useful as base cases for induction proofs.

We observe that stable functions become extremely simple as their arity decreases.

Among other things, we note that:
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Lemma 5.1 Given f : Bk → B a stable continuous function of arity k less than 3.

Then f must be sequential.

Proof: Consider f : B → B, it is clear that f must be sequential.

Consider f : B2 → B. If |tr(f)| = 1, then f must be sequential. If |tr(f)| >

1, then at least one column of π1(tr(f)) must have a ⊥ (else f would be

sequential). And if one column has a ⊥, the other column cannot have ⊥, or

f would be unstable. So there is at most one column of π1(tr(f)) with a ⊥.

Without loss of generality, assume the ⊥ appears in the first column.

Two cases may arise:

1. There exists tuples of the form (⊥, v) and (⊥,¬v) in π1(tr(f)). Then

there cannot be any other tuple in the trace or f would be unstable. But

such a trace is sequential.

2. A tuple of the form (⊥, v) only appears in π1(tr(f)) (for some value v).

Then there cannot be any other tuple of the form ( , v) in π1(tr(f)) or f

would be unstable. So every other tuple must be of the form ( ,¬v), and

f is easily seen to be sequential.

ut

Lemma 5.2 Given f : B3 → B a stable non-sequential function. Then f is com-

pletely ⊥-covering.

Proof: f being stable and non-sequential, there must be at least one linearly

coherent subset of π1(tr(f)) by lemma 4.12.

Assume that some linearly coherent subset of π1(tr(f)) is not ⊥-covering. By

stability of f , that subset A ⊆ π1(tr(f)) must be of size at least 3. The set of

tuples A must have column with only tt or ff (since it is not ⊥-covering). The

remaining two columns of A must be coherent as well, and hence there must be

two tuples in A that are linearly coherent with respect to those two columns.
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Since the remaining column contains (by assumption) the same value for both

tuples, these tuples form a linearly coherent subset B ⊆ A with |B| = 2. This

contradicts the stability of f . ut

The following lemma will also prove useful

Lemma 5.3 Given f : Bk+1 → B a stable continuous function and f ′ : Bk → B de-

fined by

f ′(x1, . . . , xk) = f(x1, . . . , y, . . . , xk)

for some fixed y as the ith argument of f . Then f ′ is stable.

Proof: Since the function f is stable, cc(f) ≥ 3. So by lemma 4.9, cc(f ′) ≥

cc(f) ≥ 3, and f ′ is stable. ut

5.2 The Structure of Stable Functions

A stable degree of parallelism is an equivalence class of the ≡ relation, where every

function in the equivalence class is stable. This occurs as soon as a single stable

function is part of the equivalence class.

Proposition 5.4 Given f : Bk → B and g : Bk′

→ B continuous functions. If f≡g

and f is stable, then g is stable.

Proof: Assume f is stable, g is not stable and f≡g. Then, g�f . However, f

stable implies f invariant under S
{1,2},{1,2,3}
3 , but g unstable means g is not

invariant under S
{1,2},{1,2,3}
3 . ut

It thus makes sense to study STABLE, the subposet of stable degrees of paral-

lelism. It turns out that just like CONT, STABLE is a sup-semilattice with a top and

a bottom element. The bottom element of STABLE is just the equivalence class of

sequential functions. We need to verify that there is a top element, and that least up-

perbounds exist. The following function, as was noted by Plotkin and communicated

to Curien in [Cur93], is maximal amongst all stable functions.
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Definition 5.5 Let BP (Berry-Plotkin) be the function defined by the following trace

(in matrix form):

⊥ tt ff tt

tt ff ⊥ ff

ff ⊥ tt ff

Proposition 5.6 Given f : Bk → B any stable continuous function. Then f�BP.

Proof: We show this by induction on the arity of f .

(base case, arity less than 3) By lemma 5.1, f must be sequential, and

f�BP holds trivially.

(induction step, arity k+1) Assume the result holds for any function of

arity less than k + 1. Given f : Bk+1 → B, define the following functions:

g(x1, . . . , xk) = f(tt, x1, . . . , xk)

h(x1, . . . , xk) = f(ff, x1, . . . , xk)

By lemma 5.3, g and h are stable, hence by induction hypothesis g�BP and

h�BP. Let G, H be such that g = G BP and h = H BP.

Define the functions g′, h′ via the following traces:

tr(g′) = {((x1, . . . , xk), y) :

f(⊥, x1, . . . , xk) is defined and y = tt or

f(tt, x1, . . . , xk) is defined and y = ff}

tr(h′) = {((x1, . . . , xk), y) :

f(⊥, x1, . . . , xk) is defined and y = tt or

f(ff, x1, . . . , xk) is defined and y = ff}

It is easy to see that both g′ and h′ are stable, since π1(tr(g
′)) = π1(tr(g)) and

π1(tr(h
′)) = π1(tr(h)). So by induction hypothesis, g′�BP and h′�BP. Let

G′, H ′ be such that g′ = G′ BP and h′ = H ′ BP.
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Consider the following test T :

T = λbλx1 . . . xk+1.b(x1, G
′(b, x2, . . . , xk+1),¬H ′(b, x2, . . . , xk+1)).

It is clear that

T (BP, x1, . . . , xk+1) = tt if (⊥, x2, . . . , xk+1) is in the trace of f

T (BP, x1, . . . , xk+1) = ff if (tt, x2, . . . , xk+1) or (ff, x2, . . . , xk+1)

is in the trace of f

And we can construct the following term

M = λbλx1 . . . xk+1.if T (b, x1, . . . , xk+1) then G(b, x2, . . . , xk+1)

else if x1 then G(b, x2, . . . , xk+1) else H(b, x2, . . . , xk+1) fi fi

such that f = M BP. ut

We can easily characterize the degree of parallelism of BP — the top element of

the STABLE semilattice — in terms of p-levels:

Proposition 5.7 Given f : Bk → B a continuous function. Then f has a p-level of

(2, 2) iff f≡BP.

Proof: (⇐) Given f≡BP. Then f must be invariant under the same sequentiality

relations, hence the p-level of f is the same as the p-level of BP, namely (2, 2).

(⇒) Given f with a p-level of (2, 2). This means that bcc(f) = 3, in other

words, there exists A ⊆ π1(tr(f)) bivalued and linearly coherent, with |A| = 3.

We can assume without loss of generality that one element of A returns tt and

the remaining two return ff (otherwise, consider neg(f) which is equiparallel

to f and has the desired property). Define g : tr(BP) → tr(f) by sending the

first trace element of BP (the one returning tt) to the element of A returning

tt, and the remaining elements of BP to the elements of A returning ff. Since

A is linearly coherent, it is clear that g satisfies the condition of corollary 3.11,

and BP�f , and hence f≡BP. ut
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As for least upperbounds in STABLE, we verify easily that the following holds.

Proposition 5.8 Given f : Bk → B, g : Bk′

→ B stable continuous functions. Then

f + g is stable.

Proof: By proposition 4.14, f and g stable imply that f and g have p-levels of the

form (if , jf ) and (ig, jg) with jf , jg ≥ 2. By proposition 4.4, f + g must have a

p-level (min(if , ig), min(jf , jg)), and min(jf , jg) ≥ 2, hence f + g is stable. ut

There exist an interesting partition of STABLE that we will start studying here

and finalize in the next chapter. Informally, we can classify functions on whether or

not they return only one value. Define a monovalued degree of parallelism to be a

degree of parallelism containing a monovalued function. A degree of parallelism where

all functions are bivalued is called a bivalued degree of parallelism. If the degree of

parallelism in question is stable, we shall talk about a stable monovalued degree of

parallelism or a stable bivalued degree of parallelism.

As the next proposition shows, “monovalueness” is preserved by the least upper-

bound operation

Proposition 5.9 Given [f ], [g] monovalued degrees of parallelism. Then [f + g] is

also a monovalued degree of parallelism.

Proof: Given f and g functions in a monovalued degree of parallelism, then there

exist monovalued functions f ′ and g′ with f≡f ′ and g≡g′. Without loss of

generality, since a function and its negative are equiparallel, we can assume

that f ′ and g′ return the same value. By construction, it is easy to see that

f ′ + g′ is a monovalued function, and we know this is equiparallel to f + g.

Hence, f + g is in a monovalued degree of parallelism. ut

Before characterizing monovalued degrees of parallelism in terms of p-levels, let

us first prove this technical lemma:
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Lemma 5.10 Given f : Bk → B a continuous function, with bcc(f) = ∞. Then [f ]

is a monovalued degree of parallelism.

Proof: We proceed by induction on the arity of f . Clearly, a function of arity

1 is sequential, hence it is trivially equiparallel to a monovalued function (all

sequential functions are equiparallel). For the induction step, assume that the

result holds for any function of arity at most k. We shall prove it holds for

f : Bk+1 → B.

If f is ⊥-covering, then f must by assumption be monovalued, so we are done.

Therefore, consider the case where f has an index of sequentiality i. Without

loss of generality, let i be 1. Define the following functions:

g(x1, . . . , xk) = f(tt, x1, . . . , xk)

h(x1, . . . , xk) = f(ff, x1, . . . , xk)

It is easy to see that every linearly coherent subset of π1(tr(g)) and π1(tr(h))

must be monovalued (by an argument similar to the one used to prove lemma

4.9). So by induction hypothesis, [g] and [h] are monovalued degrees of par-

allelism, and by proposition 5.9, [g + h] is monovalued as well. We claim

[f ] = [g + h].

