Block Ciphers

CS 6750 Lecture 3

September 24, 2009
Riccardo Pucella

Product Cryptosystems

- A way to combine cryptosystems
- For simplicity, assume endomorphic cryptosystems
- I.e., where C=P
- $S_{1}=\left(P, P, K_{1}, E_{1}, D_{1}\right)$
- $S_{2}=\left(P, P, K_{2}, E_{2}, D_{2}\right)$
- Product cryptosystem $S_{1} \times S_{2}$ is defined to be ($\mathrm{P}, \mathrm{P}, \mathrm{K}_{1} \times \mathrm{K}_{2}, E, D$)
where

$$
\begin{aligned}
e_{(k 1, k 2)}(x) & =e_{k 2}\left(e_{k 1}(x)\right) \\
d_{(k 1, k 2)}(y) & =d_{k 1}\left(d_{k 2}(y)\right)
\end{aligned}
$$

Product Cryptosystems

- If Pr_{1} and Pr_{2} are probability distributions over the keys of S_{1} and S_{2} (resp.)
- Take Pr on $\mathrm{S}_{1} \times \mathrm{S}_{2}$ to be $\operatorname{Pr}\left(\left\langle\mathrm{k}_{1}, \mathrm{k}_{2}\right\rangle\right)=\operatorname{Pr}_{1}\left(\mathrm{k}_{1}\right) \operatorname{Pr} 2\left(\mathrm{k}_{2}\right)$
- That is, keys are chosen independently
- Some cryptosystems commute, $\mathrm{S}_{1} \times \mathrm{S}_{2}=\mathrm{S}_{2} \times \mathrm{S}_{1}$
- Some cryptosystems can be decomposed into $S_{1} \times S_{2}$ - Affine cipher can be decomposed into $S \times M=M \times S$
- (Some subtleties about key probabilities matching)

Idempotence

- A cryptosystem is idempotent if $\mathrm{S} \times \mathrm{S}=\mathrm{S}$
- E.g. shift cipher, substitution cipher, Vigenère cipher...
- (Again, subtleties about key probabilities matching)
- An idempotent cryptosystem does not gain additional security by iterating it
- But iterating a nonidempotent cryptosystem does!

A Nonidempotent Cryptosystem

(2) Fix $\mathrm{m}>1$

- Let $S_{s u b}$ a substitution cipher over $\left(Z_{26}\right)^{m}$
- Let Sprm be the permutation cipher:
(- $C=P=\left(Z_{26}\right)^{m}$
© $K=\{\pi: \pi$ a permutation $\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}\}$
- $e_{\pi}\left(\left\langle x_{1}, \ldots, x_{m}\right\rangle\right)=\left\langle x_{\pi(1)}, \ldots, x_{\pi(m)}\right\rangle$
- $d_{\pi}\left(\left\langle y_{1}, \ldots, y_{m}\right\rangle\right)=\left\langle y_{n}(1), \ldots, y_{n}(m)\right\rangle$, where $\eta=\pi^{-1}$
- Theorem: $S_{\text {sub }} \times S_{\text {prm }}$ is not idempotent

Iterated Cryptosystems

- A kind of product cryptosystem
- Idea: given S a cryptosystem, an iterated cryptosystem is $S \times S \times \ldots \times S=S^{N}$
- $N=$ number of iterations (= rounds)
- A key is a tuple $\left\langle k_{1}, \ldots, k_{N}\right\rangle$
- $k_{i}=$ key for round i (= round key)
- Only useful if S is not idempotent
- Generally, the key is derived from an initial key k - k is used to derive $\left\langle k_{1}, \ldots, k_{N}\right\rangle$ (= key schedule)
- Derivation is via a fixed and known algorithm

Iterated Cryptosystems

- Iterated cryptosystems are often described using a round function $\mathrm{g}: \mathrm{P} \times \mathrm{K} \rightarrow \mathrm{C}$
- $g(w, k)$ gives the encryption of w using round key k
- To encrypt x using key schedule $\left\langle k_{1}, \ldots, k_{N}\right\rangle$:

$$
\begin{aligned}
& w_{0} \leftarrow x \\
& w_{1} \leftarrow g\left(w_{0}, k_{1}\right) \\
& w_{2} \leftarrow g\left(w_{1}, k_{2}\right) \\
& \ldots \\
& w_{N} \leftarrow g\left(w_{N-1}, k_{N}\right) \\
& y \leftarrow w_{N}
\end{aligned}
$$

Iterated Ciphers

- To decrypt, require g to be invertible when round key is fixed
- I.e., there exists g^{-1} such that $g^{-1}(g(w, k), k)=w$ - Rquires g to be injective in its first argument
- To decrypt ciphertext y using key schedule $\left\langle k_{1}, \ldots, k_{N}\right\rangle$

$$
\begin{aligned}
& w_{N} \leftarrow y \\
& w_{N-1} \leftarrow g^{-1}\left(w_{N}, k_{N}\right) \\
& w_{N-2} \leftarrow g^{-1}\left(w_{N-1}, k_{N-1}\right) \\
& \cdots \\
& w_{0} \leftarrow g^{-1}\left(w_{1}, k_{1}\right) \\
& x \leftarrow w_{0}
\end{aligned}
$$

