Strand Spaces

Ryan Culpepper

Outline

fStrand spaces
Concepts and intuitions
Modeling protocols
Specifying and verifying properties
Applications

Concepts and Intuitions

-

P

rotocols are often modeled with traces:

Hamlet
Horatio
Hamlet
Horatio
Marcellus

Traces

The air bites shrewdly; it is very cold.
It is a nipping and an eager air.
What hour now?

| think it lacks of twelve.

No, it is struck.

Strand Spaces —n. 4/46

Strands
-

® Hamlet’s role:

say : The air bites shrewdly; it is very cold.

cue : Itis anipping and eager air.
say : What hour now?

® Marcellus’s role:

cue : |think it lacks of twelve.
say : No, Itis struck.

A strand Is a perspective on a protocol interaction.

Strand Spaces —n. 5/46

Bundles

-

Strands combine to form bundles
Bundles represent actual protocol interactions

Horatio Hamlet Marcellus

cue: The air bites shrewdly; it is very cold. <—— say: The air bites shrewdly; it is very cold.
say: Itis a nipping and an eager air. — > cue: It is a nipping and an eager air.

<

cue: What hour now? - say: What hour now?

»

say: | think it lacks of twelve. > cue: | think it lacks of twelve.

say: No, it is struck.

o |

Strand Spaces — p. 6/46

Strand space

fA strand space is a set of strands of
the initiator and responder roles

the penetrator (attacker)

Protocols

Protocol

4

Strand space specification

Protocols

Protocol property

4

Mathematical proposition
about bundles over strand space

Protocols

Verification

4

Proof of proposition

SSSSSSSSSSSSSSSSSSSS

Formalism

-

T

9

e o o o

Terms

here Is a set A of terms.

contains the set 7 of atomic terms
contains the set K of cryptographic keys
closed under concatenation

closed under encryption/decryption

free algebra

A signed term is a pair of a sign ¢ € {4, —} and a term ¢,
written either (o, t) or +t¢ or —t.

(+.A)* is the set of finite sequences of signhed terms.

.

Strand Spaces —n. 12/46

Strand spaces

A strand space X is a set of strands.
Each strand has a trace:

tr: Y — (£A)"

Many strands may share the same trace.
Many traces share the same shape.

Strand Spaces —n. 13/46

Definitions

L N

#® Anode is a pair (s,i) of a strand s € X and an index ¢
where 1 <1 < length(tr(s)).

® N is the set of nodes.

et > be a strand space.

® term : N — Signed terms
® — IS arelation on nodes where

n — n' iff term(n) = +t and term(n') = —t
® = IS a relation on nodes where

(s,1) = (s,1+ 1)

Strand Spaces —n. 14/46

Definitions
-

Let /] C A be a set of unsigned terms. Thenn € N is an T
entry point for [iff:

tel
term(n) = +t
V' =T n:term(n’) € 1

An unsigned term ¢ originates on n € N if n is an entry point
for the set of all terms containing t.

An unsigned term t is uniquely originating if it originates on
a unigue node.

o |

Strand Spaces —n. 15/46

Bundles
fA

bundle C is a graph of nodes (N¢, —¢, =¢).

C is finite and acyclic
Ne CN
e & —

==

© o o o 0

A node with a negative term has a unique —-edge
coming into it

°

If no € N and ny; = no, then ny =¢ no.

Strand Spaces —n. 16/46

H

Bundles

ere is an example bundle:

+a > -a +b

Bundles

-

Causal precedence

Edges generate partial order =<

n =< n' means n may influence terms of »n’
Induction

Every non-empty set of nodes has a non-empty
<-minimal subset

® “Who knew what when?”

Strand Spaces —n. 18/46

Proof tools

-

Proofs involve arguments about:

Entry points, origination, and unigue origination
Causality and <-minimal nodes

Case analysis on strand shapes

Strand Spaces —n. 19/46

Modeling Protocols

Needham-Schroeder-Lowe

-

Needham-Schroeder protocol as fixed by Lowe:
1. A— B :{Ny, A}k,

2. B— A:{Ny,, Ny, B}k,

3. A— B :{Ny} ks

-

Modeling the protocol

. N

An NSL strand space is the union of three kinds of strands:

rotocols are modeled as strand spaces

[nitiator strands
#® Responder strands
Penetrator (attacker) strands

Initiator and responder strands are called “regular strands”,
and their nodes are called “regular nodes.”

Strand Spaces —n. 22/46

Initiator strands

-

U{Init[A, B, No, Np| | A, B € Thames, Na, Np € T — Tnames }
Each strand in Init|A, B, N,, Ny| has the trace:

-

—I_{NGJ?A}KB
_{Na7 Nba B}KA

+{Np ks

Strand Spaces —n. 23/46

Responder strands

-

U{Resp[A, B7 NCL) Nb] | Aa B € %ames; Naa Nb < T — Zlames}
Each strand in Resp|A, B, N,, Np| has the trace:

_{Na7 A}KB
‘|‘{Na7 Nb) B}KA
—{ No} s

Penetrator strands
fPenetrators T
have initial information: compromised keys K,

have many capabilities, and they can combine those
capabilities in many ways.

& are patient; they can watch through many protocol
Interactions until they gather enough information.

Penetrator strands sound like they could be complex and
arbitrarily long:

“Our villain watches three protocol interactions, injects a
message into a fourth, watches a fifth, initiates an
Interaction using data from the second, and ...

o |

Strand Spaces —n. 25/46

Penetrator strands

-

Characterize penetrator capabilities rather than attacks.
Model a beaurocracy of penetrators!

