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Signatures
• Signatures in “real life” have a number of properties

• They specify the person “responsible” for a 
document
• E.g. that it has been produced by the person, or 

that the person agrees with the document
• Physically attached to a particular document
• Easily verifiable by third parties

• We want a similar mechanism for digital documents
• Some difficulties:

• Need to bind signature to document
• Need to ensure verifiability (and avoid forgeries)



Formal Definition
A signature scheme is a tuple (P,A,K,S,V) where:

• P is a finite set of possible messages
• A is a finite set of possible signatures
• K (the keyspace) is a finite set of possible keys
• For all k, there is a signature algorithm sigk in S and 

a verification algorithm verk in V such that
• sigk : P → A
• verk : P × A → {true,false}
• verk(x,y) = true iff y=sigk (x)

• A pair (x,y) ∈ P × A is called a signed message



Example: RSA Signatures

• The RSA cryptosystem (in fact, most public key 
cryptosystems) can be used as a signature scheme

• Take:
• sigk (x) = dk (x)
• verk (x,y) = (x =? ek (y))
• Only user can sign (because decryption is private)
• Anyone can verify (because encryption is public)



Signing and Encrypting
• Suppose you want to sign and encrypt a piece of data

• Where encryption is public key (why is this 
important?)

• Public key cryptography does not say anything 
about the sender

• Two possibilities:
• First encrypt, then sign: x  →  (eke (x), sigks (eke (x)))

• But adversary could replace by sigke’ (eke (x))
making it seem the message came from someone 
else

• First sign, then encrypt:  x  →  (eke (x), sigks (x))
• Better make sure signature does not leak info!



Possible Attacks

• (Alice is the signer, Oscar the attacker)

• Key-only attack
• Oscar possesses Alice’s public verification algorithm

• Known message attack
• Oscar possesses a list of signed messages (xi, yi)

• Chosen message attack
• Oscar queries Alice for the signatures of a list of 

messages xi



Possible Adversarial Goals

• Total break
• Oscar can derive Alice’s private signing algorithm

• Selective forgery
• Oscar can create a valid signature on a message 

chosen by someone else, with some non-
negligible probability

• Existential forgery
• Oscar can create a valid signature for at least 

one message



Some Comments

• Cannot have unconditional security, only computational or 
provable security

• Attacks above are similar to those against MACs
• For MACs, we mostly concentrated on existential 

forgeries against chosen message attacks

• Existential forgeries against chosen message attacks:
• Least damage against worst attacker
• The minimum you should ask for



Security of RSA Signatures
• Existential forgery using a key-only attack:

• Choose a random y
• Compute x = ek (y)
• We have y = sigk (x), a valid signature of x

• Existential forgery using a known-message attack:
• Suppose y = sigk (x) and y’ = sigk (x’)
• Can check ek (y y’ mod n) = x x’ mod n
• So y y’ mod n = sigk (x x’ mod n)

• Existential forgery using a chosen message attack:
• To get a signature for x, find x1 x2 = x mod n
• Query for signatures of x1 and x2
• Apply previous attack



Signatures and Hashing

• The easiest way to get around the above problems is 
to use a cryptographic hash function
• Given message x
• Produce digest h(x)
• Sign digest h(x) to create (x,sigk(h(x)))

• To verify:
• Get (x,y)
• Compute h(x)
• Check verk (h(x),y)



Use of Hashing for Signatures
• Existential forgery using a chosen message attack

• Oscar finds x,x’ s.t. h(x)=h(x’)
• He gives x to Alice and gets her to sign h(x)
• Then (x’,sigk(h(x))) is a valid signed message
• Prevented by having h collision resistant

• Existential forgery using a known message attack
• Oscar starts with (x,y), where y = sigk(h(x))
• He computes h(x) and tries to find x’ s.t. h(x’) = h(x)
• Prevented by having h second preimage resistant

• Existential forgery using a key-only attack
• (If signature scheme has existential forgery using a key-only attack)
• Oscar chooses message digest and finds a forgery z for it
• Then tries to find x s.t. h(x)=z
• Prevented by having h preimage resistant



Example: ElGamal Signature Scheme

• Let p be a prime s.t. discrete log in Zp is hard
• Let a be a primitive element in Zp*

• P = Zp*, A = Zp* × Zp-1
• K = {(p,α,a,β) | β= αa (mod p)}

• For k = (p,α,a,β) and t ∈ Zp-1*

• γ = αt mod p
• sigk (x,t) = (γ, (x-aγ)t-1 (mod p-1))

• verk (x,(γ,δ)) = ( βγγδ =? αx (mod p) )

• Exercise: check that verk (x,sigk (x,t)) = true



Security of ElGamal Scheme
• Forging a signature (γ,δ) without knowing a 

• Choosing γ and finding corresponding δ amounts to 
finding discrete log

• Choosing δ and finding corresponding γ amounts to 
solving βγγδ = αx (mod p)
• No one knows the difficulty of this problem 

(believed to be hard)
• Choosing γ and δ and solving for the message amounts 

to finding discrete log
• Existential forgery with a key-only attack:

• Sign a random message by choosing γ, δ and 
message simultaneously (p.289)



