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Introduction

BAN logic need “protocol idealization” step 
when use its formalism.
The model checking approach examines all 
possible execution traces of a security protocol 
in the presence of a malicious intruder with well 
defined capabilities, we can determine if a 
protocol does indeed enforce its security 
guarantees. If not, we can provide a sample 
trace of an attack on the protocol. 
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Perfect cryptograph Assumed

The decryption key must be known in order 
to extract the plaintext from the cyphertext.
There is enough redundancy in the 
cryptosystem that a cyphertext can only be 
generated using encryption with the 
appropriate key. This also implies that there 
are no encryption collisions
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Specification
There are two kinds of properties that we currently are interested in. 

The first is a kind of secrecy property.

We provide the model checker with a set of terms which the intruder is not 
allowed to obtain. During the verification, we simply check that the intruder 
does not have possession of any of the terms in this set.

The second property is a temporal property named correspondence

In order to check for this kind of property, we will augment the global state with 
counters. For each correspondence property X →Y we will maintain a separate 
counter which will keep track of the difference between the number of Y events 
and X events. If this counter ever turns negative (i.e. there are more X events 
than Y events) then the correspondence property will be violated at that point 
(there will be no one-to-one mapping from X events to Y events). Conversely, as 
long as the counter never goes negative there is always a one-to-one mapping 
from X events to Y events. 
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Messages
Typically, the messages exchanged during the run of a protocol are built 

up using pairing and encryption from smaller submessages. The 
smallest such submessages (i.e. they contain no submessages
themselves) are called atomic messages. There are four types of 
atomic messages. 

Keys are used to encrypt messages. 
Principal names are used to refer to the participants in a protocol. 
Nonces are randomly generated numbers. The intuition is that since 
they are randomly generated, any message containing a nonce can be 
assumed to have been generated after the nonce was generated. (It is 
not an ``old'' message.) 
Data which plays no role in how the protocol works but which is 
intended to be communicated between principals.
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Rules for Messages
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Let B  be a subset of messages. The closure of B (denoted       ),  
representing the set of everything that can be derived from B , is defined 
by the following rules: 

B
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The Model
Formally, each principal is modeled as a 4-tuple <N,p,I,B> , where: 

N ∈names is the name of the principal. 

p is a process (similar in style to CSP) given as a sequence of actions to 
be performed. 

I is a set of all messages known (which can be produced) by the 
principal. M is the set of all possible messages. Typically I will be 
infinite and in particular, it is closed under encryption, decryption, 
pairing (concatenation), and projection. 

B , where vars(p)→ I is the set of variables appearing in the process p , is 
a set of bindings.

M⊆
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Global state
The global state is maintained as the composition of the participating principals, 
along with the intruder process, a list of permanent secrets, a list of temporary 
secrets, and a set of counters indexed by the pairs of principals participating in 
protocol runs. More formally, the global state is a 5-tuple , , , ,i r s tC C S S< Π >

• is the product of the individual principals and the intruder process. This 
product is asynchronous, yielding an interleaving semantics, with the restriction that 
processes synchronize on messages. 

• gives the difference between the number of times 
some principal with name A has begun initiating a protocol with some other 
principal with name B and the number of times B has finished responding to 
principal A . 
• gives the difference between the number of times 
some principal named A has begun responding to some other principal named 
B and the number of times B has finished initiating a protocol with A . 

Π

:iC names names× →

:rC names names× →
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Global state (cont,)

• is a set of messages that are are considered safe secrets. These 
are the set of words that the intruder is never allowed to know. This set 
remains constant and usually includes things like the private keys that 
principals use to communicate with a server. 

• is a set of messages that are are considered temporary secrets. 
This is the set of new secrets generated during the run of the protocol. These 
are secrets which we assume the intruder may be able to discover by some 
outside means, but which the protocol should not reveal, such as session keys. 

sS M⊆

tS M⊆
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Principal’s actions
The specific actions that a principal may perform can be divided into 
internal actions and communication actions. 

The internal actions are performed asynchronously. Any principal is 
allowed to perform an internal action and interleaving is used to model all 
possible behaviors when multiple principals can make a transition. 