1. (g + h�f) It is easy to see that g�f and h�f — for example,

g = λpλx1 . . . xk.p(tt, x1, . . . , xk) f

and hence because g + h is the least upperbound of g and h, g + h�f .

2. (f�g + h) Note that by definition, g�g + h and h�g + h. Let g =

G (g +h) and h = H (g +h). Since f has an index of sequentiality of

1, it must have an actual argument in its first position to return a result.

Hence, the following term:

F = λpλx1 . . . xk+1.if x1 then G(p, x2, . . . , xk+1) else H(p, x2, . . . , xk+1)

and f = F (g + h).
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Hence, f≡g +h and [f ] = [g +h], so [f ] is a monovalued degree of parallelism.

ut

Proposition 5.11 A degree of parallelism is monovalued iff it has a p-level of the

form (∞, j).

Proof: (of proposition 5.11)

(⇒) Given [f ] a monovalued degree of parallelism. Then f≡g with g a mono-

valued function. But by proposition 4.11, g must have a p-level of the form

(∞, j).

(⇐) Given [f ] a degree of parallelism with a p-level of the form (∞, j). Then

by proposition 4.8, bcc(f) = ∞, and by lemma 5.10, [f ] must be monovalued.

ut

As an example of a bivalued function in a monovalued degree of parallelism,

consider the function given by the following trace in matrix form:

tt ⊥ tt ff tt

tt ff ⊥ tt tt

tt tt ff ⊥ tt

ff ⊥ tt ff ff

ff ff ⊥ tt ff

ff tt ff ⊥ ff

This function can easily be seen as the least upperbound of GUST + neg(GUST),

which are both monovalued (see section 2.1.4).

We note that the Bucciarelli hierarchy presented in section 3.5 is a subposet of

monovalued degrees of parallelism.

50



5.3 The Gustave Hierarchy

We now identify a hierarchy of monovalued stable degrees of parallelism. This hi-

erarchy, derived from Gustave’s function is in fact part of the Bucciarelli hierarchy

of section 3.5, but the representation we choose here is minimal and the traces are

slightly easier to work with.

Definition 5.12 Let GUSTi : B2i+1 → B (i ≥ 1) be defined by the following trace (in

matrix form):

⊥ tt ff · · · tt ff tt

ff ⊥ tt · · · ff tt tt

tt ff ⊥ · · · tt ff tt
...

...

ff tt ff · · · ⊥ tt tt

tt ff tt · · · ff ⊥ tt

We note that GUST1 is just GUST. Moreover, these functions are actually

equiparallel to a subhierarchy of Bucciarelli functions. First, let us characterize the

Bucciarelli functions we are interested in:

Lemma 5.13 Given f : Bk → B a monovalued continuous function with |tr(f)| =

cc(f) = n, then f≡BUCC(n,n).

Proof: By construction, we know
∣
∣
∣tr(BUCC(n,n))

∣
∣
∣ = n and cc(BUCC(n,n)) = n.

Define functions

g : tr(BUCC(n,n)) → tr(f)

h : tr(f) → tr(BUCC(n,n))

with the only constraint of being surjective. It is clear that the conditions of

corollary 3.11 apply to both functions and that f≡BUCC(n,n). ut
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And the following result can now be derived:

Proposition 5.14 GUSTi ≡BUCC(2i+1,2i+1).

Proof: It is clear by inspection that cc(GUSTi) = 2i + 1, and since GUSTi is

monovalued and |tr(GUSTi)| = 2i + 1, applying lemma 5.13 yields the equiv-

alence. ut

We now show that the Gustave hierarchy spans the p-level spectrum of monovalued

degrees of parallelism.

Proposition 5.15 GUSTi has a p-level of (∞, 2i).

Proof: Since GUSTi is monovalued and cc(GUSTi) = 2i + 1, propositions 4.11

and 4.8 give that GUSTi has a p-level of (∞, 2i). ut

This hierarchy will have an important role in the remainder of this chapter. It

is, in some sense, the minimal non-sequential hierarchy, and it leads — via suitable

transformations — to an important bivalued hierarchy.

5.4 Minimality of the Gustave Hierarchy

We present in this section some results concerning minimality in the STABLE semi-

lattice. We know that the degree of sequential functions is the minimal degree in this

semilattice. A natural question to ask is whether there is a non-sequential minimal

degree of parallelism. The existence of the Gustave hierarchy allows us to answer this

question negatively.

Proposition 5.16 There is no minimal stable non-sequential function.
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Proof: Assume g is a stable non-sequential function that is minimal, i.e. ∀f , f

stable, non-sequential, g�f .

Since g is not sequential, by lemma 4.13, there is A, B, n such that g is not

invariant under SA,B
n .

Consider GUST|A|. By lemma 5.15, since |A| ≤ 2 |A|, GUST|A| is invariant

under SA,B
n .

Hence g 6�GUST|A|, a contradiction. ut

However, we can show that the Gustave hierarchy form a minimal hierarchy, in the

sense that any non-sequential function must dominate one of the Gustave functions.

Proposition 5.17 Given f : Bk → B a stable non-sequential function. Then there

exists an integer i such that GUSTi�f .

Proof: The function f being non-sequential implies that cc(f) < ∞ (lemma

4.12). Moreover, f being stable implies that cc(f) ≥ 3 (propositions 4.8 and

4.14). Let A be a linearly coherent subset of π1(tr(f)) of size cc(f). Define a

function g : tr(GUSTcc(f)) → tr(f) by sending every element of tr(GUSTcc(f))

surjectively to the elements of A. It is easy to see that the conditions of

corollary 3.11 are satisfied, so that GUSTcc(f)�f . ut

5.5 The Bivalued-Gustave Hierarchy

We begin in this section an investigation of the structure of bivalued stable degrees

of parallelism. We shall take as our starting point the Gustave hierarchy, where the

function will be suitably transformed. We modify the trace of these functions — the

second projection of the traces to be precise — to make them bivalued. We then

study the structure of these new functions.1

1We could also have extended the obvious full BUCC(i,i) subhierarchy. However, it is not clear
that proposition 5.21 would hold. For the sake of simplicity, we therefore restrict our attention to
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Definition 5.18 Let BGUSTj
i : B2i+1 → B (j ≤ i) be the function defined by the

following trace (in matrix form):

⊥ tt ff · · · tt ff r1

ff ⊥ tt · · · ff tt r2

tt ff ⊥ · · · tt ff r3

...
...

ff tt ff · · · ⊥ tt r2i

tt ff tt · · · ff ⊥ r2i+1

with

rl =







ff if 1 ≤ l ≤ j

tt otherwise

Note that π1(tr(BGUSTj
i )) = π1(tr(GUSTi)) for all j.

Most of the work in this section will revolve around showing that for any i, the

functions BGUSTk
i for all k are in fact equiparallel, and that they form a hierarchy.

In fact, all functions f with π1(tr(f)) = π1(tr(GUSTi)) and π2(tr(f)) = {tt,ff} are

equiparallel — independently of exactly which trace elements return tt and which

return ff.

Our first lemma shows that if f is a function with the same first projection ofits

trace as the trace of GUSTi, and if there are j trace elements of f returning tt or j

trace elements of f returning ff (j ≤ i), then f is equiparallel to BGUSTj
i .

Lemma 5.19 Let f : B2i+1 → B be a continuous function, such that π1(tr(f)) =

π1(tr(GUSTi)). If π2(tr(f)) = {tt,ff} and we let j be

min(|{(v, tt) ∈ tr(f)}| , |{(v,ff) ∈ tr(f)}|)

then f≡BGUSTj
i .

the Gustave hierarchy. Most of the theory developed in the next sections (including the Composite
hierarchy) can (and should!) be extended to the full BUCC(i,i) subhierarchy. We shall not do so
here.
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Proof: This is a straightforward application of corollary 3.11. Without loss of

generality, assume that |{(v,ff) ∈ tr(f)}| = j (if not, consider neg(f) which is

equiparallel to f). Consider any surjective functions

g : tr(f) → tr(BGUSTj
i )

h : tr(BGUSTj
i ) → tr(f)

sending a trace returning tt to a trace returning tt and a trace returning ff to

a trace returning ff. Since π1(tr(BGUSTj
i )) = π1(tr(f)) has only one coherent

subset (namely itself), it is easy to see that all the conditions of corollary 3.11

are satisfied, and that f≡BGUSTj
i . ut

We need now only show that for all j ≤ i, the functions BGUSTj
i are all equiparallel.

Lemma 5.20 Given j, j′ ≤ i, BGUSTj
i≡BGUSTj′

i .

