
1

Model Checking for
Authentication Protocols

Will Marrero Edmmd Clarke Somesh Jha

Present for Course CSG399

Jingsong Feng
Northeastern University

Model checker for Authentication protocols 2

Introduction

BAN logic need “protocol idealization” step
when use its formalism.
The model checking approach examines all
possible execution traces of a security protocol
in the presence of a malicious intruder with well
defined capabilities, we can determine if a
protocol does indeed enforce its security
guarantees. If not, we can provide a sample
trace of an attack on the protocol.

2

Model checker for Authentication protocols 3

Perfect cryptograph Assumed

The decryption key must be known in order
to extract the plaintext from the cyphertext.
There is enough redundancy in the
cryptosystem that a cyphertext can only be
generated using encryption with the
appropriate key. This also implies that there
are no encryption collisions

Model checker for Authentication protocols 4

Specification
There are two kinds of properties that we currently are interested in.

The first is a kind of secrecy property.

We provide the model checker with a set of terms which the intruder is not
allowed to obtain. During the verification, we simply check that the intruder
does not have possession of any of the terms in this set.

The second property is a temporal property named correspondence

In order to check for this kind of property, we will augment the global state with
counters. For each correspondence property X →Y we will maintain a separate
counter which will keep track of the difference between the number of Y events
and X events. If this counter ever turns negative (i.e. there are more X events
than Y events) then the correspondence property will be violated at that point
(there will be no one-to-one mapping from X events to Y events). Conversely, as
long as the counter never goes negative there is always a one-to-one mapping
from X events to Y events.

3

Model checker for Authentication protocols 5

Messages
Typically, the messages exchanged during the run of a protocol are built

up using pairing and encryption from smaller submessages. The
smallest such submessages (i.e. they contain no submessages
themselves) are called atomic messages. There are four types of
atomic messages.

Keys are used to encrypt messages.
Principal names are used to refer to the participants in a protocol.
Nonces are randomly generated numbers. The intuition is that since
they are randomly generated, any message containing a nonce can be
assumed to have been generated after the nonce was generated. (It is
not an ``old'' message.)
Data which plays no role in how the protocol works but which is
intended to be communicated between principals.

Model checker for Authentication protocols 6

Rules for Messages

1 2 1 2

1 2 1 2

1

1. If then .

2. If and then (pairing)

3. If then and (projection).

4. If and then { } (encryption).

5. If { } and then (decryptio
k

k

m B m B

m B m B m m B

m m B m B m B

m B k B m B

m B k B m B−

∈ ∈

∈ ∈ ⋅ ∈

⋅ ∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈ n).

Let B be a subset of messages. The closure of B (denoted),
representing the set of everything that can be derived from B , is defined
by the following rules:

B

4

Model checker for Authentication protocols 7

The Model
Formally, each principal is modeled as a 4-tuple <N,p,I,B> , where:

N ∈names is the name of the principal.

p is a process (similar in style to CSP) given as a sequence of actions to
be performed.

I is a set of all messages known (which can be produced) by the
principal. M is the set of all possible messages. Typically I will be
infinite and in particular, it is closed under encryption, decryption,
pairing (concatenation), and projection.

B , where vars(p)→ I is the set of variables appearing in the process p , is
a set of bindings.

M⊆

Model checker for Authentication protocols 8

Global state
The global state is maintained as the composition of the participating principals,
along with the intruder process, a list of permanent secrets, a list of temporary
secrets, and a set of counters indexed by the pairs of principals participating in
protocol runs. More formally, the global state is a 5-tuple , , , ,i r s tC C S S< Π >

• is the product of the individual principals and the intruder process. This
product is asynchronous, yielding an interleaving semantics, with the restriction that
processes synchronize on messages.

• gives the difference between the number of times
some principal with name A has begun initiating a protocol with some other
principal with name B and the number of times B has finished responding to
principal A .
• gives the difference between the number of times
some principal named A has begun responding to some other principal named
B and the number of times B has finished initiating a protocol with A .