For the most part internal actions are used to create or discover new 
information. For example, NEWNONCE is used to create a nonce. 

Communication actions consist of send and receive actions. Each receive 
action can potentially change the principal's local store, reflecting any new 
information it has ``learned.'' Communication actions can only occur in 
pairs and both principals make a transition simultaneously. These 
communication actions are also interleaved with the possible actions of 
other automata. 
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How counters updated
we have four special actions BEGINIT, ENDINIT, 
BEGRESPOND, and ENDRESPOND.
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A DFS algorithm to generate all traces

A trace is an alternating sequence of global states and actions and that we 
are interested in checking all possible traces. Clearly, there are a finite 
number of next states for each of the participants. 

In addition, while the intruder can generate an infinite number of 
messages, it is only allowed to send a finite number because each SEND
must match with a RECEIVE. Since the there are a finite number of 
possible next states, we only consider a finite number of runs, we can 
perform a depth first search of the state space to generate all possible 
traces. 
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The Model checking algorithm 

Model checking algorithm

proc DFS( - )
 ( - , )

while(not empty( )) do 
          < , , , , ( )
          If ( , )<0 for some  and  or
              ( , )<0 for some  and  or
              s

i r s t
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S
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C x y x y
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           then -
           - (< , , , , )
           for each  ( , )  
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report error
L next states C C S S

l L push S l
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How to maintain local stores?
The local store is accessed in three places. 

• First, if principal  <A,p,IA,BA> sends a message m , then we must 
insure that m∈IA.

• Second, if the principal receives message m , then we must update   
to IAto IA’.

• Finally, we check every global state to see if s ∈ IZ for some 
secrets(safe secrets and temp secrets) , where  IZ is the intruder's local 
store. 

It turns that these local stores are infinite because of the closure 
operation. However, we never really need to compute the entire 
closure; we need only determine if a particular message is in the 
closure. So it suffices to represent the infinite set with a finite set of 
``generators.'‘.
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Normalized Derivations
If B represents some set of information that is known by a principal, then the 
principal also knows (can generate) all the information in B’s clousre, which in 
general is an infinite set; however, we usually are not interested in the set of 
everything that a principal knows, but instead whether or not a specific message 
x∈M can be generated by a principal. 

0 11

0 1 1

Let x B be a message, A derivation of x from B is an alternating sequence 
of sets of messages and rule instances written as follows:
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Normalized Derivations (cont’)
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For example, let {{ } , }, we derive
 as follows:
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{{{ } , },5,{ }}             decryption rule
{{ }
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Normalized Derivations (cont’)

0 11

0 1 1

We define a normalized derivation as follows:

                  B
is a normalized derivation if and only if all 0   is 
an expanding rule implies  is an expanding rule for all
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; In other words all shrinking rules appear to the 
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Theorems
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Theorem 1.
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How Intruders augment 
their knowledge
1     function add ( , )
2       for each 
3               if { }  and -1
4                     then =add( , )
5               if  then -
6        if 
7               then return add (a

y

I m
i I

i x y m
I I x

y I I I i
m x y
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dd( , ), )
8         if { }  and I
9                then if 
10                        then return add( , )
11                        else return add( , )
12       return 

y

I x y
m x y

y I
I x
I m x
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= ∈

∈

∪
∪

Complexity

The total time to augment the 
intruder’s local store by getting a 
new message is O(|Bs|2)

Intruders will augment their 
knowledge when protocol runs.      
This algorithm is used in DFS 
algorithm when protocol runs from 
one global state to another global 
states.
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To Query Intruder’s local store

1   function in ( , )
2       for 
3               then return  
4        if 
5               then return in( , )
6         if { }
7                then return in( , ) && in ( , )
8         el

y

I m
m I

true
m x y

I x
m x

I x I y

∈

= ⋅

=

se return .false

Complexity
When searching for a derivation of w
from  Bs we first check to see if 
w∈Bs. This costs at most |Bs| time. 
If not, we break down w into two 
smaller pieces and recursively check 
those peices. The total number of 
recursive calls is bounded by the 
number of operations making up w , 
which is in turn bounded by |w|

