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Security Protocols

A security protocol is an exchange of messages between two or 
more agents, with security-relevant goals such as:

• establishing a secret cryptographic key

• achieving authentication

• guaranteeing anonymity

Modern everyday uses:

• financial transactions

• voting



Security Protocols
Designed to work in hostile environments, where the network is 
under the control of an hostile opponent who can:

• overhear messages

• intercept messages

• fake messages

Protocols normally use cryptography to achieve their security goals

• Opponent can encrypt or decrypt with keys he knows

• Maybe can try to cryptanalyze to break keys

We are often interested in protocol flaws that are independent of 
crypto: we therefore assume the cryptography is perfect



Cryptography: Notation

A message m can be encrypted with a cryptographic key k

                                   {m}k

If k is a symmetric key (a key for a shared key cryptosystem) 
known only to Alice and Bob, then they can exchange secret 
messages by encrypting them with k; this will also provide 
authentication and integrity



Public Key Cryptography
If PK(Alice) is Alice’s public key, then Bob can send Alice a secret 
message by encrypting it with Alice’s public key: 

                            {m}PK(Alice)

Alice can decrypt this message with her secret key SK(Alice)

Signature are often represented as encrypting with a secret key

• Alice can send Bob an authenticated message by encrypting it 
with her secret key: 
                                {m}SK(Alice)

• Bob can decrypt this message with Alice’s public key, and 
verify that Alice sent it



A Sample Protocol

Suppose agents a and b want to establish a cryptographic 
session key with the help of a trusted server s

We could arrange for s to generate a key K and have it 
distributed to both agents

                           1.  a → s : a, s, b
                           2.  s → a : s, a, b, K
                           3.  a → b : a, b, K



A Sample Protocol

Suppose agents a and b want to establish a cryptographic session 
key with the help of a trusted server s

We could arrange for s to generate a key K and have it distributed 
to both agents

                           1.  a → s : a, s, b
                           2.  s → a : s, a, b, K
                           3.  a → b : a, b, K

Every message
has a (forgeable) 
from-field and 

to-field



A Sample Protocol

Suppose agents a and b want to establish a cryptographic session 
key with the help of a trusted server s

We could arrange for s to generate a key K and have it distributed 
to both agents

                           1.  a → s : a, s, b
                           2.  s → a : s, a, b, K
                           3.  a → b : a, b, K

What is wrong with
this protocol?



A Second Attempt
Suppose that a and b share long-term keys shared(a,s) and shared
(b,s) with s

Then the key delivery messages could be encrypted with those 
keys:

              1.  a → s :  a, s, b
              2.  s → a :  s, a, b, {K}shared(a,s), {K}shared(b,s)

              3.  a → b :  a, b,  {K}shared(b,s)

This keeps the session key secret from eavesdroppers

The fact that the key delivery message is encrypted with shared
(a,s) tells a that it was created by s



(1) Authentication via Shared Keys

If

(a) an agent a shares a key k with another agent s (and each 
knows that they share it)

(b) a receives a message encrypted with k, and

(c) a did not send the message herself

then a can deduce that s created the message, and that s intended 
the message for a



However...
This protocol is not secure against active opponents, who can 
intercept messages from the network, and introduce new messages

Consider the following attack:

                  o → s  : o, s, b
                  s → o  : s, o, b, {K}shared(s,o), {K}shared(b,s)

                  oa → b : a, b, {K}shared(b,s)

Here, o is the opponent, and oa represents o posing as a

b thinks he shares the key with a, but actually he shares the key 
only with o

This is a failure of both secrecy and authentication



Moreover...

There’s another attack:

           a → os :  a, s, b
           oa → s :  a, s, o
           s → oa :  s, a, o, {K}shared(a,s), {K}shared(o,s)

           os → a :  s, a, b, {K}shared(a,s), {K}shared(o,s)

           a → ob :  a, b, {K}shared(o,s)

The opponent ends up knowing the key

This is a failure of both secrecy and authentication



Diagnosis and Correction

The problem is that the identity b in message 2, and the identity a 
in message 3 are essential to the meaning of the encrypted 
component, yet the opponent is able to separate them

This suggests that we should include those identities within the 
encryptions:

               1.  a → s  : a, s, b
               2.  s → a : s, a, {b, K}shared(a,s), {a, K}shared(b,s)

               3.  a → b : a, b, {a, K}shared(b,s)

Thus encryption can be used for binding objects together



Freshness
Suppose the opponent has overheard an old protocol session, and 
saves the key delivery messages:

                 {b, K}shared(a,s)  and {a, K}shared(b,s)

Suppose he subsequently compromises session key K ; for example, 
because it is leaked, or because he breaks into agent a’s computer. 
He can then replay the key delivery messages as follows:

             a → os :  a, s, b
             os → a :  s, a, {b, K}shared(a,s), {a, K}shared(b,s) 

                   a → b  :  a, b, {a, K}shared(b,s) 

Note that a and b think that K is a good key, but o knows it



Guaranteeing Recentness

When an agent a receives a message from another agent s, he will 
often want to be assured that s sent the message recently, rather 
than it being a replay of a message from an old execution. 