Π

:iC names names× →

:rC names names× →

5

Model checker for Authentication protocols 9

Global state (cont,)

• is a set of messages that are are considered safe secrets. These
are the set of words that the intruder is never allowed to know. This set
remains constant and usually includes things like the private keys that
principals use to communicate with a server.

• is a set of messages that are are considered temporary secrets.
This is the set of new secrets generated during the run of the protocol. These
are secrets which we assume the intruder may be able to discover by some
outside means, but which the protocol should not reveal, such as session keys.

sS M⊆

tS M⊆

Model checker for Authentication protocols 10

Principal’s actions
The specific actions that a principal may perform can be divided into
internal actions and communication actions.

The internal actions are performed asynchronously. Any principal is
allowed to perform an internal action and interleaving is used to model all
possible behaviors when multiple principals can make a transition.

For the most part internal actions are used to create or discover new
information. For example, NEWNONCE is used to create a nonce.

Communication actions consist of send and receive actions. Each receive
action can potentially change the principal's local store, reflecting any new
information it has ``learned.'' Communication actions can only occur in
pairs and both principals make a transition simultaneously. These
communication actions are also interleaved with the possible actions of
other automata.

6

Model checker for Authentication protocols 11

How counters updated
we have four special actions BEGINIT, ENDINIT,
BEGRESPOND, and ENDRESPOND.

 , (). ', , , ', ,

then we update the global state by setting the new value of (,)
(,) 1 if is defined

 '(,)
1

A A A A

i

i i
i

A BEGININIT B p I B A p I B

C A B
C A B C

C A B

< >→< >

+
=

 otherwise
Similarily
 , (). ', , , ', ,

then we update the global state by setting the new value of (,)
(,

 '(,)

B B B B

i

i
i

B ENDRESPOND A p I B B p I B

C A B
C A B

C A B

⎧
⎨
⎩

< >→< >

=
) 1 if >0

error otherwise
iC−⎧

⎨
⎩

Model checker for Authentication protocols 12

A DFS algorithm to generate all traces

A trace is an alternating sequence of global states and actions and that we
are interested in checking all possible traces. Clearly, there are a finite
number of next states for each of the participants.

In addition, while the intruder can generate an infinite number of
messages, it is only allowed to send a finite number because each SEND
must match with a RECEIVE. Since the there are a finite number of
possible next states, we only consider a finite number of runs, we can
perform a depth first search of the state space to generate all possible
traces.

7

Model checker for Authentication protocols 13

The Model checking algorithm

Model checking algorithm

proc DFS(-)
 (- ,)

while(not empty()) do
 < , , , , ()
 If (,)<0 for some and or
 (,)<0 for some and or
 s

i r s t

i

i

global state
push global state S

S
C C S S pop S

C x y x y
C x y x y

Π >=

∈ for some
 /* where Iz is the intruder's information in Π */
 then -
 - (< , , , ,)
 for each (,)

z s t

i r s t

I s S S

report error
L next states C C S S

l L push S l

∈ ∪

= Π >
∈

Model checker for Authentication protocols 14

How to maintain local stores?
The local store is accessed in three places.

• First, if principal <A,p,IA,BA> sends a message m , then we must
insure that m∈IA.

• Second, if the principal receives message m , then we must update
to IAto IA’.

• Finally, we check every global state to see if s ∈ IZ for some
secrets(safe secrets and temp secrets) , where IZ is the intruder's local
store.

It turns that these local stores are infinite because of the closure
operation. However, we never really need to compute the entire
closure; we need only determine if a particular message is in the
closure. So it suffices to represent the infinite set with a finite set of
``generators.'‘.

8

Model checker for Authentication protocols 15

Normalized Derivations
If B represents some set of information that is known by a principal, then the
principal also knows (can generate) all the information in B’s clousre, which in
general is an infinite set; however, we usually are not interested in the set of
everything that a principal knows, but instead whether or not a specific message
x∈M can be generated by a principal.