Proof: We prove by induction on j that ∀j,BGUSTj
i≡BGUST1

i . The case j = 1

is trivial. For the induction step (j ≥ 2), assume that BGUSTj−1
i ≡BGUST1

i

and consider BGUSTj
i . We show BGUSTj

i≡BGUSTj−1
i . Define the following

terms:

M1 = λfλx1 . . . x2i+1.if f(x1, . . . , x2i+1)

then f(x2, . . . , x2i+1, x1) else ff fi

M2 = λfλx1 . . . x2i+1.if f(x1, . . . , x2i+1)

then tt else f(x2i+1, x1, . . . , x2i) fi

It is not so hard to see that BGUSTj
i = M1 BGUSTj−1

i and BGUSTj−1
i =

M2 BGUSTj
i , thereby showing BGUSTj

i≡BGUSTj−1
i ≡BGUST1

i by induction

hypothesis. ut

To unclutter the notation, we shall denote BGUST1
i simply by BGUSTi, dropping

the superscript.
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Proposition 5.21 Let f : B2i+1 → B be a continuous function with

π1(tr(f)) = π1(tr(GUSTi)).

Then one of the following holds:

1. f≡GUSTi

2. f≡BGUSTi

Proof: Given f with π1(tr(f)) = π1(tr(GUSTi)). We consider two cases:

1. If f is monovalued, then either f = GUSTi or f = neg(GUSTi). Either

way, f≡GUSTi.

2. If f is not monovalued, then let j = |{(v, tt) ∈ tr(f)}|. If j ≤ i, then by

lemma 5.19, f≡BGUSTj
i , and by lemma 5.20, f≡BGUSTi. If j ≥ i + 1,

then |{(v,ff) ∈ tr(f)}| = 2i + 1 − j ≤ 2i + 1 − (i + 1) ≤ i, so by lemma

5.19, f≡BGUST2i+1−j
i and by lemma 5.20, f≡BGUSTi.

ut

It remains to show that the functions BGUSTi actually form a hierarchy. Let us

first compute the p-level of these functions

Proposition 5.22 BGUSTi has a p-level of (2i, 2i).

Proof: We already know that cc(BGUSTi) = 2i (same first projection of the

trace as GUSTi, proposition 5.15). Moreover, the only coherent subset of

π1(tr(BGUSTi)) is also bivalued. Hence, bcc(f) = cc(f) = 2i, and applying

proposition 4.8 yields the result. ut

The following two propositions settle the hierarchy issue:

Proposition 5.23 ∀i, BGUSTi+1�BGUSTi.
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Proof: This is again a straightforward application of corollary 3.11. Consider

any surjective function g : BGUSTi+1 → BGUSTi sending the unique trace

element returning tt to the unique trace element returning tt, and any trace

element returning ff to any trace element returning ff. It is easy to see that

all conditions of corollary 3.11 are satisfied, and BGUSTi+1�BGUSTi. ut

Proposition 5.24 ∀i, BGUSTi 6�BGUSTi+1.

Proof: The p-level of BGUSTi is (2i, 2i) and the p-level of BGUSTi+1 is (2i +

1, 2i + 1). By proposition 4.5, BGUSTi 6�BGUSTi+1. ut

One notices that BGUST1≡BP (the Berry-Plotkin function of section 5.2). An in-

teresting point to note is that BGUST1 is maximal amongst stable functions, whereas

the corresponding monovalued function, GUST1≡BUCC(3,3), is not maximal amongst

monovalued stable functions (consider BUCC(3,m) for m ≥ 4).

Functions in the Bivalued-Gustave hierarchy also relate directly to functions in

the Gustave hierarchy, as the next proposition shows:

Proposition 5.25 ∀i, GUSTi�BGUSTi.

Proof: This is a trivial application of corollary 3.11, since the first projection of

the trace of both functions is the same, and GUSTi is monovalued. ut

5.6 The Composite Hierarchy

Combining functions in the Gustave hierarchy and the Bivalued-Gustave hierarchy

(via the least upperbound operation) allows us to produce a “two-dimensional” hier-

archy. We will be considering functions of the form BGUSTi + GUSTj , and call the

resulting hierarchy the Composite hierarchy. Let us first characterize the p-levels of

the functions under consideration:
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Proposition 5.26 BGUSTi + GUSTj has a p-level of (2i, 2 min(i, j)).

Proof: This is a simple application of proposition 5.8, knowing that the p-level of

BGUSTi is (2i, 2i) and the p-level of GUSTj is (∞, 2j). ut

The functions form a hierarchy, and the governing equations describing the hier-

archy are as follows:

Proposition 5.27 BGUSTi +GUSTj�BGUSTi′ +GUSTj′ if i′ ≤ i and min(i′, j′) ≤

min(i, j).

Proof: Since i′ ≤ i, proposition 5.23 tells us that BGUSTi ≤ BGUSTi′ ≤

BGUSTi′ + GUSTj′. We then consider three cases:

1. (min(i, j) = i) Proposition 5.25 implies that

GUSTj�BGUSTj�BGUSTi�BGUSTi′ + GUSTj′

Hence, BGUSTi + GUSTj�BGUSTi′ + GUSTj′.

2. (min(i, j) = j, min(i′, j′) = i′) By assumption, i′ ≤ j, and hence by

proposition 5.25 GUSTj�BGUST�j BGUSTi′�BGUSTi′+GUSTj′. Hence

BGUSTi + GUSTj�BGUSTi′ + GUSTj′.

3. (min(i, j) = j, min(i′, j′) = j′) By assumption, j′ ≤ j, and hence

GUSTj�GUSTj′�BGUSTi′ + GUSTj′

Hence BGUSTi + GUSTj�BGUSTi′ + GUSTj′.

ut

Proposition 5.28 BGUSTi + GUSTj 6�BGUSTi′ + GUSTj′ if i < i′ or min(i, j) <

min(i′, j′).

Proof: If i < i′ or min(i, j) < min(i′, j′), then by propositions 5.26 and 4.5,

BGUSTi + GUSTj 6�BGUSTi′ + GUSTj′. ut

Figure 5.1 presents a picture of part of the Composite hierarchy, with the di-

rected edges giving the minimal implementability results (the rest can be obtained

by transitivity).
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......
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Figure 5.1: The Composite hierarchy
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5.7 Summary

We review the structure of STABLE, the poset of stable degrees of parallelism. This

poset forms a sup-subsemilattice of CONT with a top element (the degree of the

Berry-Plotkin function) and a bottom element (the degree of sequential functions).

The top degree of STABLE is chararacterized by containing all and only functions

with p-level (2, 2). A natural partition of functions in STABLE can be made by

considering monovalued and bivalued degrees of parallelism and this partition has

a nice expression in terms of p-levels, namely that a stable degree of parallelism is

monovalued iff its p-level is of the form (∞, i), i ≥ 2.

The Bucciarelli hierarchy introduced in section 3.5 lives inside the monovalued sta-

ble degrees of parallelism subposet, one of its subhierarchies (the Gustave hierarchy)

admits a compact trace representation and spans the p-levels spectrum of monoval-

ued degrees of parallelism. Modifying somewhat the returned value of functions in

the Gustave hierarchy yields a new Bivalued-Gustave hierarchy living in the bivalued

stable degrees of parallelism subposet. This new hierarchy also spans in some sense

the p-level spectrum. By combining functions in both the Bivalued-Gustave hierarchy

and the Gustave hierarchy, we obtain a “two-dimensional” infinite hierarchy. Figure

5.2 gives an illustration of the STABLE semilattice.

Finally, we showed that although there does not exist a minimal stable non-

sequential degree of parallelism, every stable non-sequential function must be bounded

below by a function in the Gustave hierarchy — proving it to be in a sense a minimal

hierarchy.
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MONOVALUED DEGREES

BUCCIARELLI HIERARCHY
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Gust-2

...

...

Figure 5.2: The STABLE semilattice
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Chapter 6

Unstable Boolean Functions

In this chapter, we study unstable first-order boolean functions. We are mainly in-

terested in describing the structure of those functions as a substructure of the larger

CONT semilattice. We already know — via proposition 4.14 — that unstable func-

tions are strictly more parallel than stable functions, in the sense that no stable

function can dominate an unstable function in the definability order. We are inter-

ested in describing the class of stable functions a given unstable function dominates.

We exhibit a hierarchy of unstable functions that dominate functions in the Bivalued-

Gustave hierarchy. Along the way, we identify two new substructures of the CONT

semilattice.

6.1 The Detector Function

To begin our discussion of unstable boolean functions, let us introduce the detector

function (DET), which is in some sense the simplest unstable function one can find.

This simplicity criterion will in fact be precised when we show that DET is in fact

minimal amongst unstable functions.

DET first appeared in the context of asynchronous dataflow networks. It is defined
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to simply return tt if one of its two inputs has a value (tt or ff indifferently). In order

to simplify the study of DET, we define the following equiparallel function:

Definition 6.1 Let tt-DET be the function defined by the following trace (in matrix

form):

tt ⊥ tt

⊥ tt tt

It is easy to show that DET and tt-DET are equiparallel.

Proposition 6.2 tt-DET≡DET.

Proof: Consider the following PCF-terms:

F1 = λx.if x then x else ⊥ fi

M1 = λfλx1x2.f(F1x1, F1x2)

F2 = λx.if (x ∨ ¬x) then tt else ⊥ fi

M2 = λfλx1x2.f(F2x1, F2x2)

It is easy to see that

tt-DET = M1 DET

DET = M2 tt-DET.

ut

We can further characterize tt-DET (and hence DET) in terms of its p-level.

