Electronic Cash
 Creence Lin
 December 10, 2009

Northeastern University

Outline

-Motivation for electronic cash payment system
-Pros and cons of traditional cash
-Pros and cons of payments by instruction
-Properties of an ideal payment system
-Model of Electronic Cash
-How participants authenticate each other

- About Authentication Methods Not Studied in Class
-Representing electronic cash itself
-Fraud Detection and Prevention
-Privacy Concerns
-Blinding

Pros and cons of traditional cash

Pros

- Privacy
- High acceptability
- Person to person payments without bank involvement
- Instantaneous use

Cons

- May not always have exact change
- Costly to produce and handle
- No loss theft protection
- Criminal activity
- Requirement for physical proximity of payer and payee

Pros and cons of payments by instruction (credit, debit cards, etc.)

Pros

- Transportable and storable with convenience and low cost
- Less risks of theft and loss since actual value resides at banks
- No requirement for physical proximity of payer and payee

Cons

- Difficult to ensure authenticity without chip cards and cryptographic authentication
- Chip cards do not address online authentication techniques
- Online verification and processing is expensive for payees
- Lack of privacy

What would we want in a payment system?

- spontaneous payments including offline payment verification
- no bank involvement -payment from person to person
- privacy
- hard to forge
- transportable and storable with convenience and low cost
- cheap to replace when worn out
- payable without many bank notes
- able to trace criminal activity
- Loss theft protection
- No requirement for physical proximity of payer and payee
- Low processing and handling costs
- High acceptability
- Cost effective for low value purchases

The best of both traditional cash and payments by instruction.

Electronic Cash Model

Need at least 1 computing device per participant (payer, payee, etc.)

Authentication

- Paying device computes a response to receiving device based on its secret key and a challenge
- Design challenge response protocols can be conventional (MACs) or based on public key cryptography, zero knowledge authentication, DES, RSA, digital signatures, Lamport signatures, matrix based signatures, tree authentication etc.
- Dynamic authentication prevents replay attacks
- Diversified keys with digital signatures on the paying device's ID number provide additional security over a system wide secret key
- Can also use session key.

Matrix Based Signatures

- Matrix based signature signs messages of int $\left(\log _{2} r^{c}\right)$ bits expanded into an r-ary representation.

Uses matrices generated from c random numbers and a hash function applied to elements of the matrices with r rows.

- A better signature storage that verifies by computing top rows of message and control matrix
- Example: Sign the 6-bit message 010011, with 4-ary expansion 103

$\overbrace{\left(\begin{array}{ccc}f^{3}\left(s_{12}\right) & f^{3}\left(s_{22}\right) & f^{3}\left(s_{32}\right) \\ f^{2}\left(s_{12}\right) & f^{2}\left(s_{22}\right) & f\left(s_{32}\right) \\ f^{1}\left(s_{12}\right) & f^{1}\left(s_{22}\right) & f^{1}\left(s_{32}\right) \\ s_{12} & s_{22} & s_{32}\end{array}\right)}^{\text {Controlmatrix (} j=2 \text {) based on hash exponent }}$?

Northeastern University

Tree Authentication

- Tree Authentication
- One time signature scheme using single public key (Root node)
- To compute a digital signature on a message, the paying device uses a leaf of the tree that has not been used before

Electronic Cash Representations
 ($99999{ }^{2}$

Register Based Cash

- Amount of electronic cash maintained in a chip register by means of the value of a counter
- Minimal storage space
- If tampered, counters can be bypassed or updated without bank authorization
- Paying device must authenticate amount transferred
- Depending on authentication type, receiving device can store as register based cash, electronic check for deposit, or electronic coins for spending

Electronic Coins

- Cryptographic tokens assigned a fixed denomination and currency (message) that are digitally signed by the bank
- Verifiable solely by using the signature public key of the bank
- Storage space must be allocated
- Two part form has (message, signature) pair, but subject to coin theft or copying.
- Three part form has secret key used to compute the digital signature from challenge message of receiving device, public key, certificate on public key.
- Receiving device cannot reuse coins -must deposit coin since it does not know the secret key, but can verify payment using public key.

Fraud Detection and Prevention

- Certain electronic cash models are better for fraud detection:
- The digitally signed message of the paying device ties the received value for electronic checks and coins transactions. (Coins more difficult to overspend)
- System wide secret keys make it difficult to trace compromised devices
- Three part coins have secret keys that are stored solely in the paying device making fraud easier to trace
- Including intended payee in signature prevents man in middle attack
- Banks should take common sense precautions:
- Tracing to a device does not mean owner is guilty, but compromised devices, checks, and coins should still be blacklisted
- Master and certification keys should be refreshed on a regular basis indicated by expiration dates.
- Devices should be able to resend last message in event of interruption
- Control account access, software should be secure, etc.

Privacy

- Goal: Balance untraceability without encouraging criminal activity

Bad idea: Relax standards

- Collect only aggregate data, have anonymous devices or accounts
- cannot trace criminal activity
- In the case of anonymous accounts:

1. is not truly private since transactions can be linked to a single account/device
2. sometimes illegal

Better idea: Blinding

- A receiver can obtain digitally signed information that remains hidden from the issuer.
- Obtains the same signature as if you had not hidden the information

Blinding

Simplified blinding example: signer doesn't know message

Regular RSA signatures

- A receiver gives a message m to the signer who signs with the private decryption key $d=1 / e$.
- $m^{1 / e} \bmod n$

Blind RSA signatures

- The message m is multiplied by r^{e} where r is a random nonzero integer and e is the public encryption key
- A receiver gives a message $r^{e} m$ to the signer who signs with the private decryption key $d=1 / e$.
$-\left(r^{e} m\right)^{1 / e} \bmod n=r m^{1 / e} \bmod n$
- The receiver multiplies result by r^{-1}

$$
-r^{-1} r m^{1 / e} \bmod n=m^{1 / e} \bmod n
$$

- This example shows how the receiver can get the same signature from a signer without revealing the message.
- The receiver (payer) could be asking the signer (bank) to sign a fraudulent message and the bank will not be able to trace and blacklist the device.
-One show blinding, a variation of the concept, traces double spent coins without sacrificing untraceability

Cut and Choose Blinding

Type of one show blinding - variant of blind RSA signature

Blind RSA signatures

- The message m is multiplied by r^{e} where r is a random nonzero integer and e is the public encryption key
- A receiver gives a message $r^{e} m$ to the signer

Cut and choose

- For each of $k i$'s the one way function f (instead of message m) with inputs $a_{j} c_{j} d_{i}$ is multiplied by r_{i}^{e} where $a_{j} c_{j}$ d_{i}, r_{i} are random nonzero integers and e is the public encryption key
- A receiver gives all the messages $r_{i}^{e} f\left(a_{j} c_{j} d_{j}\right)$ to the signer.
- The bank chooses a subset of the i's to be revealed and the signer will reveal $a_{j} c_{j}, d_{i}, r_{i}$ for those i 's.
- If the revealed candidates have been received properly, the signer signs the remaining the product of the remaining i's with the private decryption key $d=1 / e$.
- One of the cons of this method is too much data exchange.