0 11

0 1 1

Let x B be a message, A derivation of x from B is an alternating sequence
of sets of messages and rule instances written as follows:

 B
where

kR RR

k kB B B
−

−

∈

→ →⋅⋅⋅ →

0

1

 ,
 and each rule instance Ri is written as , , where
 ,

 is one of the clore ru

k

i i i

i i i i i

i

B B x B
I N O

I B B B O

N
+

= ∈
< >

• ⊆ = ∪

• les for such that satisfies the
 premise of the rule and is the corresponding conclusion

i

i

B I
O

Model checker for Authentication protocols 16

Normalized Derivations (cont’)
-1

-1
0

0

-1
1

-1
1

2

For example, let {{ } , }, we derive
 as follows:

{{ } , }
{{{ } },3,{{ } }} projection rule
{{ } , ,{ } , }
{{{ } , },5,{ }} decryption rule
{{ }

k

k

k k

k k

k

k

B a b k
x a b

B B a b k
R a b a b
B a b k a b
R a k a
B a

= ⋅
= ⋅

= = ⋅
= ⋅ ⋅

= ⋅

=

= -1

2

-1
2

, ,{ } , , }
{{ , }, 2,{ }} paring rule
{{ } , ,{ } , , , } which contains

k

k k

b k a b a
R a b a b
B a b k a b a a b x a b

⋅
= ⋅

= ⋅ ⋅ = ⋅

9

Model checker for Authentication protocols 17

Normalized Derivations (cont’)

0 11

0 1 1

We define a normalized derivation as follows:

 B
is a normalized derivation if and only if all 0 is
an expanding rule implies is an expanding rule for all

kR RR

k k

j

B B B
i k

N

−

−→ →⋅⋅ ⋅ →
≤ <

; In other words all shrinking rules appear to the

left of all expanding rules.
i j k< <

Model checker for Authentication protocols 18

Theorems

1 2 1 2 s 1 2

s

Theorem 1.

Let be a set of messages. Then
if and only if has a normalized derivation from

Theorem 2.

 if and only if or and

Theorem 3.

{ } if and only if { }

s s

k s k

B M x B
x B

m m B m m B m m B

m B m B

⊆ ∈

⋅ ∈ ⋅ ∈ ∈

∈ ∈ or or s sm B k B∈ ∈

10

Model checker for Authentication protocols 19

How Intruders augment
their knowledge
1 function add (,)
2 for each
3 if { } and -1
4 then =add(,)
5 if then -
6 if
7 then return add (a

y

I m
i I

i x y m
I I x

y I I I i
m x y

∈
= =

∈ =
= ⋅

-1

dd(,),)
8 if { } and I
9 then if
10 then return add(,)
11 else return add(,)
12 return

y

I x y
m x y

y I
I x
I m x

I m

= ∈

∈

∪
∪

Complexity

The total time to augment the
intruder’s local store by getting a
new message is O(|Bs|2)

Intruders will augment their
knowledge when protocol runs.
This algorithm is used in DFS
algorithm when protocol runs from
one global state to another global
states.

Model checker for Authentication protocols 20

To Query Intruder’s local store

1 function in (,)
2 for
3 then return
4 if
5 then return in(,)
6 if { }
7 then return in(,) && in (,)
8 el

y

I m
m I

true
m x y

I x
m x

I x I y

∈

= ⋅

=

se return .false

Complexity
When searching for a derivation of w
from Bs we first check to see if
w∈Bs. This costs at most |Bs| time.
If not, we break down w into two
smaller pieces and recursively check
those peices. The total number of
recursive calls is bounded by the
number of operations making up w ,
which is in turn bounded by |w|

The total time to check if w
∈closure of Bs is O(|Bs||w|)

This algorithm is used in DFS algorithm to check if safe message is
known by Intruder

11

Model checker for Authentication protocols 21

A verification example
We now consider an example to illustrate how the model checker
works. We consider the simplified Needham-Schroeder protocol
analyzed by Lowe given below:

1. A→B: A.B.{Na.A}KB

2. B→A: B.A.{Na. Nb}KA

3. A→B: A.B.{Nb}KB

Model checker for Authentication protocols 22

Initiator process
((beginit (*p-var* b))

