Object-Oriented Design Lecture 7
CSU 370 Fall 2007 (Pucella) Friday, Sep 28, 2007

Software Testing

Testing techniques can be classified along several orthogonal dimensions.

White Box (or Glass Box) Versus Black Box Testing

White box testing relies on knowing the internals of the implementation. For instance, testing
by inserting print statements or something similar to get a sense of what gets executed is a
form of white box testing. This is useful when you are debugging a particular implementation
of an ADT, but it of course specific to that particular implementation.

In contrast, black box testing treats the implementation as hidden, and can only test the
code based on its interface and its specification. (It treats the ADT as a black box—you do
not get to peek inside.) The advantage of black box testing is that it can be used to test
any implementation of the ADT.

A black box testing infrastructure for an ADT must be able to test any implementation of
the ADT, and any correct implementation must pass the test.

Unit Versus Integration Testing

A class or a closely related set of classes (module) is often implemented by a single program-
mer. The class or module all by itself is not runnable, and generally will not do anything
useful on its own. It is used within the context of a larger piece of software. A key feature of
the ADT approach we advocate in this course is that it allows the class to be implemented
without regard to the context in which it will be used in.

(This is in fact the whole point of specification-based design in the wider context of engi-
neering. By designing a piece according to a specification, other pieces needing to interact
with the piece need only assume that the piece satisfies its specification. The actual details
of how the specification is met—the implementation—does not matter.)

Unit testing is the process of taking a class implementation and making sure it satisfies its
specification. This requires making up test data and a test program to test the implemen-
tation against the specification.

In contrast, integration testing tests the class in a context with other classes to make sure
that the higher-level interaction between the classes works correctly.

In this course, because of our ADT design philosophy, we will concentrate on black box unit
testing.

Yet another sort of testing that is sometimes mentioned is regression testing. Roughly
speaking, regression testing is the process of keeping old tests around; because adding a new
feature to a piece of software should not change existing behaviors, we can run the old tests
to ensure that the code still behaves as expected.

Purpose of Testing

The point of testing is to find bugs, and not to prove programs correct. Why?

To prove that a program is correct using tests, we need to exercise all the inputs to the
program. This can be a problem if there many inputs to test. For instance, a program that
takes two 64-bit integers as input, that is, 128 bits of input total, would require 10?? years
to run through tests for all inputs, even if we allow a millon tests to be performed every
second. That’s clearly infeasible. Things get worse, of course, because some programs can
take one of infinitely many inputs—for instance, programs manipulating lists.

So we cannot in general exercise all inputs, and therefore need to focus only on a few. This
leaves the possibility of bugs for the other inputs.

Consider the well-publicized story of the Intel FDIV bug. In 1994, Intel recalled its Pentium
processors to repair a bug in its floating point division instruction, FDIV. Intel has estimated
that this recall cost the company 475 million dollars.

Here is an example of the bug:
4195835.0/3145727.0 = 1.333 820 449 136 241 000 (Correct value)
4195835.0/3145727.0 = 1.333 739 068 902 037 589 (Flawed Pentium)

Intel estimated that the result of the FDIV instruction was incorrect a little more often than
once in every 9 billion floating point divisions. An IBM study found, however, that the
values that occur most often in spreadsheet and scientific computations are more likely to
trigger the bug.

After the Intel debacle, AMD, Intel’s chief competitor, was worried about their own chip.
They turned to the automatic theorem proving community, and Moore, a leading researcher
in the area, proved with his team that the algorithm used to implement the FDIV instruction
in AMD’s chip was correct using a mechanical theorem prover. They in fact managed to
prove the correctness of the entire floating-point kernel (not just the FDIV instruction). In
the process, they found and repaired two design errors that had not been caught by any of
the 80 million separate tests that had been run.

Unfortunately, proving programs correct is quite hard, so testing is often advocated as a first
approach to debugging. We will return to proving programs correct towards the end of the
course, but for the time being, let us focus on testing.

Test Coverage

Given that we can only test a finite (and in fact small) number of cases, how do we choose
those tests?

A good test is a test that finds bugs. Finding good tests therefore requires a basic under-
standing of the common bugs that can occur. This depends on the actual programming
language used, and on the kind of program being tested. Many books have been written on
common bugs in various programming languages.

In general, test coverage should include:

e Trivial cases (e.g., empty list inputs for list-processing functions)

Typical cases (both easy and hard)

Boundary cases (cases that are either just acceptable, or just outside acceptable; e.g.,
inputs that access an array close to its bounds)

Weird cases

e Error cases (if the specification mentions how error cases are treated)

What should be tested during a test? Every equation in the specification should be tested.
Remember that some methods in Java have an implicit specification. In particular, equals ()
methods are required to be reflexive, symmetric, and transitive; the hashCode () method is
required to have the property that a.equals(b) implies a.hashCode()==b.hashCode().
Those should be tested as well.

