Elliptic Curve Cryptography

- Elliptic curve parameters over the finite field Fp
- $\mathrm{T}=(\mathrm{q}, \mathrm{F}$ R, a, b, G, n, h)
- $q=$ the prime p
- a,b: the curve coeffiecient
- G: the base point (Gx,Gy)
- n : the order of G
- h: E(Fq)/n.
- $Y^{\wedge} 2=x^{\wedge} 3+a x+b$

Elliptic Curve Cryptography (ECC)

- ECC depends on the hardness of the discrete logarithm problem
- Let P and Q be two points on an elliptic curve such that $\mathrm{kP}=\mathrm{Q}$, where k is a scalar. Given P and Q , it is hard to compute k
- k is the discrete logarithm of Q to the base P.
- The main operation is point multiplication
- Multiplication of scalar k * p to achieve another point Q

Point Addition

- Point addition is the addition of two points J and K on an elliptic curve to obtain another point L on the same elliptic curve.

(a)

(b)

Point Doubling

- Point doubling is the addition of a point J on the elliptic curve to itself to obtain another point L

(a)

(b)

Point Multiplication

- $\mathrm{kP}=\mathrm{Q}$
- Point multiplication is achieved by point addition and point doubling
- Point addition, adding two points J and K to obtain another point L i.e., L = J + K.
- Point doubling, adding a point J to itself to obtain another point Li.e. $L=2 \mathrm{~J}$.

Point Multiplication example

- Let k be a scalar that is multiplied with the point P to obtain another point Q on the curve. i.e. to find $Q=k P$.
- If $k=23$ then $k P=23 . P=2(2(2(2 P)+P)+P)+$ P
- As you can see point addition and point doubling are used to create Q
- The above method is called 'double and add' method for point multiplication
- Non-Adjacent Form and window Non-Adjacent Form are other methods

Elliptic Curve Digital Signature Algorithm Signing

- For signing a message m by sender A, using A's private key d

1. Calculate $\mathrm{e}=\mathrm{HASH}(\mathrm{m})$, where HASH is a cryptographic hash function, such as SHA-1
2. Select a random integer k from [1, $n-1$]
3. Calculate $r=x 1(\bmod n)$,
where $(x 1, y 1)=k$ * G. If $r=0$, go to step 2
4. Calculate $s=k-1(e+d r)(\bmod n)$. If $s=0$, go to step 2
5. The signature is the pair (r, s)

Elliptic Curve Digital Signature Algorithm Verification

- For B to authenticate A's signature, B must have A's public key Q

1. Verify that r and s are integers in $[1, n-1]$. If not, the signature is invalid
2. Calculate e = HASH (m)
3. Calculate $w=s-1(\bmod n)$
4. Calculate $u 1=e w(\bmod n) \& u 2=r w(\bmod n)$
5. Calculate $(\mathrm{x} 1, \mathrm{y} 1)=\mathrm{u} 1^{*} \mathrm{G}+\mathrm{u} 2^{*} \mathrm{Q}$
6. The signature is valid if $\mathrm{x} 1=\mathrm{r}(\bmod \mathrm{n})$

Elliptic Curve Diffie Hellman

- a key pair consisting of a private key d (a randomly selected integer less than n, where n is the order of the curve, an elliptic curve domain parameter) and
- a public key $Q=d$ * G (G is the generator point, an elliptic curve domain parameter).
- Let (dA, QA) be the private key - public key pair of A and (dB, QB) be the private key - public key pair of B
- its not possible to obtain the shared secret for a third party.

Elliptic Curve Diffie Hellman Pt. 2

1. The end A computes $K=(x K, y K)=d A$ * $Q B$
2. The end B computes $L=(x L, y L)=d B$ * $Q A$
3. Since $d A Q B=d A d B G=d B d A G=d B Q A$.

Therefore $\mathrm{K}=\mathrm{L}$ and hence $\mathrm{xK}=\mathrm{xL}$
4. Hence the shared secret is $x K$

- Since it is practically impossible to find the private key dA or dB from the public key K or L

Reason For Use

- Smaller key size
- Faster than RSA
- Good for handhelds and cell phones

Elliptic-Curve Digital Signałure Algorithm (ECDSA)
NIST Guidelines for Public Key Sizes for AES

ECC key size (bits)	RSA key size (bits)	Key size ratio	AES key size (bits)
163	1,024	1:6	
256	3,072	1:12	128
384	7,680	1:20	192
512	15,360	1:30	256

Table 1

NIST Reccomend Curves

- NIST reccomends p selections of $192,224,256,384$,and 521 for use in government applications

Reference

[1] Darrel Hankerson, Julio Lopez Hernandez, Alfred Menezes, Software Implementation of Elliptic Curve Cryptography over Binary Fields, 2000, Available at http://citeseer.ist.psu.edu/hankerson00software.html
[2] M. Brown, D. Hankerson, J. Lopez, A. Menezes, Software Implementation of the NIST Elliptic Curves Over Prime Fields, 2001, Available at http://citeseer.ist.psu.edu/brown01software.html
[3] Certicom, Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography, Version 1.0, September 2000, Available at http://www.secg.org/download/aid385/sec1_final.pdf
[4] Certicom, Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain Parameters, Version 1.0, September 2000, Available at http://www.secg.org/download/aid-386/sec2_final.pdf

- [5] Openssl, http://www.openssl.org
[6] Certicom, http://www.certicom.com/index.php?action=ecc_tutorial,home
- [7] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied

