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Product Cryptosystems
A way to combine cryptosystems
For simplicity, assume endomorphic cryptosystems

I.e., where C=P

S1 = (P, P, K1, E1, D1)
S2 = (P, P, K2, E2, D2)

Product cryptosystem S1×S2 is defined to be
(P, P, K1×K2, E, D)

where
         e(k1,k2)(x) = ek2(ek1(x))

d(k1,k2)(y) = dk1(dk2(y))



Product Cryptosystems

If Pr1 and Pr2 are probability distributions over the 
keys of S1 and S2 (resp.)

Take Pr on S1×S2 to be Pr(<k1,k2>) = Pr1(k1)Pr2(k2)
That is, keys are chosen independently

Some cryptosystems commute, S1×S2 = S2×S1

Some cryptosystems can be decomposed into S1×S2

Affine cipher can be decomposed into S×M=M×S
(Some subtleties about key probabilities matching)



Idempotence

A cryptosystem is idempotent if S×S=S
E.g. shift cipher, substitution cipher, Vigenère 
cipher...
(Again, subtleties about key probabilities matching)

An idempotent cryptosystem does not gain additional 
security by iterating it

But iterating a nonidempotent cryptosystem does!



A Nonidempotent Cryptosystem

Fix m > 1

Let Ssub a substitution cipher over (Z26)m

Let Sprm be the permutation cipher:
C = P = (Z26)m
K = { π : π a permutation {1,...,m} → {1,...,m} }
eπ (<x1, ..., xm>) = <xπ(1), ..., xπ(m)>
dπ (<y1, ..., ym>) = <yη(1), ..., yη(m)>, where η=π-1

Theorem: Ssub × Sprm is not idempotent



Iterated Cryptosystems
A kind of product cryptosystem

Idea: given S a cryptosystem, an iterated cryptosystem 
is S×S×...×S = SN

N = number of iterations (= rounds)
A key is a tuple <k1, ..., kN>

ki = key for round i (= round key)
Only useful if S is not idempotent

Generally, the key is derived from an initial key k
k is used to derive <k1, ..., kN> (= key schedule)
Derivation is via a fixed and known algorithm



Iterated Cryptosystems
Iterated cryptosystems are often described using a 
round function g : P × K → C

g (w, k) gives the encryption of w using round key k

To encrypt x using key schedule <k1, ..., kN>:
w0 ← x
w1 ← g (w0, k1)
w2 ← g (w1, k2)
...
wN ← g (wN-1, kN)
y ← wN



Iterated Ciphers
To decrypt, require g to be invertible when round key 
is fixed 

I.e., there exists g-1 such that g-1 (g (w, k), k) = w
Rquires g to be injective in its first argument

To decrypt ciphertext y using key schedule <k1, ..., kN>
wN ← y
wN-1 ← g-1 (wN, kN)
wN-2 ← g-1 (wN-1, kN-1)
...
w0 ← g-1 (w1, k1)
x ← w0



Substitution-Permutation Networks
A special case of iterated cryptosystem

Foundation for DES and AES

Plaintext/ciphertext: binary vectors of length l×m
(Z2)lm

Substitution πS : (Z2)l → (Z2)l
Replace l bits by new l bits
Often called an S-box
Creates confusion

Permutation πP : (Z2)lm → (Z2)lm
Reorder lm bits
Creates diffusion



Substitution-Permutation Networks
N rounds
Assume a key schedule for key k = <k1, ..., kN+1>

Don’t care how it is produced
Round keys have length l×m

Write string x of length l×m as x<1> || ... || x<m>
Where x<i> = <x(i-1)l+1, ..., xil> of length l

At each round but the last:
1. Add round key bits to x
2.Perform πS substitution to each x<i>
3.Apply permutation πP to result

Permutation not applied on the last round
Allows the “same” algorithm to be used for decryption



Substitution-Permutation Networks
Algorithmically (with key schedule <k1, ..., kN+1>):

w0 ← x
for r ← 1 to N-1

ur ← wr-1 ⊕ kr

for i ← 1 to m
vr<i> ← πS (ur<i>)

wr ← <vrπP(1), ..., vrπP(l×m)>
uN ← wN-1 ⊕ kN

for i ← 1 to m
vN<i> ← πS (uN<i>)

y ← vN ⊕ kN+1



Example
Stinson, Example 3.1

l = m = N = 4
So plaintexts are 16 bits strings

Fixed πS that substitutes four bits into four bits
Table: E,4,D,1,2,F,B,8,3,A,6,C,5,9,0,7 (in hexadecimal!)

Fixed πP that permutes 16 bits
Perm: 1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16

Key schedule:
Initial key: 32 bits key K
Round r key: 16 bits of K from positions 1, 5, 9, 13



Comments

We could use different S-boxes at each round

Example not very secure
Key space too small: 232

Could improve:
Larger key size
Larger block length
More rounds
Larger S-boxes



break



Feistel Cryptosystems
A special case of iterated cryptosystems

At each round, string is divided equally into L and R

Round function g takes Li-1Ri-1 and Ki, and returns a new 
string LiRi given by:       
                Li = Ri-1

                Ri = Li-1 ⊕ f (Ri-1, Ki)

To decrypt, use inverse of g:
                Ri-1 = Li

                Li-1 = Ri ⊕ f (Li, Ki)

OBSERVATION: f need not be invertible!