Recall that by proposition 4.14 an unstable function must have a p-level of the form

(i, 1), and by proposition 5.11 a monovalued function must have a p-level of the form

(∞, j). Hence, tt-DET must have a p-level of (∞, 1).
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6.2 The Structure of Monovalued Functions

DET was the last function we needed to complete our study of monovalued func-

tions. Let MONO be the subposet of CONT composed of all monovalued degrees of

parallelism. Just like STABLE, MONO is a sup-semilattice with a top and bottom

element. The bottom element of MONO is just the degree of all sequential func-

tions. By proposition 5.9, least upperbounds exist for finite subsets. We need only

verify that there is a top element in the poset. The following proposition settles the

question:

Proposition 6.3 Given f : Bk → B a monovalued continuous function. Then f�DET.

Proof: Without loss of generality, assume f always returns tt (if not, consider

neg(f) which is equiparallel to f). Let N -tt-DET be the function of arity N

that returns tt if one of its arguments is tt. It is not hard to show that for all

N , N -tt-DET�tt-DET. Let n = |tr(f)|. Consider the following PCF-term:

M = λpλx1 . . . xk.p(t1(x1, . . . , xk), . . . , tn(x1, . . . , xk))

where tj is a term checking if its arguments agree with the jth element of

π1(tr(f)) — and returning tt if they do and blocking if they don’t. For example,

for the Gustave function GUST, the terms look like:

t1 = λx1x2x3.(x2 ∧ ¬x3)

t2 = λx1x2x3.(x1 ∧ ¬x2)

t3 = λx1x2x3.(x3 ∧ ¬x1)

It is easy to see that f = M n-tt-DET, and since n-tt-DET�tt-DET, f�tt-DET.

ut

In the next section, we shall fully characterize the top degree of the MONO semi-

lattice (proposition 6.7).
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6.3 The Structure of Unstable Functions

An unstable degree of parallelism is an equivalence class of the ≡ relation, where no

function in the equivalence class is stable. By proposition 5.4, if a degree of parallelism

is not stable, it must be unstable.

We look at the subposet of unstable degrees of parallelism, UNSTABLE. Like

CONT and STABLE, UNSTABLE is a sup-semilattice with a top element and a

bottom element. The top element of UNSTABLE is just the degree of POR (which

is maximal amongst all continuous functions). We need only verify that there is a

bottom element, and that least upperbounds exist.

Proposition 6.4 Given f : Bk → B an unstable continuous function, tt-DET�f .1

Proof: This is an application of corollary 3.11. Since f is unstable, there must

exists A ⊆ π1(tr(f)) with A coherent and |A| = 2. Define a function

g : tr(tt-DET) → tr(f)

with the only constraint that each element of the trace of tt-DET goes to a

distinct element of the trace of f corresponding to the subset A. It is easy to

see that all the conditions of corollary 3.11 are met, hence tt-DET�f . ut

As for least upperbounds, we need only verify that the following proposition holds:

Proposition 6.5 Given f : Bk → B and g : Bk′

→ B unstable continuous functions.

Then f + g is unstable.

In fact, unstability is a so-called contagious property of functions under the least

upperbound operation, namely:

1This result was first proved by Rabinovich [Rab96] in the context of asynchronous dataflow
networks.
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Proposition 6.6 Given f : Bk → B an unstable continuous function, g : Bk′

→ B a

continuous function. Then f + g is unstable.

Proof: Given f an unstable continuous function. Then it must have a p-level of

the form (if , 1) (proposition 4.10 and 4.14). The function g is continuous, so it

must have a p-level of the form (ig, jg) with jg ≥ 1. By proposition 4.4, f + g

must have a p-level of the form (min(if , ig), min(1, jg)). But min(1, jg) = 1, so

that f + g must be unstable (proposition 4.14). ut

We are now ready to characterize the top degree of the MONO semilattice:

Proposition 6.7 [DET] is the only monovalued unstable degree of parallelism.

Proof: Given f an unstable and monovalued boolean function. By minimality

of DET DET�f . By proposition 6.3 and f monovalued, f�DET. Hence

f≡DET. ut

In other words, any unstable monovalued function must be in the top degree of

MONO.

6.4 The Parallel OR Hierarchy

We are now ready to present a first hierarchy of unstable functions. This hierarchy,

derived from POR, turns out to have an interesting property regarding its relationship

to certain stable functions, as we shall see in section 6.6.

Definition 6.8 Let PORi : Bi → B (i ≥ 2) be defined by the following trace (in ma-

trix form):
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tt tt tt · · · tt ⊥ tt

tt tt tt · · · ⊥ tt tt
...

...

tt tt ⊥ · · · tt tt tt

tt ⊥ tt · · · tt tt tt

⊥ tt tt · · · tt tt tt

ff ff ff · · · ff ff ff

Note that POR2 is just POR. Intuitively, PORi takes i inputs and returns tt if at

least i − 1 are tt, ff if all are ff.

These functions actually span the whole range of allowable p-levels for unstable

functions, as the next proposition shows:

Proposition 6.9 PORi has a p-level of (i, 1).

Proof: Since PORi is continuous and unstable, it must have a p-level of the form

(j, 1) for some j ≥ 2 (propositions 4.10 and 4.14).

By inspection, we see that the only bivalued coherent subset of π1(tr(PORi))

is π1(tr(PORi)) itself. Hence, bcc(f) = i + 1 and by proposition 4.8, j ≥

bcc(f) − 1 ≥ i. ut

Let us now show that these functions in fact form a hierarchy:

Proposition 6.10 PORi+1 � PORi.

Proof: Consider the following PCF-term:

M = λf.λx1 . . . xi+1.ALLEQ(t1(x1, . . . , xi+1), . . . , ti+1(x1, . . . , xi+1))

where

ALLEQ = λx1 . . . xi+1.if (x1 = . . . = xi+1) then x1 else ⊥ fi
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which returns the value v if and only if all the arguments have the value v.

Each tj is an application of PORi to a subset of i inputs out of the i + 1

possible inputs. Since




i + 1

i



 = i+1, there are i+1 such terms. We claim

this term is such that PORi+1 = M PORi.

1. The tj functions all return tt iff at least i tt’s appear in their arguments

(a) (at least i tt’s) Each subset of size i has at least i + 1 tt’s, so each tj

function returns tt.

(b) (less then i tt’s) There exists one subset of size i with less than i− 1

tt’s, so the corresponding tj function returns ⊥.

2. The tj functions all return ff iff all inputs are ff.

(a) (all ff’s) Every tj returns ff.

(b) (not all ff’s) There exists a subset of size i with not all inputs being

ff. The corresponding tj does not return ff.

ut

Proposition 6.11 PORi 6� PORi+1.

Proof: By proposition 4.5, since PORi has a p-level of (i, 1) and PORi+1 has a

p-level of (i + 1, 1), we get PORi 6�PORi+1. ut

It is quite evident (by looking again at their respective p-levels) that none of the

functions in the Parallel OR hierarchy is expressible from DET. Moreover, this hier-

archy shows that there is no minimal bivalued unstable function — by an argument

similar to the one used in proposition 5.16.
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6.5 Stable-Dominating Functions

It is clear that unstability is strictly more powerful than stability, in the sense that

no stable function can implement any unstable function (as one sees from the p-

level characterization of stable and unstable functions), and one could think that

an unstable function should be able to implement any stable function. However,

this is clearly not true: simply consider the detector function, which can implement

only functions in monovalued stable degrees of parallelism. In fact, functions in

monovalued stable degrees of parallelism are the only stable functions that can be

implemented by all unstable functions, for the very reason that they are dominated

by the detector function. We can try to characterize the unstable functions that can

implement all the stable functions. We first start with a definition:

Definition 6.12 Let f : Bk → B be an unstable continuous function. We say f is

stable-dominating if for any stable continuous function g : Bk′

→ B, we have g�f .

Since the STABLE semilattice has a top element (BP), a sufficient condition for an

unstable function f to be stable-dominating is to have BP�f . Since any stable-

dominating function f must dominate both BP (by definition) and DET (since f

must be unstable), we have that BP+DET�f for any stable-dominating function f .

The following proposition completely characterizes stable-dominating functions:

Proposition 6.13 Given f : Bk → B an unstable continuous function. Then f is

stable-dominating iff f has a p-level of (2, 1).

Proof: (⇒) Assume f is stable-dominating. Then by previous argument, BP +

DET�f . Since BP has p-level (2, 2) and DET has p-level (∞, 1), BP + DET

has p-level (2, 1) by proposition 4.4. Assume f does not have a p-level of (2, 1).

By proposition 4.10, f must have a p-level of (i, j) with i ≥ 2, j ≥ 1 and i 6= 2

or j 6= 1. But by proposition 4.5, we get that BP + DET6�f , a contradiction.

(⇐) Given f with p-level (2, 1). By proposition 4.14, f is unstable. We need

only check that BP�f . By proposition 4.8, bcc(f) = 3. Let A be the subset of
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π1(tr(f)) of size 3. Assume without loss of generality that A has one element

returning tt and two elements returning ff (if not, consider neg(f) which is

equiparallel to f). Define a function g : tr(BP) → tr(f) sending the element

of the trace of BP returning tt to the element of A returning tt and the elements

of the trace of BP returning ff to the elements of A returning ff. It is easy to

see that all the conditions of corollary 3.11 hold, and hence we have BP�f .

So f is stable-dominating. ut

Define a stable-dominating degree of parallelism to be a degree of parallelism con-

taining a stable-dominating function. As a consequence of the above characterization,

we see that every function in the degree of parallelism must be stable-dominating.