Variant 1: Schnorr Signature Scheme
• ElGamal requires a large modulus p to be secure
• A 1024 bit modulus leads to a 2048 bit signature

• Too large for some uses of signatures (smartcards)

• Idea: use a subgroup of Zp of size q (q << p)
• Let p be a prime s.t. discrete log is hard in Zp*

• Let q be a prime that divides p-1
• Let α in Zp* be a q-th root of 1 mod p
• Let h : {0,1}* → Zq be a secure hash function
• P = {0,1}*, A = Zq × Zq
• K = {(p,q,α,a,β) | β = αa (mod p)}
• For k=(p,q,α,a,β) and 1 ≤ t ≤ q-1:

• γ = h(x || αt mod p)
• sigk (x,t) = (γ, t+aγ mod q)
• verk (x,(γ,δ)) = (h(x || αδβ-γ mod p) =? γ



Variant 2: DSA
• DSA = Digital Signature Algorithm
• Let p be a prime s.t. discrete log is hard in Zp

• bitlength of p = 0 (mod 64), 512 ≤ bitlength ≤ 1024
• Let q be a 160 bit prime that divides p-1
• Let α in Zp* be a q-th root of 1 mod p
• Let h : {0,1}* → Zq be a secure hash function
• P = {0,1}*, A = Zq* × Zq*

• K = {(p,q,α,a,β) | β = αa (mod p)}
• For k=(p,q,α,a,β) and 1 ≤ t ≤ q-1:

• γ = (αt mod p) mod q
• sigk (x,t) = (γ, (SHA1(x)+aγ)t-1 mod q)
• verk (x,(γ,δ)) = (αe1βe2 mod p) mod q =? γ

• e1 = SHA1(x)δ-1 mod q
• e2 = γδ-1 mod q 



Variant 3: Elliptic Curve DSA

• Modification of the DSA to use elliptic curves

• Instead of choosing α, β, use A and B two points on an 
elliptic curve over Zp

• Roughly speaking, instead of: (αt mod p) mod q
use the x coordinate of the point tA, mod q

• The rest of the computation is as before



Provably Secure Signature Schemes

• The previous examples were (to the best of our 
knowledge) computationally secure signature scheme

• Here is a provably secure signature scheme
• As long as only one message is signed

• Let m be a positive integer
• Let f : Y → Z be a one-way function
• P = {0,1}m,  A = Ym

• Choose yi,j in Y at random for 1≤i≤m, j=0,1
• Let zi,j = f(yi,j)
• A key = 2m y’s and 2m z’s (y’s private, z’s public)

• sigk (x1,...,xm) = (y1,x1,...,ym,xm)
• verk ((x1,...,xm),(a1,...,am)) = (f (ai) =? zi,xi) for all i



Argument for Security
• Argument for provable security:

• Existential forgeries using a key-only attack
• Assume that f is a one-way function
• Show that if there is an existential forgery using a 

key-only attack, then there is an algorithm that 
finds preimage of random elements in the image of 
f with probability at least 1/2

• We need the restriction to one signature only
• If the attacker gets two messages signed with the 

same key, then can easily construct signatures for 
other messages

• (0,1,1) and (1,0,1) can give signatures for (0,0,1), (1,1,1)



Undeniable Signature Schemes
• Introduced by Chaum and van Antwerpen in 1989

• Scenario: want a signature to be unverifiable without the signer
• But what’s to prevent signer from disavowing signature?

• Let p,q primes, p = 2q+1, and discrete log hard in Zp*

• Let α in Zp* be an element of order q
• G = multiplicative subgroup of Zp* of order q
• P = A = G
• K = {(p,α,a,β} | β = αa mod p}
• For key k=(p,α,a,β) and x in G:

• sigk (x) = xa mod p
• To verify (x,y): pick e1,e2 at random in Zq

• Compute c = ye1βe2

• Signer computes d = cinv(a) mod q mod p    (where inv(a) = a-1)
• y is a valid signature iff d = xe1αe2 mod p



Disavowal Protocol

• Can prove that Alice cannot fool Bob into accepting a fraudulent 
signature (except with very small probability = 1/q)

• What if Bob wants to make sure that a claimed forgery is one?
1. Bob chooses e1,e2 at random in Zq*

2.Bob computes c = ye1βe2 mod p; sends it to Alice
3.Alice computes d = cinv(a) mod q mod p; sends it to Bob
4.Bob verifies d ≠ xe1αe2 mod p
5.Bob chooses f1,f2 at random, in Zq*

6.Bob computes C = yf1βf2 mod p; sends it to Alice
7.Alice computes D = Cinv(a) mod q mod p; sends it to Bob
8.Bob verifies D ≠ xf1αf2 mod p
9.Bob concludes y is a forgery iff (dα-e2)f1 = (Dα-f2)e1 mod p



Why Does This Work?

• Alice can convince Bob that an invalid signature is a 
forgery
• If y ≠ xa mod p and Alice and Bob follow the 

protocol, then the check in last step succeeds

• Alice cannot make Bob believe that a valid signature is 
a forgery except with a very small probability
• Intuition: since she cannot recover e1,e2,f1,f2, she will 

have difficulty coming up with d and D that fail 
steps 4 and 8, but still pass step 9

• See Stinson for details