-

One class of strand per capabillity
Many penetrator strands may be combined in a bundle

Considering “all possible bundles” automatically creates
“all possible penetrators”

Reusable definition: “penetrator standard library”
Reusable theorems about standard penetrators

Strand Spaces —n. 26/46

Penetrator capabilities

-

Dolev-Yao attacker:

M : (+t), wheret € T
F:(—g), where g € Terms
:{—g,+9,+9)

: (—g,—h,+gh)

: (—gh,+g,+h)

: (=Ko, —h,+{h}K,)
(=Ko, —{h}Kk,, +h)

© o o o o o ©
o= .4

Standard penetrators

fStandard penetrators have standard limits T
If the penetrator doesn’t start out with a key K, and that
key never originates on a regular node, then K is not a

subterm of any penetrator node’s term.
Suppose it does occur in some set of nodes. Take

the <-minimal base; those must all be penetrator
nodes. Do case analysis of penetrator nodes.

Strand Spaces —n. 28/46

Stating and Verifying Protocol
Properties

Needham-Schroeder-Lowe properties

o N

Authentication of initiator to responder
Authentication of responder to initiator
#® Secrecy of nonces

SSSSSSSSSSSSSSSSSSSS

Weak agreement

-

One form of authentication:

-

Whenever B completes a run as responder using N,, N,
with A as apparent initiator, there is a run of the
protocol with A as initiator using N,, N, with B as
apparent responder.

Strand Spaces —n. 31/46

Weak agreement as proposition

. N

Suppose the following:

#® > is an NSL space, C is a bundle in X, and
s € Resp|A, B, Ny, Np| IS @ complete responder strand in
C.

® K ¢k,
® N, # N, and N, Is uniquely originating in ..
Then:

(contains a complete initiator’s strand in
Init[A, B, N,, Ny).

o |

Proving weak agreement

-

A few pages of math.

SSSSSSSSSSSSSSSSSSSS

Secrecy as a proposition

-

Suppose the following:

#® > is an NSL space, C is a bundle in X, and
s € Resp|A, B, N,, Np| I1s a responder strand in C.

s K;'¢K,

® Kg' ¢ K,

® N, # N, and N, Is uniquely originating in .
Then:

For all nodes n € C, term(n) # Np,.

o |

Proving secrecy

-

Another page or two of math.

Applications

CPPL

o N

Cryptographic Protocol Programming Language
Based on strand space semantics
Compiles domain-specific protocol language via O’Caml

Strand Spaces —n. 37/46

Motivation

o N

Protocol design isn’'t “done.”

Different applications have different agreement and
commitment goals.

Bring implementation and analysis closer together.

Strand Spaces —n. 38/46

-

protocol:

Example

A data server based on the Needham-Schroeder (original)

A— B:{Ny, A D}k,
B— A:{N,, SK}k,
A— B:{SK}k,

B — A : {data;s,V}sk

-

Relies and guarantees
fIdea of CPPL:
Annotate message sends with guarantees
Annotate message receives with relies
Protocol soundness:

If P receives a message apparently from P’ and relies
on a formula ¢, then P’ previously sent the message
with a formula v, where ¢ = ¢.

Strand Spaces —n. 40/46

NSQ Code
V__ (b:text, kb:key) _ __T

proc server
| et chan = accept In
(chan recv {na:nonce, a:text, d:text} kb _
| et sk:synkey = new in
(send _ chan {na, sk, b} ka
(chan recv {sk} kb _
(send _ chan {Data_is v} sk
return))))

NSQ Code
oy N

0
proc server (b:text, kb:key) [owns(b, kb)]
| et chan = accept in
(chan recv {na:nonce, a:text, d:text} kb [true]
| et sk:synkey = new in
(send [owns(a, ka)] chan {na, sk, b} ka
(chan recv {sk} kb [says_requests(a,a,b,d)]
(send [wll _pay(a,d); curr_val (d, na,v:text)]
chan {Data_is v} sk
return [supplied(a,na,d,v)]))))

o |

Strand Spaces — p. 42/46

Semantics

-

Semantics of CPPL maps processes to sets of strands.
Verify resulting strand space, or translate further to other
frameworks for verification.

-

Strand Spaces —n. 43/46

Conclusion

References

o N

“Strand Spaces: Proving Security Protocols Correct”,
Fabrega, Herzog, and Guttman. Journal of Computer
Security, 1999.

#® “Programming Cryptographic Protocols”, Guttman,
Herzog, Ramsdell, and Sniffen. Symposium on
Trustworthy Global Computing, 2005.

http://www.mitre.org/tech/strands/

The End

	Outline
	Concepts and intuitions
	Traces
	Strands
	Bundles
	Strand space
	Protocols
	Protocols
	Protocols
	Formalism
	Terms
	Strand spaces
	Definitions
	Definitions
	Bundles
	Bundles
	Bundles
	Proof tools
	Modeling Protocols
	Needham-Schroeder-Lowe
	Modeling the protocol
	Initiator strands
	Responder strands
	Penetrator strands
	Penetrator strands
	Penetrator capabilities
	Standard penetrators
	Stating and Verifying Protocol Properties
	Needham-Schroeder-Lowe properties
	Weak agreement
	Weak agreement as proposition
	Proving weak agreement
	Secrecy as a proposition
	Proving secrecy
	Applications
	CPPL
	Motivation
	Example
	Relies and guarantees
	NSQ Code
	NSQ Code
	Semantics
	Conclusion
	References
	The End