DES
“Data Encryption Standard”

Developed by IBM, from an earlier cryptosystem Lucifer

Adopted as a standard for “unclassified” data: 1977

16 round Feistel cryptosystem: 
encrypts 64 bits vectors



DES Key Schedule

Initial key: 64 bits
Only 56 bits of the key are used
every 8th bit is a parity bit to ensure no error in 
transmission
the 8th bit is set to 0 or 1 to make the number of 1’s in 
the full 8 bits odd.

Key schedule:
56 bits key k produces <k1, ..., k16>, 48 bits each
Round keys obtained by permutation of selection of bits 
from key k

(Details in the handout)



DES Encryption/Decryption

To encrypt plaintext x:
1.  Apply fixed permutation IP to x to get L0R0
2. Do 16 rounds of DES
3. Apply fixed permutation IP-1 to get ciphertext

(Permutation IP motivated by hardware considerations)

To decrypt ciphertext y:
1. Apply fixed permutation IP to y to get L16R16
2. Do 16 “inverse” rounds of DES
3. Apply fixed permutation IP-1 to get plaintext



DES Round
To describe a round of DES, need to give function f

Takes string A of 32 bits and a round key J of 48 
bits

Computing f (A, J) :

1.  Expand A to 48 bits via fixed expansion E(A)
2. Compute E(A) ⊕ J = B0B1...B8 (each Bi is 6 bits)

3. Use 8 fixed S-boxes S1, ..., S8, each {0,1}6 → {0,1}4
 Get Ci = Si (Bi)

4. Set C = C1C2...C8 of length 32 bits
5. Apply fixed permutation P to C



Linear Cryptanalysis
Known-plaintext attack

Aim: find some bits of the key

Basic idea: Try to find a linear approximation to the 
action of a cipher

Can you find a (probabilistic) linear relationship between 
some plaintext bits and some bits of the string produced 
in the last round (before the last substitution)?

If yes, then some bits occur with nonuniform 
probability
By looking at a large enough number of plaintexts, 
can determine the most likely key for the last round



Differential Cryptanalysis
Usually a chosen-plaintext attack

Aim: find some bits of the key

Basic idea: try to find out how differences in the inputs 
affect differences in the output

Many variations; usually, difference = ⊕

For a chosen specific difference in the inputs, can you find 
an expected difference for some bits in the string 
produced before the last substitution is applied?

If yes, then some bits occur with nonuniform probability
By looking at a large enough number of pairs of 
plaintexts (x1, x2) with x1 ⊕ x2 = chosen difference, can 

determine most likely key for last round



Comments on DES

Key space is too small
Can build specialized hardware to do automatic 
search
This is a known-plaintext attack

Differential and linear cryptanalysis are difficult
Need 243 plaintexts for linear cryptanalysis
S-boxes resilient to differential cryptanalysis

Number of rounds is important
8 rounds DES is easy to break



AES

“Advanced Encryption Standard”
Developed in Belgium (as Rijndael)
Adopted in 2001 as a new US standard

Iterated cryptosystem
Block length: 128 bits
3 possible key lengths, with varying number of rounds

128 bits (N=10)
192 bits (N=12)
256 bits (N=14)



High-Level View of AES
To encrypt plaintext x with key schedule <k0, ..., kN>:

1.  Initialize STATE to x and add (⊕) round key k0

2. For first N-1 rounds:
a.  Substitute using S-box
b. Permutation SHIFT-ROWS
c.  Substitution MIX-COLUMNS
d.  Add (⊕) round key ki

3. Substitute using S-Box, SHIFT-ROWS, add kN

4. Ciphertext is resulting STATE

(Next slide describes the terms)



AES Operations
STATE is a 4x4 array of bytes (= 8 bits)

Split 128 bits into 16 bytes
Arrange first 4 bytes into first column, then second, 
then third, then fourth

S-box: apply fixed substitution {0,1}8 → {0,1}8 to each cell

SHIFT-ROWS: shift second row of STATE one cell to the 
left, third row of STATE two cells to the left, and fourth 
row of STATE three cells to the left

MIX-COLUMNS: multiply fixed matrix with each column



AES Key Schedule
For N=10, 128 bits key

16 bytes: k[0], ..., k[15]
Algorithm is word-oriented (word = 4 bytes = 32 bits)
A round key is 128 bits ( = 4 words)
Key schedule produces 44 words ( = 11 round keys)

w[0], w[1], ..., w[43]

w[0] = <k[0], ..., k[3]>
w[1] = <k[4], ..., k[7]>
w[2] = <k[8], ..., k[11]>
w[3] = <k[12], ..., k[15]>
w[i] = w[i-4] ⊕ w[i-1]

Except at i multiples of 4 (more complex; see book)



Modes of Operation
How to use block ciphers when plaintext is more than 
block length

Simplest: ECB (Electronic Codebook Mode):

x1 x2

y2

ek

y1

ek ...



Modes of Operation
CFB (Cipher Feedback Mode):

x1 x2

y2

ek

y1

ek

y0=IV

+ +

...



Modes of Operation
CBC (Cipher Block Chaining):

x1 x2

y2

ek

y1

ek

y0=IV

+ +

...



Modes of Operation
OFB (Output Feedback Mode)

x1 x2

y2

ek

y1

ekz0=IV + +z1 z2 ...