One way to achieve this is through the use of nonces (large 
random numbers). If a sends s a nonce, and a subsequently receives 
the nonce back in a message, then a can deduce that the message 
(or, at least, the part of the message containing the nonce) was 
created recently.



Guaranteeing Recentness

a and b can be assured of the freshness of the session key by 
each creating a nonce, and by s including that nonce in the key 
delivery messages: 

          1.  a → b :  a, b, na 
          2.  b → s :  b, s, a, na, nb

          3.  s → a :  s, a, {b, K, na}shared(a,s) , {a, K, nb}shared(b,s) 
          4.  a → b :  a, b, {a, K, nb}shared(b,s)



What About Authentication?

Neither a nor b receives any guarantee that the other agent is 
involved in the protocol - the protocol does not provide 
authentication

The intruder can imitate the responder b as follows: 

      a → ob  : a, b, na 
      ob → s  : b, s, a, na, no 
      s → a   : s, a, {b, K, na}shared(a,s), {a, K, no}shared(b,s) 
      a → ob  : a, b, {a, K, nb}shared(b,s)



What About Authentication?

The intruder can also imitate the initiator a as follows: 

           oa → b :  a, b, no 
           b → s  :  b, s, a, no, nb

           s → oa :  s, a, {b, K, no}shared(a,s), {a, K, nb}shared(b,s) 

           oa → b :  a, b, {a, K, nb}shared(b,s)



Achieving Authentication

We can achieve authentication, and each agent can prove they 
know the key, by having a nonce exchange: 

        1.  a → b :  a, b, na 
        2.  b → s :  b, s, a, na, nb, nb’
        3.  s → a :  s, a, nb’, {b, K, na}shared(a,s), {a, K, nb}shared(b,s) 
        4.  a → b :  a, b, na’, {a, K, nb}shared(b,s) , {a, nb’}K
        5.  b → a :  b, a, {na’, b}K



The Yahalom Protocol

         1.  a → b :  a, b, na 
         2.  b → s :  b, s, {a, na, nb}shared(b,s)

         3.  s → a :  s, a, {b, K, na, nb}shared(a,s), {a, K}shared(b,s)

         4.  a → b :  a, b, {a, K}shared(b,s), {nb}K 

• The Yahalom Protocol establishes K as a shared secret

• The Yahalom Protocol authenticates a to b, and vice versa



Authentication in Yahalom

Because of the use of the shared keys: 

• s can deduce that b created the encrypted component of 
message 2

• a can deduce that s created the first encrypted component of 
message 3 

• b can deduce that s created the first encrypted component of 
message 4



Recentness in Yahalom

Because of the use of nonces: 

• a can deduce that s sent the first encrypted component of 
message 3 recently

• b can deduce that the second part of message 4 was created 
recently



Trust in Yahalom

Because s is assumed to be trustworthy, and in particular creates 
good cryptographic keys K:

• a can deduce that the key he receives in message 3 is a good 
key to share with b

• a can deduce that b has recently been running the protocol 
with a

• b can deduce that the key he receives in message 4 is a good 
key to share with a

• b can hence deduce that a sent the second encrypted 
component of message 4, and that this component was 
created recently



Key Confirmation in Yahalom

The Yahalom Protocol assures b that a has received key K

The Yahalom protocol does not assure a that b has received K



(2) Authentication via Public Keys

If an agent a sees a message encrypted with b’s secret key, then 
she can deduce that b created the message

If a sends a message encrypted with b’s public key, and which 
contains a secret value v, and subsequently receives v back, then a 
can deduce that b decrypted the message



Needham-Schroeder Public Key Protocol 

                      1.  a → b :  a, b, {a, na}PK(b) 
                      2.  b → a :  b, a, {na, nb}PK(a)

                      3.  a → b :  a, b, {nb}PK(b)

The protocol aims to authenticate each agent to the other, and to 
establish a pair of shared secrets na and nb



An Attack Against Needham-Schroeder

This protocol is subject to the following attack: 

                     a → o  :  a, o, {a, na}PK(o) 

                     oa → b :  a, b, {a, na}PK(b) 

                     b → oa :  b, a, {na, nb}PK(a) 

                     o → a  :  o, a, {na, nb}PK(a) 

                     a → o  :  a, o, {nb}PK(o) 
                     oa → b :  o, b, {nb}PK(b)



A Variant of Needham-Schroeder

We can prevent the attack by modifying Needham-Schroeder:

                      1.  a → b :  a, b, {a, na}PK(b) 
                      2.  b → a :  b, a, {b, na, nb}PK(a)

                      3.  a → b :  a, b, {nb}PK(b)



