Classical Cryptography

CS 6750 Lecture 1

September 10, 2009
Riccardo Pucella

Goals of Classical Cryptography

- Alice wants to send message X to Bob
- Oscar is on the wire, listening to all communications
- Alice and Bob share a secret K
- Alice converts X into Y using secret K
- Alice sends Y to Bob
- Bob converts Y back to X using secret K
- Goal: protect message X from Oscar
- Better goal: protect secret K from Oscar

Shift Cipher

- Earliest example of a cryptosystem
- Given a string M of letters
- For simplicity, assume only capital letters of English
- Remove spaces
- Key k: a number between 0 and 25
- To encrypt, replace every letter by the one k places down the alphabet (wrapping around)
- To decrypt, replace every letter by the one k places up the alphabet (wrapping around)
- Example: $k=10$, THISISSTUPID \rightarrow DRSCSCCDEZSN

Definition of Cryptosystem

- A cryptosystem is a tuple (P, C, K, E, D) such that:
1.P is a finite set of possible plaintexts
2.C is a finite set of possible ciphertexts
3.K is a finite set of possible keys (keyspace)
4.For every k, there is an encryption function $e_{k} \in E$ and decryption function $d_{k} \in D$ such that $d_{k}\left(e_{k}(x)\right)=x$ for all plaintexts x.
- Encryption function assumed to be injective
- Encrypting a message:

$$
x=x_{1} x_{2} \ldots x_{n} \rightarrow e_{k}(x)=e_{k}\left(x_{1}\right) e_{k}\left(x_{2}\right) \ldots e_{k}\left(x_{n}\right)
$$

Properties of Cryptosystems

- Encryption and decryption functions can be efficiently computed
- Given a ciphertext, it should be difficult for an opponent to identify the encryption key and the plaintext
- For the last to hold, the key space must be large enough!
- Otherwise, may be able to iterate through all keys

Shift Cipher, Revisited

- $P=Z_{26}=\{0,1,2, \ldots, 25\}$
- Encoding: $A=0, B=1, \ldots, Z=25$
- $C=Z_{26}$
- $K=Z_{26}$
- $e_{k}=$?
- Add k, and wraparound...

Modular Arithmetic

- Congruence
- a, b : integers m : positive integer
- $a \equiv b(\bmod m)$ iff m divides $a-b$
- a congruent to b modulo m
- Examples: $75 \equiv 11(\bmod 8) 75 \equiv 3(\bmod 8)$
- Given m, every integer a is congruent to a unique integer in $\{0, . ., m-1\}$
- Written a (mod m)
- Remainder of a divided by m

Modular Arithmetic

- $Z_{m}=\{0,1, \ldots, m-1\}$
- Define $a+b$ in Z_{m} to be $a+b(\bmod m)$
- Define $a \times b$ in Z_{m} to be $a \times b(\bmod m)$
- Obeys most rules of arithmetic
- + commutative, associative, 0 additive identity
- x commutative, associative, 1 mult. identity
- + distributes over x
- Formally, Z_{m} forms a ring
- For a prime p, Z_{p} is actually a field

Shift Cipher, Formally

- $P=Z_{26}=\{0,1,2, \ldots, 25\}$
(where $A=0, B=1, \ldots, Z=25$)
- $C=Z_{26}$
- $K=Z_{26}$
- $e_{k}(x)=x+k(\bmod 26)$
- $d_{k}(y)=y-k(\bmod 26)$
- Size of the keyspace? Is this enough?

Affine Cipher

- Let's complicate the encryption function a little bit
- $\mathrm{K}=\mathrm{Z}_{26} \times \mathrm{Z}_{26}$ (tentatively)
- $e_{k}(x)=(a x+b) \bmod 26$, where $k=(a, b)$
- How do you decrypt?
- Given a, b, and y, can you find $x \in Z_{26}$ such that

$$
(a x+b) \equiv y(\bmod 26) ?
$$

or equivalently: $\quad a x \equiv y-b(\bmod 26)$?

Affine Cipher

Theorem: $a x \equiv y(\bmod m)$ has a unique solution $x \in Z_{m}$ iff $\operatorname{gcd}(a, m)=1$

- In order to decrypt, need to find a unique solution
- Must choose only keys (a, b) such that $\operatorname{gcd}(a, 26)=1$
- Let a^{-1} be the solution of $a x=1(\bmod m)$
- Then $a^{-1} b$ is the solution of $a x=b(\bmod m)$

Affine Cipher, Formally

- $P=C=Z_{26}$
- $K=\left\{(a, b) \mid a, b \in Z_{26}, \operatorname{gcd}(a, 26)=1\right\}$
- $e_{(a, b)}(x)=a x+b(\bmod 26)$
- $d_{(a, b)}(y)=$?
- What is the size of the keyspace?
- (Number of $a^{\prime} s$ with $\left.\operatorname{gcd}(a, 26)=1\right) \times 26$
- $\varphi(26) \times 26$

Substitution Cipher

- $P=Z_{26}$
- $C=Z_{26}$
- $K=$ all possible permutations of Z_{26}
- A permutation P is a bijection from Z_{26} to Z_{26}
- $e_{k}(x)=k(x)$
- $d_{k}(x)=k^{-1}(x)$
- Example
- Shift cipher, affine cipher
- Size of keyspace?

Cryptanalysis

- Kerckhoff's Principle:
- The opponent knows the cryptosystem being used
- No "security through obscurity"
- Objective of an attacker
- Identify secret key used to encrypt a ciphertext
- Different models of attackers to consider:
- Ciphertext only attack
- Known plaintext attack
- Chosen plaintext attack
- Chosen ciphertext attack

Cryptanalysis of Substitution Cipher

- Statistical cryptanalysis
- Ciphertext only attack
- Again, assume plaintext is English, only letters
- Goal of the attacker: determine the substitution
- Idea: use statistical properties of English text

Statistical Properties of English

- Letter probabilities (Beker and Piper, 1982): po, ..., p25
- A: 0.082, B: 0.015, C: 0.028, ...
- More useful: ordered by probabilities:
- E: 0.120
- T,A,O,I,N,S,H,R: [0.06, 0.09]
- D,L: 0.04
- C,U,M,W,F,G,Y,P,B: [0.015, 0.028]
- V,K,J,X,Q,Z: < 0.01
- Most common digrams: TH,HE,IN,ER,AN,RE,ED,ON,ES,ST...
- Most common trigrams: THE,ING,AND,HER,ERE,ENT,...

Statistical Cryptanalysis

General recipe:

- Identify possible encryptions of E (most common English letter)
- T,A,O,I,N,S,H,R: probably difficult to differentiate
- Identify possible digrams starting/finishing with E (-E and E-)
- