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Last Time

CSP approach:

Model system as a CSP process

A specification is a property of traces
Often, can be represented as a process Spec

Message secrecy
Correspondence assertion (see notes)

Checking a specification: Spec v P

Every trace of P is a trace of Spec
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Advantages

There are well-developped techniques for establishing
v by hand

Mechanical proof rules

There are tools to automatically establish v

FDR: a commercial model-checker
Requires some conditions on Spec and P to
terminate

There are even tools to automatically create CSP
processes from protocols

Casper

Question: can we do the same without requiring CSP?
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Paulson’s Approach

Larry Paulson advocates a simple approach:

A protocol in a context describes a set of traces
These traces are defined inductively

A specification is again a property of traces

Checking requires proving that all the traces satisfy the
property

By induction on the construction of the traces

Main point: these proofs are big, uninteresting, and
better left to machines

Use a theorem prover to write the proofs
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Inductively Defined Sets

A set S is inductively defined by a set X and (guarded)
operations (f1, P1), (f2, P2), . . . if S is the smallest set
satisfying

(i) X ⊆ S

(ii) For every guarded operation (fi, Pi),

if x ∈ S and Pi(x) is true, then fi(x) ∈ S

Smallest ≡ S is contained in every other set satisfying (i)–(ii)
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Example

The natural numbers are inductively defined by {0} and the
operation +1 (no need for guard)

I.e., N is the smallest set such that

(i) 0 ∈ N

(ii) If x ∈ N, then x + 1 ∈ N.
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Induction Principle

Theorem: Let S be inductively defined by X and
(f1, P1), (f2, P2), . . . , and let Q be a property of elements of
S. If

(i) Q(x) is true for every x ∈ X

(ii) For every (fi, Pi): whenever Q(x) is true for x ∈ S with
Pi(x), then Q(fi(x)) is true

Then Q(x) is true for every x ∈ S

Special case: natural numbers induction
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Traces

A trace is a finite sequence of events

Says A B M

Notes A M

We concentrate on the first kind of event

Thus a trace is just a finite sequence describing who sends
a message to who.

Traces do not record whether messages are received

Cannot distinguish message no received from message
received but never acted upon
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Protocols Generate Traces

Let Agents be a set of agents.
Paulson’s approach assumes that:

Agents can participate in an arbitrary number of
concurrent protocol interactions

Agents can play any role in any such interaction

Agents have an initial state initState A

We can associate a set of traces to the agents running a
protocol

The set of traces of a protocol will be an inductively defined
set (In fact, everything will be inductively defined)
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Needham-Schroeder

Recall the Needham-Schroeder protocol:

A −→ B :{A, nA}kB

B −→ A :{nA, nB}kA

A −→ B :{nB}kB

We assume public keys kA known for each agent.
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Traces of Needham-Schroeder I

Define the set T inductively

The empty trace:

〈〉 is in T

Can start an interaction: If

t is in T

A 6= B

nA 6∈ used t

Then

t _ 〈Says A B {A, nA}kB
〉 is in T
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Traces of Needham-Schroeder II

Can continue an interaction: If

t is in T

A 6= B

nB 6∈ used t

Says A′ B {A, nA}kB
∈ t

Then

t _ 〈Says B A {nA, nB}kA
〉 is in T
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Traces of Needham-Schroeder III

Can continue an interaction: If

t is in T

Says A B {A, nA}kB
∈ t

Says B′ A {nA, nB}kA
∈ t

Then

t _ 〈Says A B {nB}kB
〉 is in T
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Set parts H

What about the set used t, the set of values used in a trace?
We need to give an inductive definition

First consider the set parts H that returns the parts of all
messages in H.

It is inductively defined by

H ⊆ parts H

If (x, y) ∈ parts H then x ∈ parts H

If (x, y) ∈ parts H then y ∈ parts H

If {M}k ∈ parts H then M ∈ parts H
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Set used t

Straightforward definition:

used 〈〉 = ∪Bparts (initState B)

used t _ 〈Says A B M〉 = (parts {M}) ∪ (used t)

This does not look like an inductively defined set...

But it can be put in that form... Consider (x, t) ∈ used...
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Adversary

The adversary is called Spy in Paulson’s paper

To account for the adversary, we only need to add one rule
to the inductive definition of the traces of a protocol: If

t is in T

M ∈ known t

B 6= Spy

Then

t _ 〈Says Spy B M〉 is in T
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Set known t

The set of messages known to the adversary in trace t

Definition:

known t = synth (analz (spies t))

where

spies t: set of messages the adversary has intercepted
in t

analz H: set of messages the adversary can extract
from the messages in H

synth H: set of messages the adversary can synthesize
from messages in H
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Set synth H

Messages the adversary can synthesize from messages in
H

Inductively defined:

Agents ⊆ synth H

H ⊆ synth H

If x ∈ synth H and y ∈ synth H then (x, y) ∈ synth H

If x ∈ synth H and k ∈ H then {x}k ∈ synth H
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Set analz H

Messages the adversary can extract from the messages in
H

Inductively defined:

H ⊆ analz H

If (x, y) ∈ analz H then x ∈ analz H

If (x, y) ∈ analz H then y ∈ analz H

If {x}k ∈ analz H and k−1 ∈ analz H then x ∈ analz H
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Set spies t

Messages the adversary can intercept in t

Straightforward definition:

spies 〈〉 = initState Spy

spies t _ 〈Says A B M〉 = {M} ∪ (spies t)

Again, this can be made into a properly inductively defined
set
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So?

So now, given a protocol, a set of agents, and an adversary:

We have an inductively defined set of traces T

Finitary description of an infinite set of traces

How do you establish that something is true of all traces?

By applying the induction principle corresponding to T

If a property is true of a trace and remains true if you
add an event to the trace according to the protocol,
then the property is true of all traces corresponding
to the protocol
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