
Logic and Computation Lecture 19
CSU 290 Spring 2009 (Pucella) Monday, Mar 9, 2009

Review via Reverse

Between the midterm on Wednesday and Spring Break last week, it pays to review some of
what we’ve done relating to induction. We’ll focus on rev, because it leads to interesting
examples.

First, let’s prove the following result that we’ll need later. It tells you that the result of an
append is a true list exactly when the second element of the append is a true list.

Theorem 1. (= (true-listp (app x y)) (true-listp y))

Proof. We prove this by induction on x. Here are the two proof obligations:

P1: (endp x) =⇒ (= (true-listp (app x y)) (true-listp y))

P2: ¬(endp x) ∧ (= (true-listp (app (cdr x) y)) (true-listp y))

=⇒ (= (true-listp (app x y)) (true-listp y))

Let’s prove P1. It’s an implication, so let’s identify the context and the assumptions in the
context:

A1: (endp x)

Let’s prove the consequent of the implication under that assumption

(= (true-listp (app x y)) (true-listp y))

by def of app, A1, and if axiom

(= (true-listp y) (true-listp y))

by reflexivity of =

Now, let’s prove P2. It’s also an implication, so let’s identify the context and the assumptions
in the context:

A1: ¬(endp x)

A2: (= (true-listp (app (cdr x) y)) (true-listp y))

1



Let’s prove the consequent of the implication under those assumptions:

(= (true-listp (app x y)) (true-listp y))

by def of app, A1, if axiom

(= (true-listp (cons (car x) (app (cdr x) y))) (true-listp y))

by def of true-listp, endp if and cdr axioms

(= (true-listp (app (cdr x) y)) (true-listp y))

by A2

(= (true-listp y) (true-listp y))

by reflexivity of =

ut

Recall the definition of rev:

(defun rev (L)

(if (endp L)

NIL

(app (rev (cdr L)) (list (car L)))))

First off, consider (true-listp (rev x)). Let’s look at what this says: no matter what
x is, then the reverse of x is a true list. First question, do you think this is valid? A few
examples seem to point out that yes. So let’s try to prove it.

Theorem 2. (true-listp (rev x))

Proof. We prove this by induction on x. Here are the two proof obligations:

P1: (endp x) =⇒ (true-listp (rev x))

P2: ¬(endp x) ∧ (true-listp (rev (cdr x))) =⇒ (true-listp (rev x))

Let’s prove P1. It’s an implication, so let’s identify the context and the assumptions in the
context:

A1: (endp x)

2



Let’s prove the consequent of the implication under that assumption

(true-listp (rev x))

by def of rev, A1, if axiom

(true-listp NIL)

by def of true-listp, endp and if axioms

(= NIL NIL)

by reflexivity of =

Now, let’s prove P2. It’s also an implication, so let’s identify the context and the assumptions
in the context:

A1: ¬(endp x)

A2: (true-listp (rev (cdr x)))

Let’s prove the consequent of the implication under those assumptions:

(true-listp (rev x))

by def of rev, A1, if axiom

(true-listp (app (rev (cdr x)) (list (car x))))

by Theorem 1

(true-listp (list (car x)))

by def of list

(true-listp (cons (car x) NIL))

by def of true-listp, endp if and cdr axioms

(true-listp NIL)

by def of true-listp, endp and if axioms

(= NIL NIL)

by reflexivity of =

ut

Okay, so those were easy, partly because they were simple equality formulas.

The next one is more interesting. Consider the formula (= (rev (rev x)) x), which says
that reversing a list twice leads to the original list. Is it a valid formula?

3



The answer is no, and it requires you to think a bit. The easiest counter-example is to take
x to be an integer, such as 5. (rev 5) is NIL, and so (rev (rev 5)) is NIL, which is not
equal to 5.

So how can we restrict the formula so that it is valid. Intuitively, if we restrict x to be a true
list, then it seems (by looking at examples) that the formula is actually valid. Thus, let’s
try to prove (true-listp x) =⇒ (= (rev (rev x)) x).

Theorem 3. (true-listp x) =⇒ (= (rev (rev x)) x).