(newnonce (*var* na))
(send (*var* b)

(concat a
(*var* b)
(encrypt (pubkey (*var* b)) (concat (*var* na) a))))

(receive (*var* b)
(concat (*var* b)
a
(encrypt (pubkey a) (concat (*var* na) (*var* nb)))))

(send (*var* b)
(concat a
(*var* b)
(encrypt (pubkey (*var* b)) (*var* nb))))

(endinit (*var* b)))

Process description for the initiator

12

Model checker for Authentication protocols 23

Intruder’s initial knowledge

(a b *intruder* (pubkey a) (pubkey b)
(pubkey * intruder*) (privkey *intruder*))

Model checker for Authentication protocols 24

Verification Result

"Lack of correspondence"

(B (BEGRESPOND A))
(A (BEGINIT *INTRUDER*))
(A ((NEWNONCE (*VAR* NA)) (*NONCE* 245)))
(A (CONCAT A *INTRUDER* (ENCRYPT (PUBKEY *INTRUDER*)

(CONCAT (*NONCE* 245) A))) INTRUDER)
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (CONCAT (*NONCE* 245) A))) B)

(B ((NEWNONCE (*VAR* NB)) (*NONCE* 260)))
(B (CONCAT B A (ENCRYPT (PUBKEY A)

(CONCAT (*NONCE* 245) (*NONCE* 260)))) INTRUDER)
(INTRUDER (CONCAT *INTRUDER* A (ENCRYPT (PUBKEY A)

(CONCAT (*NONCE* 245) (*NONCE* 260)))) A)
(A (CONCAT A *INTRUDER* (ENCRYPT (PUBKEY *INTRUDER*) (*NONCE* 260))) INTRUDER)
(A (ENDINIT *INTRUDER*))
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (*NONCE* 260))) B)

13

Model checker for Authentication protocols 25

Attack to this protocol
The model checker finds a violation of the security specification and
generates a counter-example. The sequence of messages for two runs
of the protocol are provided. The notation I(A) is meant to convey
either I impersonating A if on the left of the arrow, or I intercepting a
message meant for A if on the right of the arrow.

1. : . .{ . }
1. () : . .{ . }
2. () : . .{ . }
2. : . .{ . }
3. : . .{ }
3. () : . .{ }

a I

a B

a b A

a b A

b I

b B

A I AI N A K
I A B AB N A K
B I A B A N N K
I A I A N N K
A I AI N K
I A B AB N K

α
β
β
α
α
β

→
→

→
→
→

→

Model checker for Authentication protocols 26

A Fix for this protocol

1. A→B: A.B.{Na.A}KB

2. B→A: B.A.{Na. Nb B}KA

3. A→B: A.B.{Nb}KB

Lowe suggests fixing the protocol by changing the
second message (adding the name of Principal)

14

Model checker for Authentication protocols 27

Conclusion
The way we model a protocol is very intuitive. We simply list the sequence
of actions that each participant takes in the protocol. Unlike systems based
on logics, we need not interpret the beliefs that each message is meant to
convey, and we can generate counterexamples when an error is found.

Unlike term rewriting approaches, we need not construct a set of rewrite
rules to model how an intruder can manipulate participants to generate new
messages.

We simply model the protocol as a set of programs, one for each
participant in the protocol. Because we separate the algorithms that
maintain the intruder's knowledge from the state exploration algorithms, we
also never need to encode the intruder for our models.

Model checker for Authentication protocols 28

Reference
W. Marrero, E. Clarke, and S. Jha. A model checker for authentication protocols. In
Proceedings of the DIMACS Workshop on Formal Verification of Security
Protocols, Rutgers, USA, 1997.
Gavin Lowe, Breaking and Fixing the Needham-Schroeder Public-Key Protocol
using FDR ,Tools and Algorithms for the Construction and Analysis of Systems
({TACAS}), Springer-Verlag, Berlin Germany,147-166,1996.