The total time to check if  w
∈closure of Bs is O(|Bs||w|)

This algorithm is used in DFS algorithm to check if safe message is 
known by Intruder
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A verification example
We now consider an example to illustrate how the model checker 
works. We consider the simplified Needham-Schroeder protocol 
analyzed by Lowe given below: 

1.  A→B: A.B.{Na.A}KB

2.   B→A: B.A.{Na. Nb}KA

3.   A→B: A.B.{Nb}KB
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Initiator process
((beginit (*p-var* b)) 

(newnonce (*var* na)) 
(send (*var* b) 

(concat a 
(*var* b) 
(encrypt (pubkey (*var* b)) (concat (*var* na) a)))) 

(receive (*var* b) 
(concat (*var* b) 
a
(encrypt (pubkey a) (concat (*var* na) (*var* nb)))))

(send (*var* b) 
(concat a 
(*var* b) 
(encrypt (pubkey (*var* b)) (*var* nb))))

(endinit (*var* b))) 

Process description for the initiator



12

Model checker for Authentication protocols 23

Intruder’s initial knowledge

(a b *intruder* (pubkey a ) (pubkey b)
(pubkey * intruder*) (privkey *intruder*))
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Verification Result

"Lack of correspondence" 

(B (BEGRESPOND A)) 
(A (BEGINIT *INTRUDER*))
(A ((NEWNONCE (*VAR* NA)) (*NONCE* 245)))
(A (CONCAT A *INTRUDER* (ENCRYPT (PUBKEY *INTRUDER*) 

(CONCAT (*NONCE* 245) A))) INTRUDER) 
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (CONCAT (*NONCE* 245) A))) B) 

(B ((NEWNONCE (*VAR* NB)) (*NONCE* 260))) 
(B (CONCAT B A (ENCRYPT (PUBKEY A) 

(CONCAT (*NONCE* 245) (*NONCE* 260)))) INTRUDER)
(INTRUDER (CONCAT *INTRUDER* A (ENCRYPT (PUBKEY A) 

(CONCAT (*NONCE* 245) (*NONCE* 260)))) A)
(A (CONCAT A *INTRUDER* (ENCRYPT (PUBKEY *INTRUDER*) (*NONCE* 260))) INTRUDER) 
(A (ENDINIT *INTRUDER*)) 
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (*NONCE* 260))) B) 
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Attack to this protocol
The model checker finds a violation of the security specification and 
generates a counter-example. The sequence of messages for two runs 
of the protocol   are provided. The notation I(A) is meant to convey 
either I impersonating A if on the left of the arrow, or I intercepting a 
message meant for A if on the right of the arrow. 

1.  :  . .{ . }
1.  ( ) :  . .{ . }
2.  ( ) :  . .{ . }
2.  :  . .{ . }
3.  :  . .{ }
3.  ( ) :  . .{ }

a I

a B

a b A

a b A

b I

b B

A I AI N A K
I A B AB N A K
B I A B A N N K
I A I A N N K
A I AI N K
I A B AB N K

α
β
β
α
α
β

→
→

→
→
→

→
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A Fix for this protocol

1.  A→B: A.B.{Na.A}KB

2.   B→A: B.A.{Na. Nb B}KA

3.   A→B: A.B.{Nb}KB

Lowe suggests fixing the protocol by changing the 
second message (adding the name of Principal)



14

Model checker for Authentication protocols 27

Conclusion
The way we model a protocol is very intuitive. We simply list the sequence 
of actions that each participant takes in the protocol. Unlike systems based 
on logics, we need not interpret the beliefs that each message is meant to 
convey, and we can generate counterexamples when an error is found.

Unlike term rewriting approaches, we need not construct a set of rewrite 
rules to model how an intruder can manipulate participants to generate new 
messages.

We simply model the protocol as a set of programs, one for each
participant in the protocol. Because we separate the algorithms that 
maintain the intruder's knowledge from the state exploration algorithms, we 
also never need to encode the intruder for our models. 
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