The Inductive Approach to Protocol Analysis

CSG 399 Lecture

The Inductive Approach to Protocol Analysis - p.1

Last Time

CSP approach:

- Model system as a CSP process
- A specification is a property of traces
 - Often, can be represented as a process *Spec*
 - Message secrecy
 - Correspondence assertion (see notes)
- Checking a specification: $Spec \sqsubseteq P$
 - Every trace of P is a trace of Spec

Advantages

- - Mechanical proof rules
- There are tools to automatically establish \Box
 - FDR: a commercial model-checker
 - Requires some conditions on Spec and P to terminate
- There are even tools to automatically create CSP processes from protocols
 - Casper

Question: can we do the same without requiring CSP?

Paulson's Approach

Larry Paulson advocates a simple approach:

- A protocol in a context describes a set of traces
 - These traces are defined inductively
- A specification is again a property of traces
- Checking requires proving that all the traces satisfy the property
 - By induction on the construction of the traces
- Main point: these proofs are big, uninteresting, and better left to machines
 - Use a theorem prover to write the proofs

Inductively Defined Sets

A set *S* is inductively defined by a set *X* and (guarded) operations $(f_1, P_1), (f_2, P_2), \ldots$ if *S* is the smallest set satisfying

(i) $X \subseteq S$

(ii) For every guarded operation (f_i, P_i) ,

if $x \in S$ and $P_i(x)$ is true, then $f_i(x) \in S$

Smallest $\equiv S$ is contained in every other set satisfying (i)–(ii)

Example

The natural numbers are inductively defined by $\{0\}$ and the operation +1 (no need for guard)

I.e., \mathbb{N} is the smallest set such that (i) $0 \in \mathbb{N}$ (ii) If $x \in \mathbb{N}$, then $x + 1 \in \mathbb{N}$.

Induction Principle

Theorem: Let *S* be inductively defined by *X* and $(f_1, P_1), (f_2, P_2), \ldots$, and let *Q* be a property of elements of *S*. If

- (i) Q(x) is true for every $x \in X$
- (ii) For every (f_i, P_i) : whenever Q(x) is true for $x \in S$ with $P_i(x)$, then $Q(f_i(x))$ is true

Then Q(x) is true for every $x \in S$

Special case: natural numbers induction

Traces

A trace is a finite sequence of events

- \checkmark Notes A M

We concentrate on the first kind of event

Thus a trace is just a finite sequence describing who sends a message to who.

- Traces do not record whether messages are received
- Cannot distinguish message no received from message received but never acted upon

Protocols Generate Traces

Let Agents be a set of agents. Paulson's approach assumes that:

- Agents can participate in an arbitrary number of concurrent protocol interactions
- Agents can play any role in any such interaction
- Agents have an initial state initState A

We can associate a set of traces to the agents running a protocol

The set of traces of a protocol will be an inductively defined set (In fact, everything will be inductively defined)

Needham-Schroeder

Recall the Needham-Schroeder protocol:

$$A \longrightarrow B : \{A, n_A\}_{k_B}$$
$$B \longrightarrow A : \{n_A, n_B\}_{k_A}$$
$$A \longrightarrow B : \{n_B\}_{k_B}$$

We assume public keys k_A known for each agent.

Traces of Needham-Schroeder I

Define the set T inductively

The empty trace:

• $\langle \rangle$ is in T

Can start an interaction: If

- \bullet t is in T

Then

•
$$t \frown \langle \mathsf{Says} \ A \ B \ \{A, n_A\}_{k_B} \rangle$$
 is in T

Traces of Needham-Schroeder II

Can continue an interaction: If

- t is in T
- $A \neq B$
- $\textbf{Says } A' \ B \ \{A, n_A\}_{k_B} \in t$

Then

• $t \frown \langle \mathsf{Says} \ B \ A \ \{n_A, n_B\}_{k_A} \rangle$ is in T

Traces of Needham-Schroeder III

Can continue an interaction: If

- \bullet t is in T
- $\textbf{Says} \ A \ B \ \{A, n_A\}_{k_B} \in t$
- $\textbf{Says } B' \ A \ \{n_A, n_B\}_{k_A} \in t$

Then

•
$$t \sim \langle \text{Says } A \ B \ \{n_B\}_{k_B} \rangle$$
 is in T

Set parts H

What about the set used t, the set of values used in a trace? We need to give an inductive definition

First consider the set parts H that returns the parts of all messages in H.

It is inductively defined by

- $\ \, \bullet \ \, H\subseteq {\sf parts}\ H$
- If $(x, y) \in \text{parts } H$ then $x \in \text{parts } H$
- If $(x, y) \in \text{parts } H$ then $y \in \text{parts } H$
- If $\{M\}_k \in \text{parts } H \text{ then } M \in \text{parts } H$

Set used t

Straightforward definition:

used
$$\langle \rangle = \cup_B \text{parts (initState } B)$$

used $t \frown \langle \text{Says } A \ B \ M \rangle = (\text{parts } \{M\}) \cup (\text{used } t)$

This does not look like an inductively defined set...

But it can be put in that form... Consider $(x, t) \in$ used...

Adversary

The adversary is called Spy in Paulson's paper

To account for the adversary, we only need to add one rule to the inductive definition of the traces of a protocol: If

- \bullet t is in T

Then

 $\ \, \bullet \ \ \, t \frown \langle \mathsf{Says} \ \mathsf{Spy} \ B \ M \rangle \text{ is in } T$

Set known t

The set of messages known to the adversary in trace t

Definition:

known
$$t =$$
synth (analz (spies t))

where

- spies t: set of messages the adversary has intercepted in t
- analz H: set of messages the adversary can extract from the messages in H
- synth H: set of messages the adversary can synthesize from messages in H

Set synth H

Messages the adversary can synthesize from messages in ${\cal H}$

Inductively defined:

- Agents \subseteq synth H
- If $x \in \text{synth } H$ and $y \in \text{synth } H$ then $(x, y) \in \text{synth } H$
- If $x \in \text{synth } H$ and $k \in H$ then $\{x\}_k \in \text{synth } H$

Set analz H

Messages the adversary can extract from the messages in H

Inductively defined:

- $\ \, \bullet \ \, H\subseteq {\rm analz}\ H$
- If $(x, y) \in$ analz H then $x \in$ analz H
- If $(x, y) \in analz H$ then $y \in analz H$
- If $\{x\}_k \in analz \ H$ and $k^{-1} \in analz \ H$ then $x \in analz \ H$

Set spies t

Messages the adversary can intercept in t

Straightforward definition:

spies $\langle \rangle = \text{initState Spy}$ spies $t \frown \langle \text{Says } A \ B \ M \rangle = \{M\} \cup (\text{spies } t)$

Again, this can be made into a properly inductively defined set

So?

So now, given a protocol, a set of agents, and an adversary:

- We have an inductively defined set of traces T
- Finitary description of an infinite set of traces

How do you establish that something is true of all traces?

- **9** By applying the induction principle corresponding to T
 - If a property is true of a trace and remains true if you add an event to the trace according to the protocol, then the property is true of all traces corresponding to the protocol