Substitution-Permutation Networks

- A special case of iterated cryptosystem - Foundation for DES and AES
- Plaintext/ciphertext: binary vectors of length $1 \times m$ - $\left(Z_{2}\right)^{\mathrm{lm}}$
- Substitution $\pi_{s}:\left(Z_{2}\right)^{1} \rightarrow\left(Z_{2}\right)^{1}$
- Replace I bits by new I bits
- Often called an S-box
- Creates confusion
(2 Permutation $\pi p:\left(Z_{2}\right)^{1 m} \rightarrow\left(Z_{2}\right)^{1 m}$
- Reorder Im bits
- Creates diffusion

Substitution-Permutation Networks

- N rounds
- Assume a key schedule for key $k=\left\langle k_{1}, \ldots, k_{N+1}\right\rangle$
- Don't care how it is produced
- Round keys have length $1 \times m$
- Write string x of length $\mid \times m$ as $x_{<1>}\|\ldots\| x_{<m>}$
- Where $X_{\text {ci> }}=\left\langle X_{(i-1) \mid+1,}, \ldots, X_{i l}\right\rangle$ of length I
- At each round but the last:

1. Add round key bits to x
2. Perform π_{s} substitution to each $x_{\text {<i> }}$
3. Apply permutation πp to result

- Permutation not applied on the last round
- Allows the "same" algorithm to be used for decryption

Substitution-Permutation Networks

- Algorithmically (with key schedule $\left\langle k_{1}, \ldots, k_{N+1}\right\rangle$):

$$
\begin{aligned}
& \text { Wo } \leftarrow x \\
& \text { for } r \leftarrow 1 \text { to } N-1 \\
& u^{r} \leftarrow W_{r-1} \oplus k_{r} \\
& \text { for } i \leftarrow 1 \text { to } m \\
& v^{r} \text { <i> } \leftarrow \pi_{s}\left(u_{<i>}^{r}\right) \\
& W_{r} \leftarrow\left\langle v^{r} \pi P(1), \ldots, v^{r} \pi P(\mid \times m)>\right. \\
& u^{N} \leftarrow W_{N-1} \oplus k_{N} \\
& \text { for } i \leftarrow 1 \text { to } m \\
& \left.v^{N} \leftarrow i\right\rangle \leftarrow \Pi_{s}\left(u_{\ll i>}^{N}\right) \\
& y \leftarrow v^{N} \oplus k_{N+1}
\end{aligned}
$$

Example

- Stinson, Example 3.1
(- $\mathrm{l}=\mathrm{m}=\mathrm{N}=4$
- So plaintexts are 16 bits strings
- Fixed π_{s} that substitutes four bits into four bits
- Table: $E, 4, D, 1,2, F, B, 8,3, A, 6, C, 5,9,0,7$ (in hexadecimal!)
- Fixed πp that permutes 16 bits
- Perm: $1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16$
- Key schedule:
- Initial key: 32 bits key K
- Round r key: 16 bits of K from positions 1, 5, 9, 13

Comments

- We could use different S-boxes at each round
- Example not very secure
- Key space too small: 2^{32}
- Could improve:
- Larger key size
- Larger block length
- More rounds
- Larger S-boxes
break

Feistel Cryptosystems

- A special case of iterated cryptosystems
- At each round, string is divided equally into L and R
- Round function g takes $L_{i-1} R_{i-1}$ and K_{i}, and returns a new string $L_{i} R_{i}$ given by:

$$
\begin{aligned}
& L_{i}=R_{i-1} \\
& R_{i}=L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
\end{aligned}
$$

- To decrypt, use inverse of g:

$$
\begin{aligned}
& R_{i-1}=L_{i} \\
& L_{i-1}=R_{i} \oplus f\left(L_{i}, K_{i}\right)
\end{aligned}
$$

- OBSERVATION: f need not be invertible!

DES

- "Data Encryption Standard"
- Developed by IBM, from an earlier cryptosystem Lucifer
- Adopted as a standard for "unclassified" data: 1977
- 16 round Feistel cryptosystem:
- encrypts 64 bits vectors

DES Key Schedule

- Initial key: 64 bits
- Only 56 bits of the key are used
- every 8th bit is a parity bit to ensure no error in transmission
- the 8 th bit is set to 0 or 1 to make the number of 1's in the full 8 bits odd.
- Key schedule:
- 56 bits Key k produces $\left\langle k_{1}, \ldots, k_{16}\right\rangle, 48$ bits each
- Round keys obtained by permutation of selection of bits from key k
- (Details in the handout)

DES Encryption/Decryption

- To encrypt plaintext x :