Proof. We prove this by induction on x. Coming up with the proof obligations is a bit more
subtle, because the formula to prove is an implication. Look at the lecture notes from last
lecture. Intuitively, we add the new bits to the existing context of the formula. Here are the
two proof obligations:

P1: (endp x) ∧ (true-listp x) =⇒ (= (rev (rev x)) x)

P2: ¬(endp x)

∧ ((true-listp (cdr x)) =⇒ (= (rev (rev (cdr x))) (cdr x)))

∧ (true-listp x)

=⇒ (= (true-listp (app x y)) (true-listp y))

Let’s prove P1. It’s an implication, so let’s identify the context and the assumptions in the
context:

A1: (endp x)

A2: (true-listp x)

Let’s first work on the context a little bit. First off, note that we’re assuming that both x is
an atom, and x is a true list. Now, the only atom that is also a true list is NIL, so intuitively,
the context gives us that x is NIL. There are a few ways to convince ourselves formally of
that. The easiest is to see that (endp x) =⇒ (true-listp x) ≡ (= x NIL) is valid. Here’s
a direct proof:

(endp x) =⇒ (true-listp x) ≡ (= x NIL)

by def of true-list, assumption, and if axiom

(endp x) =⇒ (= x NIL) ≡ (= x NIL)

by reflexivity of = and propositional reasoning

So, because we know A1, we know that (true-listp x) and (= x NIL) are equivalent.
And from A2, we know that (true-listp x) is true, meaning that (= x NIL) is true, so
we can just add it to the context:

4



A3: (= x NIL)

Let’s prove the consequent of the implication under those assumptions:

(= (rev (rev x)) x)

by def of rev, A1, if axiom

(= (rev NIL) x)

by def of rev, endp and if axioms

(= NIL x)

by A3

Now, let’s prove P2. It’s also an implication, so let’s identify the context and the assumptions
in the context:

A1: ¬(endp x)

A2: (true-listp (cdr x)) =⇒ (= (rev (rev (cdr x))) (cdr x))

A3: (true-listp x)

Again, let’s work on the context a bit. First off, note that intuitively, because x is not an
atom, and because x is a true list, then it must be the case that the cdr of x is a true list.
We can establish formally as follows:

¬(endp x) =⇒ (true-listp x) ≡ (true-listp (cdr x))

by def of true-listp, assumption, and if axiom

¬(endp x) =⇒ (true-listp (cdr x)) ≡ (true-listp (cdr x))

by reflexivity of = and propositional reasoning

So, because we know A1, we know that (true-listp x) and (true-listp (cdr x)) are
equivalent. And from A3 we know that (true-listp x) is true, meaning that (true-listp
(cdr x)) is also true, so let’s add it to the context:

A4: (true-listp (cdr x))

Now, because we know A4, the antecedent of A2 is true, meaning that its consequent is true,
so we can just add the consequent of A2 to the context:

A5: (= (rev (rev (cdr x))) (cdr x))

5



Now, let’s prove the consequent of the implication P2 under those assumptions:

(= (rev (rev x)) x)

by def of rev, A1, and if axiom

(= (rev (app (rev (cdr x)) (list (car x)))) x)

Now, it’s not clear what to do. So let’s look at what we have. We’re taking the reverse of
an append of two lists. We’ve proved something in the past about the reverse of appends,
we get the append of the reverses (in the opposite order): (= (rev (app A B)) (app (rev

B) (rev A))). That’s the key here, because it brings two revs together and lets us use A5:

(= (rev (app (rev (cdr x)) (list (car x)))) x)

by Theorem (= (rev (app A B)) (app (rev B) (rev A)))

(= (app (rev (list (car x))) (rev (rev (cdr x)))) x)

by A5

(= (app (rev (list (car x))) (cdr x)) x)

by def of list

(= (app (rev (cons (car x) NIL)) (cdr x)) x)

by def of rev, endp if cdr and car axioms

(= (app (app (rev NIL) (list (car x))) (cdr x)) x)

by def of rev, endp and if axioms

(= (app (app NIL (list (car x))) (cdr x)) x)

by def of app, endp and if axioms

(= (app (list (car x)) (cdr x)) x)

by def of list

(= (app (cons (car x) NIL) (cdr x)) x)

by def of app, endp if car and cdr axioms

(= (cons (car x) (app NIL (cdr x))) x)

by def of app, endp and if axioms

(= (cons (car x) (cdr x)) x)

by cons axioms, because we know A1

ut

6



I’ve spelled out most of the details in the above proof, but the only “tricky” bit really is to
notice that we can use the rev-app theorem.

What about the following formula? (= (rev (rev (rev x))) (rev x)): reversing a list
three times is the same as reversing it once. Is that valid? Actually, if we try with, say,
integer 5, the result is indeed true, since (rev (rev (rev 5))) is NIL, and (rev 5) is also
NIL. So this may just be valid. And we can in fact prove it very easily:

Theorem 4. (= (rev (rev (rev y))) (rev y))

Proof. There is a much more direct way to prove this than by proving it by induction—
although we could. We could apply the previous Theorem 3, with x instantiated to (rev

y). Except that we can only apply Theorem 3 if we know that (true-listp (rev y)) is
true. But we do—that’s just the content of Theorem 2. So here’s the argument:

(= (rev (rev (rev y))) (rev y))

by Theorem 3, because we know (true-listp (rev y)) by Theorem 2

ut

7