Moreover, we can show that stable-dominating degrees of parallelism themselves form

a sup-subsemilattice of CONT called SDOM, with a top element (the degree of POR)

and a bottom element (the degree of BP+DET). It is easy to see that least upper-

bounds exist, since if f and g are stable-dominating, then f and g have p-level (2, 1),

so f +g has p-level (2, 1) (proposition 4.4), and hence f +g must be stable-dominating

by proposition 6.13.

To show that this subsemilattice is non-trivial, we exhibit a hierarchy of functions

in SDOM:

Proposition 6.14 The functions BP+PORi are stable-dominating.

Proof: We know BP has p-level (2, 2), and by proposition 6.9, PORi has p-level

(i, 1), i ≥ 2. By proposition 4.4, BP+PORi has p-level (2, 1), and by proposi-

tion 6.13, it is stable-dominating. ut

Note that BP + POR2≡POR2. We show these functions form a hierarchy:

Proposition 6.15 ∀i ≥ 2, BP + PORi+1�BP + PORi.

Proof: We know BP�BP + PORi for all i ≥ 2. Similarly, by proposition 6.10,

PORi+1�PORi�BP + PORi. Hence, by the property of least upperbounds,

we get that BP + PORi+1�BP + PORi. ut
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Proposition 6.16 ∀i ≥ 2, BP + PORi 6�BP + PORi+1.

Proof: Define the following sequentiality relation of arity i + 1

R = S
{1,2},{1,2}
i+1

⋂

· · ·
⋂

S
{1,...,i+1},{1,...,i+1}
i+1

We claim BP + PORi+1 is invariant under R, but BP + PORi is not.

1. (BP + PORi+1 invariant) Without loss of generality, assume

PORi+1(x1, . . . , xi+1) = (BP + PORi+1)(tt, . . . , tt, x1, . . . , xi)

By contradiction, assume BP + PORi+1 is not invariant under R. Then

there exists tuples

(

x1
1, . . . , x

1
i+1

)

∈ R

...
(

xk
1, . . . , x

k
i+1

)

∈ R

with k = i + 1 if i ≥ 3 and k = 4 for i = 2. Let y = (y1, . . . , yi+1), with

yj = f(x1
j , . . . , x

k
j ), and y 6∈ R. We shall derive a contradiction.

By induction on j, we show BP + PORi+1 must be invariant under

S
{1,...,j},{1,...,j}
i+1 , for j ≤ i. For j = 2, assume BP + PORi+1 is not in-

variant under S
{1,2},{1,2}
i+1 . But the Closure Lemma and proposition 4.10

show that this is a contradiction. Hence, either y1 or y2 is ⊥ or y1 = y2.

For the induction step, assume that BP + PORi+1 is not invariant under

S
{1,...,j+1},{1,...,j+1}
i+1 . Then there is no ⊥ in y1, . . . , yj+1, and there exists

I, J with yI 6= yJ . By induction hypothesis, BP + PORi+1 is invariant

under S
{1,...,j},{1,...,j}
i+1 , so we must have y1 = · · · = yj, and hence the only

possibility is that yj+1 6= y1. Since no ⊥ appears in the resulting tuple,

the first tuple above must all be tt or all be ff. If it is all ff, then the

columns must come from the trace of BP, but since the first j columns are

linearly coherent and return the same result, this would mean that the
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Egli-Milner lowerbound of the first j column has only one element, and

since it is also coherent with the last column (which returns a different

result), this contradicts BP being stable. Hence, the first tuple must be

all tt, and the columns must come from the trace of PORi+1. But the

j + 1 columns form a linearly coherent set of size less than or equal to

i + 1, and hence they cannot contain the trace element of PORi+1 that

returns false (easy observation). So we cannot have yj+1 different from

y1. Contradiction.

So, we must have BP+PORi+1 invariant under S
{1,...,j},{1,...,j}
i+1 for 2 ≤ j ≤

i + 1, in other words, BP + PORi+1 must be invariant under R.

2. (BP + PORi not invariant) Again without loss of generality, assume

PORi+1(x1, . . . , xi+1) = (BP + PORi+1)(tt, . . . , tt, x1, . . . , xi)

and consider the tuples

(tt, . . . , tt) ∈ R

...

(tt, . . . , tt) ∈ R
(

x1
1, . . . , x

1
i+1

)

∈ R

...
(

xi
1, . . . , x

i
i+1

)

∈ R

where {(tt, . . . , tt, x1
j , . . . , x

i
j)} is the subset of the first projection of the

trace corresponding to the PORi function. Then applying BP+PORi to

the tuples yields a new tuple (y1, . . . , yi+1), with yj not all equal (since

PORi is bivalued), and hence (y1, . . . , yi+1) is not in S
{1,...,i+1},{1,...,i+1}
i+1 ,

and hence (y1, . . . , yi+1) is not in R.

ut
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6.6 The Parallel OR Hierarchy and Stable Func-

tions

Stable-dominating functions are functions dominating a certain class of stable func-

tions (in that case, all of the stable functions). It is clear that except for POR itself, no

function in the Parallel OR hierarchy is stable-dominating (looking at their p-levels).

However, we can still identify stable functions that are dominated by functions in

the Parallel OR hierarchy. It turns out that functions in the Parallel OR hierarchy

dominate functions in the Bivalued-Gustave hierarchy:

Proposition 6.17 ∀i, BGUSTi�POR2i.

Proof: This is an application of corollary 3.11. The function BGUSTi has 2i + 1

trace elements (one of them returning ff, the rest tt), and so does POR2i (one

of them return ff, the rest tt). Moreover, π1(tr(POR2i)) is linearly coherent.

So any surjective function g : tr(BGUSTi) → tr(POR2i) mapping the trace

element returning tt to the trace element returning tt and any trace element

returning ff to any trace element returning ff must satisfy the conditions of

corollary 3.11, and hence BGUSTi�POR2i. ut

This is the best result one can reach comparing functions in both hierarchies, as the

following demonstrates:

Proposition 6.18 BGUSTi 6�POR2i+1.

Proof: Looking at the respective p-levels and applying proposition 4.5. ut

This has consequences regarding the implementability of functions in the Com-

posite hierarchy as well. Since DET�PORi ∀i ≥ 2, we have GUSTj�PORi ∀i ≥

2,∀j. Hence, by propositions 6.17 and 6.18, we have BGUSTi + GUSTj�POR2i and

BGUSTi + GUSTj 6�POR2i+1.
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6.7 Summary

We review the structure of UNSTABLE, the poset of unstable degrees of parallelism.

This poset forms a sup-subsemilattice of CONT, with a top element (the degree of

Parallel OR) and a bottom element (the degree of DET). The degree of DET is in

fact the only monovalued unstable degree of parallelism, characterized by containing

all and only functions with p-level (∞, 1). We showed that the monovalued degrees of

parallelism form themselves a sup-subsemilattice of CONT — called MONO — with

a top element (the degree of DET) and a bottom element (the degree of sequential

functions). Monovalued degrees of parallelism are characterized by having a p-level

of (∞, i), i ≥ 1.

We introduced a hierarchy of unstable functon, the Parallel OR hierarchy, span-

ning the p-level spectrum of unstable function. We then started investigating the

stable functions dominated by a given unstable function. It turns out that func-

tions in the Parallel OR hierarchy dominate functions in the Bivalued-Gustave hi-

erarchy. We characterized unstable functions that dominate every stable functions.

These stable-dominating functions have a p-level of (2, 1). Moreover, they form a

sup-subsemilattice of UNSTABLE (and hence of CONT) called SDOM, with a top

element (the degree of Parallel OR) and a bottom element (the degree of BP+DET).

We exhibited a hierarchy in SDOM, formed by the function BP+PORi. Figure 6.1

gives an illustration of the UNSTABLE semilattice.
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Parallel OR (POR)

BP+Detector

Detector

BP+POR-3

BP+POR-2

BP+POR-4

POR-2

POR-4

POR-3

...
...

STABLE-DOMINATING SEMILATTICE

Figure 6.1: The UNSTABLE semilattice
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Chapter 7

Further Work and Conclusion

To conclude this thesis, we mention possible directions of research that could yield

interesting results, along with some questions that were raised during the course of

the research herein presented.

7.1 The Extensional Ordering

There is some information on relative definability that one can extract from the

extensional ordering (see section 2.1.2). Two important classes of functions are char-

acterized by their extensional properties: subsequential functions and extensionally

maximal functions.

7.1.1 Subsequential Functions

A boolean function f is said to be subsequential if there exist a sequential function

g which extends f (f v g). Subsequential functions are central to Bucciarelli and

Malacaria’s proof of theorem 3.10.

We will require the following lemma, proved in [BM95] (as proposition 4.0.14):
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Lemma 7.1 Given f : Bk → B a continuous function. Then f is subsequential iff

bcc(f) = ∞.

The following proposition completely characterizes subsequential functions:

Proposition 7.2 The function f is subsequential iff [f ] is monovalued.

Proof: By lemma 7.1, f is subsequential iff bcc(f) = ∞. By proposition 4.8, f is

subsequential iff f has p-level (∞, j) for some j ≥ 1. By proposition 5.11, f

is subsequential iff [f ] is monovalued. ut

Hence, subsequential functions are equiparallel to monovalued functions, and are all

expressible by DET (proposition 6.3).