Black Box Unit Testing Infrastructure

Let us look at an example of a black box unit testing class for an integer stack signature and
specification, given as follows:

public static IntStack emptyStack ();

public static IntStack push (IntStack, int);
public boolean isEmpty O ;

public int top (O);

public IntStack pop ();

public boolean equals (Object);

IntStack.push(s,i) .top() == i
IntStack.push(s,i) .pop() == s
IntStack.push(s,i) .isEmpty() == false
IntStack.emptyStack() .isEmpty() == true

IntStack.emptyStack() .equals (obj) ==
obj.isEmpty() if obj is a IntStack

false otherwise
IntStack.push(s,i) .equals (obj) ==
false if obj is a IntStack & obj.isEmpty()==true

obj.top()==1i && s.equals(obj.pop())
if obj is a IntStack & obj.isEmpty()==false
false otherwise

Assume we have a class IntStack implementing the above interface, to be tested.

The general structure of the tester is to first generate a set of instances of IntStack, and
test each instance. The instances, at least for the typical cases, can be usefully generated at
random.

This example is a variant of the ClassroomTester code given to you in the first homework.
First off, the class definition, and the main method, which invokes the testIntStacks()
method that tests a set of random objects, and the texttttestExceptions() method that tests
the exceptions that the class is required to throw under some conditions. Useful statistics
are accumulated in private fields.

import java.util.Random;
public class IntStackTester {

private int ntests = 0; // Total Tests Run
private int nerr = 0; // Number of Errors
private int totStacks = 0; // Number of Stacks Created

/* Main testing method */

public static void main(String[] args){
/* Create a new Tester, run the tests, and Print out results. */
IntStackTester t = new IntStackTester ();

/* See definitions below */
t.testIntStacks();
t.testExceptions();

/* A few Stats... */

System.out.println("\nNumber of stacks tested: " + t.totStacks);
System.out.println("Number of tests performed: " + t.ntests);
System.out.println("Number of errors found: " + t.nerr);

The testIntStacks() method first tests the empty stack (an interesting special case), and
repeatedly generates NUM_TO_TEST piece of data used to construct an instance IntStack, and
invokes testIntStack to create and test each instance.

/* How many stacks to create? */
private static final int NUM_TO_TEST = 200;

/* Create random stacks, and test them */
private void testIntStacks(){
Random r = new Random();
// first off, make sure we test the empty stack
testIntStack (new int[0],r.nextInt(10));
// bunch of random stacks (random size)
for(int i = 0; i < NUM_TO_TEST; i++){
int size = r.nextInt(5); // number of elements in stack
int[] vals = new int[size];
for (int j=0; j < size; j++)
vals[j]=r.nextInt(10);
/* Run the Tests */
testIntStack (vals,r.nextInt(10));

}

The method testIntStack() creates a new instance of IntStack based on the inputs to
the method, and tests each specification equation. Each specification is tested via the
assertTrue () method described below

/* Test a single Stack */
private void testIntStack (int[] vals,int next){
try{
/* Create the stack from the array of ints */
IntStack s = IntStack.emptyStack ();
for (int i=0; i<vals.length; i++)
s = IntStack.push (s,vals[i]);

/* Update the numbers for our static method checks laterx/
totStacks++;

/* check accessors */

assertTrue(IntStack.push(s,next) .top() == next,
"IntStack.push(s,i).top()==1i");

assertTrue(IntStack.push(s,next) .pop() == s,
"IntStack.push(s,i).pop()==s");

assertTrue(IntStack.push(s,next) .isEmpty() == false,
"IntStack.push(s,i).isEmpty()==false");

/* for the empty stack, make sure isEmpty is correct */
if (vals.length == 0)
assertTrue (s.isEmpty() == true,
"IntStack.emptyStack.isEmpty()==true");

/*

Here, you want to test the .equals() method.

some hints:

- you definitely want to test that .equals(null) is false.

- you may want to construct an equal object and an
unequal object to make sure that .equals() returns the
right result for those

- you may want to check reflexivity, symmetry, transitivity.
(the first two are easy, the third is a bit of a pain).

*/
} catch(RuntimeException e) {

/* If there was an exception anywhere in there, then we
* have a problem */
assertTrue(false, "Exception: "+e.getMessage());

Note that exceptions are caught and reported as failed tests.

The method testExceptions tests that expections are appropriately reported. For integer
stacks, the only exceptions that must be reported occur when attempting to take the top
element of an empty stack, or attempting to pop an empty stack.

/* Make sure exceptions are thrown for border cases */
private void testExceptions() {
/* top/pop of empty stack */
try {
int result = IntStack.emptyStack().top();
assertTrue (false, "IntStack.emptyStack().top(): No Exception");
} catch(RuntimeException e) {
assertTrue (true, "");

b

try {

IntStack s = IntStack.emptyStack().pop();

assertTrue (false, "IntStack.emptyStack().pop(): No Exception");
} catch(RuntimeException e) {

assertTrue (true, "");

}

Method assertTrue() reports when a test succeeded or failed, and updating the corre-
sponding statistics.

/* Number of dots to print before we go to the next line */
private static final int DOTS_PER_LINE = 50;

/* Update the test counters based on the result given. Result
* is expected to be true for passing tests, and false for
* failing tests. If a test fails, we print out the provided
* message so the user can see what might have gone wrong.
* Be sure to review anything that doesn’t make sense. */
private void assertTrue (boolean result, String msg){
ntests++;
if (lresult){
System.out.println("\n*+*ERROR**: test# " + ntests + " -- " + msg);
nerr ++;
+
if (ntests % DOTS_PER_LINE == 0)System.out.println();
System.out.print(".");