The Attack under the Variant

Trying the attack, we see where it would fail:

                     a → o  :  a, o, {a, na}PK(o) 

                     oa → b :  a, b, {a, na}PK(b) 

                     b → oa :  b, a, {b, na, nb}PK(a) 

                     o → a  :  o, a, {b, na, nb}PK(a) 

Here a would reject the message, since the from-field of the 
message says o, but the content of the encrypted message says 
that the message came from b

•  a should check that, and abort



Needham-Schroeder Shared Key Protocol

              1.  a → s :   a, s, b, na 
              2.  s → a :  s, a, {na, b, K, {K, a}shared(b,s)}shared(a,s) 

              3.  a → b :  a, b, {K, a}shared(b,s) 
              4.  b → a :  b, a, {nb}K
              5.  a → b :  a, b, {nb-1}K



An Attack

Suppose the opponent has observed a previous execution of the 
protocol between a and b, and stored message 3: 

                            {K, a}shared(b,s)

Suppose further the opponent compromises key K, maybe by 
breaking into b’s computer. 

The intruder could then attack b as follows: 

                         oa → b : a, b, {K, a}shared(b,s) 
                         b → oa : b, a, {nb}K
                         oa → b : a, b {nb-1}K



Key Compromises

We have to accept that key compromise might not be avoidable 

• Ensure that if an old key is compromised, then the opponent 
cannot replay it to cause a failure of authentication

Protocols should be designed so that each agent who receives a 
key also receives some evidence that the key is fresh - it has not 
been used in a previous instance of the protocol. 

• This evidence could be via appropriate use of a nonce that the 
agent knows is fresh, or via a timestamp



The Kerberos Protocol
Kerberos was invented by MIT as part of Project Athena. 

It aims to authenticate (users of) clients and servers to one 
another, and to establish session keys between them, to allow 
secure transfer of data.

The Kerberos protocol defines four types of agent: 

(a) Clients

(b) Servers

(c) Ticket granting servers (TGSs), that give tickets to clients; 
these tickets can be used to authenticate the client to a 
server, and to establish a session key

(d) Kerberos, which gives ticket granting tickets (TGTs) to clients, 
with which they can authenticate themselves to the TGS



Overview of Kerberos

The Kerberos protocol has three parts: 

(1) A client obtains a TGT from Kerberos

(2) The client uses the TGT to obtain a ticket for a particular 
server from the TGS

(3) The client uses this ticket to authenticate itself to the server 
and establish a session key



Kerberos Keys

The Kerberos protocol uses two types of keys: 

• Each agent a has a long term key key(a)

• Kerberos knows the long term keys of clients and TGSs

• Each TGS knows the long term key of local servers

• Clients can share session keys with either servers or TGSs

• We write Kc,s for a session key intended to be shared 
between client c and server or TGS s 

All keys are symmetric (normally DES)



Kerberos Tickets

A ticket that client c can use to authenticate itself to s has form: 

                        Tc,s  = {s, c, t, Kc,s}key(s)

Here, t is a timestamp, set to the time at which the ticket is 
created, and used to verify that a ticket is still valid. 

If s is a TGS then this ticket is produced by Kerberos; if s is a 
normal server then this ticket is produced by a TGS. 

• Note that only s can decrypt Tc,s



Getting a Ticket-Granting Ticket

A client obtains a TGT by sending its identity and the identity of an 
appropriate TGS to Kerberos. 

Kerberos returns a session key and TGT:

               1.  c → kerb  :   c, kerb, c, tgs 
               2.  kerb → c  :  kerb, c, {Tc,tgs, Kc,tgs}key(c) 

key(c) is formed as a one-way hash of c’s password

The user needs to supply the correct password in order for the 
client to obtain the session key Kc,tgs



Getting a Ticket

A client can request a ticket for a particular server from a TGS:

                3.  c → tgs :  c, tgs, Tc,tgs, {c, t}Kc,tgs 

                4.  tgs → c :  tgs, c, {Tc,s, Kc,s}Kc,tgs

The TGS extracts the key Kc,tgs from Tc,tgs

This step can repeated multiple times (with the same TGT) to 
obtain tickets for different servers



Requesting a Service

Finally, clients can request a service from a server by sending the 
ticket: 

                     5.  c → s :  c, s, Tc,s, {c, t}Kc,s 

Kc,s can then be used to transfer information

This step can be repeated multiple times, with the same ticket



Analyzing Security Protocols

I have given you a sample of security protocols achieving secrecy 
and authentication goals

• Many more exist and have been studied

• “A Survey of Authentication Protocol Literature”, by J. Clarke 
and J. Jacob

Question: how do you prove that a protocol satisfies its secrecy or 
authentication goals? Many automated techniques developed:

• Language-based: spi-calculus, Cryptyc, ...

• Model-checking-based: AVISS, Murφ, ...

• Logic-based: BAN logic, Paulson’s inductive assertions, ...