7.1.2 Extensionally Maximal Functions

A function f is said to be extensionally maximal if it is maximal with respect to the

extensional ordering — ∀f ′ with f v f ′, we have f = f ′.

The result we mention is a simple monotonicity property originally used to show

(in the context of indeterminate dataflow networks expressibility) that DET could

not implement POR [Pan]. We present it here in the light of PCF expressibility.

Proposition 7.3 (Maximality Principle) Let f be an extensionally maximal con-

tinuous function, and g be a continuous function such that f 6�g. If g′ is a continuous

function with g′ v g, then f 6�g′.

Proof: Let f be extensionally maximal and g be continuous, with f 6�g. let g′

be such that g′ v g. Assume that f�g′. We shall derive a contradiction.

By definition, f�g′ implies that there exists a term M with f = M g′.

Since g′ v g and M is continuous (and hence monotone), f = M g′ v

M g. But f extensionally maximal implies that f = M g. Hence f�g, a

contradiction. ut
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In its original form, the Maximality Principle was actually stated as a restricted ver-

sion referring to subsequential functions exclusively: given f a non-sequential exten-

sionally maximal function and g a subsequential function, then f 6�g. This generalizes

directly to the form stated above.

7.2 Hypergraphs and Algebraic Topology

One active area of investigation is directed at finding categorical counterparts of the

relative definability semilattice (the CONT semilattice). Bucciarelli and Malacaria

used hypergraphs, but the natural notion of morphisms between hypergraphs does not

preserve relative definability, it merely reflects it (theorem 3.10 is a recasting of Buc-

ciarelli and Malacaria’s result in a non-hypergraph form). One possible venue would

be to look for a more involved notion of morphism between hypergraphs. Another

venue, which we shall explore at a later time, is to recast the theory of hypergraphs

in an algrebraic topology context. We believe that by representing function traces via

complexes and finding appropriate analogous of simplicial maps between them, we

can preserve the relative definability ordering on functions. With this view, the result

of Bucciarelli and Malacaria corresponds roughly to having relative definability of two

functions when there exists some form of simplicial map between the complexes rep-

resenting the functions. Simplicial maps are the simplest type of morphism one can

design between complexes, and there is hope that by using more involved morphisms

between complexes, an accurate reflection of the relative definability ordering can be

reached.

7.3 Questions Raised

There are many points in the development of this thesis that require further investiga-

tion. Some of these points are mere technicalities whereas some are involved questions

regarding the structure of the degrees of parallelism.
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7.3.1 Purely Unstable Functions

Define a non-singleton subset M ⊆ Bn to be stably coherent if it is linearly coherent

and there exists no subset A ⊆ M with A linearly coherent and |A| = 2. Clearly a

function f is stable if all linearly coherent subsets of π1(tr(f)) are stably coherent.

Define a function f to be purely unstable if it is unstable and π1(tr(f)) has no stably

coherent subset. Examples of purely unstable functions are provided by functions in

the Parallel OR hierarchy (section 6.4). Define a degree of parallelism to be purely

unstable if it contains a purely unstable function.

• One natural question to ask it whether or not all unstable degrees of paral-

lelism are purely unstable. Clearly, if f is purely unstable, we can always

find a function g which is not purely unstable yet equiparallel to f . For

example, consider PORi. In section 6.6, we show BGUSTi�POR2i. Hence,

POR2i≡POR2i + BGUSTi, and POR2i + BGUSTi is not purely unstable. The

question is to ask whether the converse hold: for any unstable function f , does

there exist another function g which is purely unstable and equiparallel to f?

• Related to this is to ask whether or not the function BP+PORi are in a purely

unstable degree of parallelism (they are clearly not purely unstable).

• If not all unstable degrees of parallelism are purely unstable, are there any other

purely unstable degrees of parallelism outside of [DET] and [PORi] for all i?

7.3.2 Further Subsemilattices

The partition of functions into stable and unstable was motivated partly by historical

reasons, and the fact that stability is an important property of functions. One way

to look at that partitioning is to say that STABLE contains all functions with p-level

( , j) for j ≥ 2, and UNSTABLE contains all functions of p-level ( , 1). An alternate

partitioning of CONT would be to consider the subposets LEV-i (i ≥ 1), where LEV-i

contains all functions of p-level ( , i). Note that LEV-1=UNSTABLE.
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• The first natural question is whether or not LEV-i forms a subsemilattice of

CONT. It is easy to see that least upperbounds exist in LEV-i (by proposition

4.4), and it has a bottom element: DET for LEV-1 and BUCC(i,i) for LEV-i,

i ≥ 2 — by a straightforward application of corollary 3.11. Hence the question

becomes: is there a maximal function amongst functions with p-level ( , i)? If

we take as a starting point that BP is maximal in LEV-2, it seems natural to

think that the functions BGUSTi are maximal in LEV-2i. Note that we know

each poset LEV-i is non-trivial, since each contains the hierarchies BUCC(i,j),

j ≥ i, and LEV-2i further contains the hierarchy BGUSTj + GUSTi (for all j).

• A related question concerns the structure of degrees of parallelism in any given

p-level. We know some p-levels have a very rich structure, whereas some are triv-

ial. For example, the p-level (2, 1) contains the semilattice of stable-dominating

functions, with its infinite hierarchy. In contrast, the p-level (∞, 1) of unstable

monovalued degrees of parallelism contains only one degree, [DET]. One ques-

tion we might want to ask is whether or not the p-levels (∞, i) for i ≥ 2 are

subsemilattices of CONT. We know each such degree has a minimal element

(BUCC(i+1,i+1)) and contains an infinite hierarchy (BUCC(i+1,j), j ≥ i). The

question becomes: is there a maximal element in (∞, i)?

7.3.3 The Hypergraph Ordering

Given two continuous boolean functions f and g. Define f�Hg iff there is an hyper-

graph morphism between the hypergraph of f and the hypergraph of g (see section

3.4). By definition of morphisms in a category, we know �H is a partial order. Let

≡H be the induced equivalence relation. Let CONTH be the poset of ≡H-equivalence

classes of continuous first-order boolean functions ordered by �H . We can study the

embedding of CONTH in CONT, to try and characterize the �H ordering. This

would give us a measure of the relative expressive power of hypergraph morphisms,

which we know do not fully reflect the � ordering. Moreover, it could give us an idea

on how to extend hypergraphs morphisms to reflect the � ordering faithfully.
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7.3.4 Sequentiality Relations

In chapter 4, we proved two lemmas (the Reduction and Closure Lemmas) that al-

lowed us to completely characterize the presequentiality relations under which a given

function is invariant — characterization in terms of coefficients of coherence. We ab-

stracted away from the notion of presequentiality relations by defining the p-level of

a function. The next logical step in this process raises the following question: can

we perform a similar abstraction for general sequentiality relations? In other words,

can we define a numerical property completely characterizing sequentiality relations,

and find a mechanical way to derive the numerical property from any given function?

Some work has been done on the subject, but has not yet yielded a property that was

in any way easier to study than sequentiality relations themselves.

Another view on sequentiality relations that could yield information on the �

structure is the following: given a first-order continuous boolean function f , define

Sf to be the set of sequentiality relations under which f is invariant. Theorem 3.7

gets recast in this context as: f�g iff Sg ⊆ Sf . We can study the structure of the

poset of sets of sequentiality relations under the inclusion ordering. Two questions

arise:

• Does Sf+g = Sf ∩ Sg hold?

• Given any set of sequentiality relations S, can we construct a function f such

that Sf = S?

7.4 Conclusion

The underlying goal of the work presented in this thesis was one of exploration. We

explored the poset of degrees of parallelism, in an attempt to clarify its structure, and

gather clues as to its complexity. We developed some techniques to determine non-

expressibility of functions, and used them to obtain most of our structural results.
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These structures, by the nature of the techniques used, form in some way the skeleton

of the poset of degrees of parallelism. We shall now review the results obtained: both

reporting the structural information gathered throughout this research, and analyzing

the techniques we focused on.

7.4.1 Structural Results

From a structural point of view, some information was already available concerning

the poset of degrees of parallelism: degrees formed a sup-semilattice (that we called

CONT) with [POR] as top element and the degree of sequential functions as bottom.

Bucciarelli [Buc95], by exhibiting a “two-dimensional” hierarchy, further showed that

the semilattice was highly non-trivial.

Our work started from that point. We first partitioned the semilattice into two

disjoint posets, which themselves turned out to be sup-semilattices: the semilattice

of stable functions (STABLE) with BP as a top element and the degree of stable

functions as bottom, and the semilattice of unstable functions (UNSTABLE) with

[POR] as top and [DET] as bottom. A third subsemilattice (MONO) was identi-

fiedby considering degrees of monovalued functions (or equivalently, of subsequential

functions), with [DET] as top element and the degree of sequential functions as bot-

tom. This semilattice was orthogonal to the previous two and interested them both.

The intersection of MONO with UNSTABLE yielded only one degree of parallelism,

[DET]. The intersection of MONO and STABLE was larger, and contained the full

hierarchy originally discovered by Bucciarelli.

