
The Inductive Approach to Protocol
Analysis

CSG 399 Lecture

The Inductive Approach to Protocol Analysis – p.1

Last Time

CSP approach:

Model system as a CSP process

A specification is a property of traces
Often, can be represented as a process Spec

Message secrecy
Correspondence assertion (see notes)

Checking a specification: Spec v P

Every trace of P is a trace of Spec

The Inductive Approach to Protocol Analysis – p.2

Advantages

There are well-developped techniques for establishing
v by hand

Mechanical proof rules

There are tools to automatically establish v

FDR: a commercial model-checker
Requires some conditions on Spec and P to
terminate

There are even tools to automatically create CSP
processes from protocols

Casper

Question: can we do the same without requiring CSP?

The Inductive Approach to Protocol Analysis – p.3

Paulson’s Approach

Larry Paulson advocates a simple approach:

A protocol in a context describes a set of traces
These traces are defined inductively

A specification is again a property of traces

Checking requires proving that all the traces satisfy the
property

By induction on the construction of the traces

Main point: these proofs are big, uninteresting, and
better left to machines

Use a theorem prover to write the proofs

The Inductive Approach to Protocol Analysis – p.4

Inductively Defined Sets

A set S is inductively defined by a set X and (guarded)
operations (f1, P1), (f2, P2), . . . if S is the smallest set
satisfying

(i) X ⊆ S

(ii) For every guarded operation (fi, Pi),

if x ∈ S and Pi(x) is true, then fi(x) ∈ S

Smallest ≡ S is contained in every other set satisfying (i)–(ii)

The Inductive Approach to Protocol Analysis – p.5

Example

The natural numbers are inductively defined by {0} and the
operation +1 (no need for guard)

I.e., N is the smallest set such that

(i) 0 ∈ N

(ii) If x ∈ N, then x + 1 ∈ N.

The Inductive Approach to Protocol Analysis – p.6

Induction Principle

Theorem: Let S be inductively defined by X and
(f1, P1), (f2, P2), . . . , and let Q be a property of elements of
S. If

(i) Q(x) is true for every x ∈ X

(ii) For every (fi, Pi): whenever Q(x) is true for x ∈ S with
Pi(x), then Q(fi(x)) is true

Then Q(x) is true for every x ∈ S

Special case: natural numbers induction

The Inductive Approach to Protocol Analysis – p.7

Traces

A trace is a finite sequence of events

Says A B M

Notes A M

We concentrate on the first kind of event

Thus a trace is just a finite sequence describing who sends
a message to who.

Traces do not record whether messages are received

Cannot distinguish message no received from message
received but never acted upon

The Inductive Approach to Protocol Analysis – p.8

Protocols Generate Traces

Let Agents be a set of agents.
Paulson’s approach assumes that:

Agents can participate in an arbitrary number of
concurrent protocol interactions

Agents can play any role in any such interaction

Agents have an initial state initState A

We can associate a set of traces to the agents running a
protocol

The set of traces of a protocol will be an inductively defined
set (In fact, everything will be inductively defined)

The Inductive Approach to Protocol Analysis – p.9

Needham-Schroeder

Recall the Needham-Schroeder protocol:

A −→ B :{A, nA}kB

B −→ A :{nA, nB}kA

A −→ B :{nB}kB

We assume public keys kA known for each agent.

The Inductive Approach to Protocol Analysis – p.10

Traces of Needham-Schroeder I

Define the set T inductively

The empty trace:

〈〉 is in T

Can start an interaction: If

t is in T

A 6= B

nA 6∈ used t

Then

t _ 〈Says A B {A, nA}kB
〉 is in T

The Inductive Approach to Protocol Analysis – p.11

Traces of Needham-Schroeder II

Can continue an interaction: If

t is in T

A 6= B

nB 6∈ used t

Says A′ B {A, nA}kB
∈ t

Then

t _ 〈Says B A {nA, nB}kA
〉 is in T

The Inductive Approach to Protocol Analysis – p.12

Traces of Needham-Schroeder III

Can continue an interaction: If

t is in T

Says A B {A, nA}kB
∈ t

Says B′ A {nA, nB}kA
∈ t

Then

t _ 〈Says A B {nB}kB
〉 is in T

The Inductive Approach to Protocol Analysis – p.13

Set parts H

What about the set used t, the set of values used in a trace?
We need to give an inductive definition

First consider the set parts H that returns the parts of all
messages in H.

It is inductively defined by

H ⊆ parts H

If (x, y) ∈ parts H then x ∈ parts H

If (x, y) ∈ parts H then y ∈ parts H

If {M}k ∈ parts H then M ∈ parts H

The Inductive Approach to Protocol Analysis – p.14

Set used t

Straightforward definition:

used 〈〉 = ∪Bparts (initState B)

used t _ 〈Says A B M〉 = (parts {M}) ∪ (used t)

This does not look like an inductively defined set...

But it can be put in that form... Consider (x, t) ∈ used...

The Inductive Approach to Protocol Analysis – p.15

Adversary

The adversary is called Spy in Paulson’s paper

To account for the adversary, we only need to add one rule
to the inductive definition of the traces of a protocol: If

t is in T

M ∈ known t

B 6= Spy

Then

t _ 〈Says Spy B M〉 is in T

The Inductive Approach to Protocol Analysis – p.16

Set known t

The set of messages known to the adversary in trace t

Definition:

known t = synth (analz (spies t))

where

spies t: set of messages the adversary has intercepted
in t

analz H: set of messages the adversary can extract
from the messages in H

synth H: set of messages the adversary can synthesize
from messages in H

The Inductive Approach to Protocol Analysis – p.17

Set synth H

Messages the adversary can synthesize from messages in
H

Inductively defined:

Agents ⊆ synth H

H ⊆ synth H

If x ∈ synth H and y ∈ synth H then (x, y) ∈ synth H

If x ∈ synth H and k ∈ H then {x}k ∈ synth H

The Inductive Approach to Protocol Analysis – p.18

Set analz H

Messages the adversary can extract from the messages in
H

Inductively defined:

H ⊆ analz H

If (x, y) ∈ analz H then x ∈ analz H

If (x, y) ∈ analz H then y ∈ analz H

If {x}k ∈ analz H and k−1 ∈ analz H then x ∈ analz H

The Inductive Approach to Protocol Analysis – p.19

Set spies t

Messages the adversary can intercept in t

Straightforward definition:

spies 〈〉 = initState Spy

spies t _ 〈Says A B M〉 = {M} ∪ (spies t)

Again, this can be made into a properly inductively defined
set

The Inductive Approach to Protocol Analysis – p.20

So?

So now, given a protocol, a set of agents, and an adversary:

We have an inductively defined set of traces T

Finitary description of an infinite set of traces

How do you establish that something is true of all traces?

By applying the induction principle corresponding to T

If a property is true of a trace and remains true if you
add an event to the trace according to the protocol,
then the property is true of all traces corresponding
to the protocol

The Inductive Approach to Protocol Analysis – p.21

	Last Time
	Advantages
	Paulson's Approach
	Inductively Defined Sets
	Example
	Induction Principle
	Traces
	Protocols Generate Traces
	Needham-Schroeder
	Traces of Needham-Schroeder I
	Traces of Needham-Schroeder II
	Traces of Needham-Schroeder III
	Set $ms {parts}~H$
	Set $ms {used}~t$
	Adversary
	Set $ms {known}~t$
	Set $ms {synth}~H$
	Set $ms {analz}~H$
	Set $ms {spies}~t$
	So?