1. Apply fixed permutation IP to x to get $L_{0} R_{0}$
2. Do 16 rounds of DES
3. Apply fixed permutation I^{-1} to get ciphertext

- (Permutation IP motivated by hardware considerations)
- To decrypt ciphertext y:

1. Apply fixed permutation IP to y to get $L_{16} R_{16}$
2. Do 16 "inverse" rounds of DES
3. Apply fixed permutation IP^{-1} to get plaintext

DES Round

- To describe a round of DES, need to give function f - Takes string A of 32 bits and a round key J of 48 bits
- Computing $f(A, J)$:

1. Expand A to 48 bits via fixed expansion $E(A)$
2. Compute $E(A) \oplus J=B_{0} B_{1} \ldots B_{8}$ (each B_{i} is 6 bits)
3. Use 8 fixed S-boxes S_{1}, \ldots, S_{8}, each $\{0,1\}^{6} \rightarrow\{0,1\}^{4}$ Get $C_{i}=S_{i}\left(B_{i}\right)$
4. Set $C=C_{1} C_{2} \ldots C_{8}$ of length 32 bits
5. Apply fixed permutation P to C

Linear Cryptanalysis

- Known-plaintext attack
- Aim: find some bits of the key
- Basic idea: Try to find a linear approximation to the action of a cipher
- Can you find a (probabilistic) linear relationship between some plaintext bits and some bits of the string produced in the last round (before the last substitution)?
- If yes, then some bits occur with nonuniform probability
- By looking at a large enough number of plaintexts, can determine the most likely key for the last round

Differential Cryptanalysis

- Usually a chosen-plaintext attack
- Aim: find some bits of the key
- Basic idea: try to find out how differences in the inputs affect differences in the output
- Many variations; usually, difference = \oplus
- For a chosen specific difference in the inputs, can you find an expected difference for some bits in the string produced before the last substitution is applied?
- If yes, then some bits occur with nonuniform probability
- By looking at a large enough number of pairs of plaintexts $\left(x_{1}, x_{2}\right)$ with $x_{1} \oplus x_{2}=$ chosen difference, can determine most likely key for last round

Comments on DES

- Key space is too small
- Can build specialized hardware to do automatic search
- This is a known-plaintext attack
- Differential and linear cryptanalysis are difficult - Need 2^{43} plaintexts for linear cryptanalysis - S-boxes resilient to differential cryptanalysis
- Number of rounds is important
- 8 rounds DES is easy to break

AES

- "Advanced Encryption Standard"
- Developed in Belgium (as Rijndael)
- Adopted in 2001 as a new US standard
- Iterated cryptosystem
- Block length: 128 bits
- 3 possible key lengths, with varying number of rounds
- 128 bits ($\mathrm{N}=10$)
- 192 bits ($\mathrm{N}=12$)
- 256 bits ($\mathrm{N}=14$)

High-Level View of AES

- To encrypt plaintext x with key schedule $\left\langle k_{0,} . . ., k_{N}\right\rangle$:

1. Initialize STATE to x and add (\oplus) round key ko
2. For first $\mathrm{N}-1$ rounds:
a. Substitute using S-box
b. Permutation SHIFT-ROWS
c. Substitution MIX-COLUMNS
d. Add (\oplus) round key k_{i}
3. Substitute using S-Box, SHIFT-ROWS, add K_{N}
4. Ciphertext is resulting STATE

- (Next slide describes the terms)

AES Operations

- STATE is a 4×4 array of bytes (= 8 bits)
- Split 128 bits into 16 bytes
- Arrange first 4 bytes into first column, then second, then third, then fourth
- S-box: apply fixed substitution $\{0,1\}^{8} \rightarrow\{0,1\}^{8}$ to each cell
- SHIFT-ROWS: shift second row of STATE one cell to the left, third row of STATE two cells to the left, and fourth row of STATE three cells to the left
- MIX-COLUMNS: multiply fixed matrix with each column

AES Key Schedule

- For $\mathrm{N}=10,128$ bits key
(2) 16 bytes: $\mathrm{k}[0], \ldots, k[15$]
- Algorithm is word-oriented (word $=4$ bytes $=32$ bits)
- A round key is 128 bits ($=4$ words)
- Key schedule produces 44 words (= 11 round keys)
- $w[0], w[1], \ldots, w[43]$
- $w[0]=\langle k[0], \ldots, k[3]\rangle$
- $w[1]=\langle k[4], \ldots, k[7]\rangle$
- $w[2]=\langle k[8], \ldots, k[11]\rangle$
- $w[3]=\langle k[12], \ldots, k[15]\rangle$
($w[i]=w[i-4] \oplus w[i-1]$
- Except at i multiples of 4 (more complex; see book)

Modes of Operation

- How to use block ciphers when plaintext is more than block length
- Simplest: ECB (Electronic Codebook Mode):

Modes of Operation

- CFB (Cipher Feedback Mode):

Modes of Operation

 - CBC (Cipher Block Chaining):

Modes of Operation

- OFB (Output Feedback Mode)