The MONO semilattice had an interesting property: one of its subposets — the

Gustave hierarchy — formed a minimal hierarchy, in the sense that any continuous

function had to dominate a function in the hierarchy. The Gustave hierarchy also

showed that there was no minimal non-sequential function. Modifying the functions in

the Gustave hierarchy to make them bivalued produced a new hierarchy in STABLE

(but not in MONO), the Bivalued-Gustave hierarchy. Taking the least upperbound of
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functions in both the Gustave and the Bivalued-Gustave hierarchy produced a “two-

dimensional” hierarchy — the Composite hierarchy — vaguely similar to Bucciarelli’s,

but in STABLE (and not in MONO).

We next turned toward the study of the UNSTABLE semilattice. We identified

a hierarchy of unstable functions derived from the POR function, the Parallel OR

hierarchy. One consequence of the existence of this hierarchy was that there could be

no minimal unstable function not equivalent to DET.

Most of the focus regarding unstable functions was directed at characterizing

the stable functions dominated by a given unstable function. Among the functions

studied, we determined that DET could implement all monovalued functions (and

equivalents thereof), and functions in the Parallel OR hierarchy could implement

corresponding functions in the Bivalued-Gustave hierarchy (and hence the Compos-

ite hierarchy). As for unstable functions that dominated all stable functions, called

stable-dominating, they could be easily characterized and formed themselves a sub-

semilattice of UNSTABLE (SDOM) with [POR] as top element and [BP + DET]

as bottom. The existence of a hierarchy in SDOM showed that the semilattice was

non-trivial.

7.4.2 Techniques Developed

The techniques we developed in this research were mostly concerned with finding a

partitioning of continuous boolean functions that could yield immediate inexpress-

ibility results for functions in different partitions. Most of the inexpressibility results

in chapters 5 and 6 were proved using these techniques.

Our starting point was the theorem of Sieber relating the definability ordering and

sequentiality relations (proposition 3.7). A consequence of this theorem was that one

needed only exhibit a sequentiality relation under which a given function was invariant

and another given function was not, to prove that the latter was not expressible from

the former. We decided to examine a class of very simple sequentiality relations
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— the presequentiality relations . Our motivations were two-fold: the simplicity

of these relations made them easy to study and they provided a coarse separation

between functions: if a presequentiality relation was sufficient (by Sieber’s theorem)

to determine that a function was not expressible from another, then the functions were

fundamentally different. One of our goals was to determine what such a fundamental

difference between functions would look like.

In order to achieve such a goal (and after deriving properties of presequential-

ity relations), we defined the p-level (i, j) of a function, a numerical characteristic

embodying the presequentiality relations under which a function was invariant. An

interesting property of p-levels was that they could be derived without ever refering

to presequentiality relations: one needed only compute the coefficient of coherence

and the bivalued coefficient of coherence of the function. Those two quantities could

directly be computed from the trace of the function.

The practical use of p-levels was in partitioning the semilattice of degrees of par-

allelism into classes of functions with the same p-level. One could derive (by a direct

translation of p-levels into the corresponding presequentiality relations) proposition

4.8, which provided a simple inexpressibility criterion that we used to prove most

of inexpressibility results in this thesis. Moreover, the link between p-levels and co-

efficients of coherence answered our question regarding the fundamental difference

between functions differentiated by presequentiality relations: the difference was in

the minimum size of linearly coherence (bivalued or not) subsets of the first projection

of the trace of the functions.

The inexpressibility result of proposition 4.5 is however the strongest result one

can achieve from presequentiality relations alone. The p-level of a function tells us

nothing when we are comparing it to a function with the same p-level. A lot of

structural information gets lost — consider for example the functions with a p-level

of (2, 1), which as we saw in section 6.5 form a subsemilattice containing an infinite

hierarchy.

As we hinted at in section 7.3, we are attempting a generalization of p-levels to

encompass the full set of sequentiality relations . If successful, this would lead us to a
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function-independent counterpart to the semilattice of degrees of parallelism, which

would most likely give us new insights on the fundamental structure induced by the

relative definability ordering.
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Appendix A

Proof of the Reduction Lemma

In this appendix, we prove the Reduction Lemma (lemma 4.1), which basically

states that when considering the invariance of a function under presequentiality rela-

tions, we need only look at presequentiality relations of the form S{1,...,m},{1,...,m}
m and

S
{1,...,m},{1,...,m+1}
m+1 .

The proof uses many small technical lemmas, that we now state and prove.

The following three lemmas reflect the fact that when considering the invariance

of a function under the presequentiality relation SA,B
n , we need only consider the

smallest n such that B ⊆ {1, . . . , n}.

Lemma A.1 Let f : Bk → B be a continuous function. If f is invariant under SA,B
n ,

then ∀n′ ≤ n such that B ⊆ {1, . . . , n′}, f is invariant under S
A,B
n′ .

Proof: By contradiction, by assume that there exist n, A, B, n′ with n′ ≤ n such

that f is invariant under SA,B
n but not under S

A,B
n′ .

This means there exist tuples

(x1
1, . . . , x

1
n′) ∈ S

A,B
n′

...
(

xk
1, . . . , x

k
n′

)

∈ S
A,B
n′
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and (y1, . . . , yn′) 6∈ S
A,B
n′ with yi = f(x1

i , . . . , x
k
i ).

Consider the tuples

(x1
1, . . . , x

1
n′,⊥, . . . ,⊥) ∈ SA,B

n

...

(xk
1, . . . , x

k
n′,⊥, . . . ,⊥) ∈ SA,B

n

But (y1, . . . , yn′,⊥, . . . ,⊥) 6∈ SA,B
n , which contradicts the invariance of f under

SA,B
n . ut

Lemma A.2 Let f : Bk → B be a continuous function. If f is invariant under SA,B
n ,

then ∀n′ ≥ n, f is invariant under S
A,B
n′ .

Proof: By contradiction, assume there exist n, A, B and n′ ≥ n such that f is

invariant under SA,B
n but not under S

A,B
n′ .

This means there exist tuples

(x1
1, . . . , x

1
n) ∈ S

A,B
n′

...
(

xk
1, . . . , x

k
n

)

∈ S
A,B
n′

and (y1, . . . , yn′) 6∈ S
A,B
n′ with yi = f(x1

i , . . . , x
k
i ).

Observation shows that (x1, . . . , xn′) ∈ S
A,B
n′ ⇔(x1, . . . , xn) ∈ SA,B

n .

Hence,

(x1
1, . . . , x

1
n) ∈ SA,B

n

...
(

xk
1, . . . , x

k
n

)

∈ SA,B
n

but (y1, . . . , yn) 6∈ SA,B
n contradicting the invariance of f under SA,B

n . ut
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Lemma A.3 Let m(M) be the least n such that M ⊆ {1, . . . , n}, and let f : Bk → B

be a continuous function. The function f is invariant under SA,B
n iff f is invariant

under S
A,B
m(B).

Proof: Immediate via previous two lemmas. ut

The following lemmas clarifies the intuition that invariance under a presequen-

tiality relation is not affected by the permutation of the columns of the tuples in the

relation.

Lemma A.4 Let f : Bk → B be a continuous function. Let A, B, C, D be sets with

A ⊆ B ⊆ {1, . . . , n}, C ⊆ D ⊆ {1, . . . , n}. Let p be a permutation of {1, . . . , n} into

{1, . . . , n} such that p(A) = C and p(B) = D. Then f is invariant under SA,B
n ⇔f

is invariant under SC,D
n .

Proof: Let us first prove one small result that simplifies the remainder of the

proof:

(x1, . . . , xn) ∈ SA,B
n ⇔(xp−1(1), . . . , xp−1(n)) ∈ SC,D

n .

Let (x1, . . . , xn) ∈ SA,B
n , and yi = xp−1(i). We show (y1, . . . , yn) ∈ SC,D

n . Two

cases arise

1. ∃i ∈ A, xi = ⊥. In which case, let c = p(i), with c ∈ C since i ∈ A.

Moreover, yc = xp−1(c) = xp−1(p(i)) = xi = ⊥, so ∃j ∈ C, yj = ⊥.

2. ∀i, j ∈ B, xi = xj . Assume ∃i, j ∈ D, yi 6= yj. Then xp−1(i) 6= xp−1(j),

hence ∃i′, j′ ∈ B, xi′ 6= xj′ , a contradiction. Hence ∀i, j ∈ D, yi = yj.

This shows (y1, . . . , yn) ∈ SC,D
n . The reverse direction follows by symmetry of

the permutation p.

To prove the actual lemma, we first observe that we need only show one

direction of the equivalence. The reverse direction follows by symmetry of the

permutation p.
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Given f invariant under SA,B
n , consider any tuples

(x1
1, . . . , x

1
n) ∈ SA,B

n

...
(

xk
1, . . . , x

k
n

)

∈ SA,B
n

Let yi = f(x1
i , . . . , x

k
i ). We need to show (y1, . . . , yn) ∈ SA,B

n .

By the fact previously noticed, each tuple
(

x
j
1, . . . , x

j
n

)

is also in SC,D
n . Since

f is invariant under SC,D
n , (y1, . . . , yn) ∈ SC,D

n . And again by the previous

lemma, this implies that (y1, . . . , yn) ∈ SA,B
n . ut

Lemma A.5 Given f : Bk → B a continuous function, f is invariant under SA,B
n

⇔f is invariant under S{1,...,|A|},{1,...,|B|}
n .

Proof: By the previous lemma, we need only show that there exists a permutation

p of {1, . . . , n} such that p(A) = {1, . . . , |A|}, p(B) = {1, . . . , |B|}.

Let

pA : A → {1, . . . , |A|}

pB : B\A → {|A| + 1, . . . , |B|}

pR : {1, . . . , n}\B → {|B| + 1, . . . , n}

be canonical bijections.

Define p : {1, . . . , n} → {1, . . . , n} as

p(i) =







pA(i) if i ∈ A

pB(i) if i ∈ B\A

pR(i) if i ∈ {1, . . . , n}\B

This is a bijection , and obviously, p(A) = {1, . . . , |A|}, p(B) = {1, . . . , |B|}.

ut
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The following three lemmas show that if f is invariant under some presequentiality

relation SA,B
n with A ⊂ B, then f will be invariant under SA,B′

n for any B′ such that

A ⊂ B′.

Lemma A.6 Given f : Bk → B a continuous function. If f is invariant under SA,B
n ,

then f is invariant under SA,B′

n for all B′ ⊆ B.

Proof: By contradiction, assume there exist n, A, B, B′ with B′ ⊆ B such that f

is invariant under SA,B
n but not under SA,B′

n . Then there exist tuples

(x1
1, . . . , x

1
n) ∈ SA,B′

n

...
(

xk
1, . . . , x

k
n

)

∈ SA,B′

n

such that (y1, . . . , yn) 6∈ SA,B′

n with yi = f(x1
i , . . . , x

k
i ).

Fix an arbitrary k ∈ A. Consider the following tuples:
(

z
j
1, . . . , z

j
n

)

for 1 ≤

j ≤ k, with

z
j
i =







x
j
i if i ∈ B′

x
j
k if i ∈ B\B′

⊥ otherwise

We first verify that these tuples are in SA,B
n . For each j, 1 ≤ j ≤ k, consider

the original tuple
(

x
j
1, . . . , x

j
n

)

∈ SA,B′

n . In other words, either

1. ∃i ∈ A, x
j
i = ⊥, and for that i ∈ A, we have z

j
i = x

j
i = ⊥. Hence

(

z
j
1, . . . , z

j
n

)

∈ SA,B
n .

2. ∀i ∈ A, x
j
i 6= ⊥, and ∀i, i′, x

j
i = x

j
i′ . Hence, ∀i, i′, z

j
i = z

j
i′ . Moreover,

∀i ∈ B\B′, z
j
i = x

j
k for k ∈ A ⊆ B′. Hence, ∀i, i′ ∈ B, z

j
i = z

j
i′ and the

tuple
(

z
j
1, . . . , z

j
n

)

∈ SA,B
n .

By the above construction, we see that ∀i ∈ B′, f(z1
i , . . . , z

k
i ) = yi .

Since (y1, . . . , yn) 6∈ SA,B′

n , we have ∀i ∈ A, yi 6= ⊥ and ∃i, j ∈ B′, yi 6 yj. This

implies that ∀i ∈ A, f(z1
i , . . . , z

k
i ) 6= ⊥ and ∃i, j ∈ B′ ⊆ B, f(z1

i , . . . , z
k
i ) 6=

f(z1
j , . . . , z

k
j ). In other words, f is not invariant under SA,B

n , an absurdity. ut
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Lemma A.7 Given f : Bk → B a continuous function. If f is invariant under SA,B
n ,

|B\A| = 1, then for any B′ such that B ⊆ B′, f is invariant under SA,B′

n .

Proof: By lemma A.3 and lemma A.5, we do this in two steps. For any m,

1. f invariant under S
{1,...,m},{1,...,m+1}
m+1 ⇒ f invariant under S

{1,...,m},{1,...,m+2}
m+2 .

2. f invariant under S
{1,...,m},{1,...,m+2}
m+2 ⇒ f invariant under S{1,...,m},{1,...,n}

n

for any n ≥ m + 2.

(1) By contradiction, assume that for some m, f is invariant under the pre-

sequentiality relation S
{1,...,m},{1,...,m+1}
m+1 but not under S

{1,...,m},{1,...,m+2}
m+2 . Then

there are tuples

(

x1
1, . . . , x

1
m+2

)

∈ S
{1,...,m},{1,...,m+2}
m+2

...
(

xk
1, . . . , x

k
m+2

)

∈ S
{1,...,m},{1,...,m+2}
m+2

but (y1, . . . , ym+2) 6∈ S
{1,...,m},{1,...,m+2}
m+2 , with yi = f(x1

i , . . . , x
k
i ). Hence, ∀i ≤

m, yi 6= ⊥ and ∃I, J such that yI 6= yJ .

We consider 3 cases:

1. (I ≤ m) Consider the following tuples

(

x1
1, . . . , x

1
m, x1

J

)

∈ S
{1,...,m},{1,...,m+1}
m+1

...
(

xk
1, . . . , x

k
m, xk

J

)

∈ S
{1,...,m},{1,...,m+1}
m+1

and (y1, . . . , ym, yJ) ∈ S
{1,...,m},{1,...,m+1}
m+1 by assumption. Hence, either

(a) ∃i ≤ m such that yi = ⊥ (contradiction)

(b) yI = yJ (contradiction).

2. (J ≤ m) Same as argument as first case above, interchanging I and J .

3. (I, J > m) We further consider 3 subcases.
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(a) (yI = ⊥). Consider the following tuples

(

x1
1, . . . , x

1
m, x1

I

)

∈ S
{1,...,m},{1,...,m+1}
m+1

...
(

xk
1, . . . , x

k
m, xk

I

)

∈ S
{1,...,m},{1,...,m+1}
m+1

and (y1, . . . , ym, yI) ∈ S
{1,...,m},{1,...,m+1}
m+1 by assumption on the invari-

ance of f . So either

i. ∃i ≤ m such that yi = ⊥ (contradiction)

ii. yI = yi for all i ≤ m (contradiction)

(b) (yJ = ⊥) Same argument as case above, with J used instead of I.

(c) (yI , yJ 6= ⊥) Either all yi, ∀i ≤ m are equal and let zj = x
j
Iorxj

J , the

one different from all yi, or let zj = x
j
I (recall yI 6= yJ .

Consider the tuples

(

x1
1, . . . , x

1
m, z1

)

∈ S
{1,...,m},{1,...,m+1}
m+1

...
(

xk
1, . . . , x

k
m, zk

)

∈ S
{1,...,m},{1,...,m+1}
m+1

and
(

y1, . . . , ym, f(z1, . . . , zk)
)

∈ S
{1,...,m},{1,...,m+1}
m+1 , by assumption on

invariance of f . So either

i. ∃i ≤ m such that yi = ⊥ (contradiction)

ii. f(z1, . . . , zk) = yi for all i ≤ m, but this is absurb by construction

of zj

(2) By contradiction, assume that there exists m such that f is invariant under

S
{1,...,m},{1,...,m+2}
m+2 but there exists n ≥ m+2 such that f is not invariant under

S{1,...,m},{1,...,n}
n . Then there exist tuples

(x1
1, . . . , x

1
n) ∈ S{1,...,m},{1,...,n}

n

...
(

xk
1, . . . , x

k
n

)

∈ S{1,...,m},{1,...,n}
n
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but (y1, . . . , yn) 6∈ S{1,...,m},{1,...,n}
n with yi = f(x1

i , . . . , x
k
i ). Hence, ∀i ≤ m,

yi 6= ⊥ and ∃I, J such that yI 6= yJ . Consider the tuples

(

x1
1, . . . , x

1
m, x1

I , x
1
J

)

∈ S
{1,...,m},{1,...,m+2}
m+2

...
(

xk
1, . . . , x

k
m, xk

I , x
k
J

)

∈ S
{1,...,m},{1,...,m+2}
m+2

and (y1, . . . , ym, yI , yJ) ∈ S
{1,...,m},{1,...,m+2}
m+2 by assumption on the invariance of

f . But this means that either

1. ∃i ≤ m such that yi = ⊥ (contradiction)

2. yI = yJ (contradiction)

ut

Lemma A.8 Given f : Bk → B a continuous function. Then f is invariant under

SA,B
n , |B\A| = 1 ⇔f is invariant under SA,B′

n for any B′ such that B ⊆ B′.

Proof: Immediate via the previous two lemmas. ut

With these lemmas in hand, the Reduction Lemma is immediate.

Proof: (Reduction Lemma 4.1)

1. (A = B) By lemma A.5, we have that f is invariant under SA,A
n ⇔f is

invariant under S{1,...,|A|},{1,...,|A|}
n and by lemma A.3, f is invariant under

S{1,...,|A|},{1,...,|A|}
n ⇔f is invariant under S

{1,...,|A|},{1,...,|A|}
|A| .

2. (A ⊂ B) By lemma A.5, f is invariant under SA,B
n ⇔f is invariant under

S{1,...,|A|},{1,...,|B|}
n . By lemma A.8, f is invariant under S{1,...,|A|},{1,...,|B|}

n

⇔f is invariant under S{1,...,|A|},{1,...,|A|+1}
n , and by lemma A.3, this hap-

pens ⇔f is invariant under S
{1,...,|A|},{1,...,|A|+1}
|A|+1 .

ut
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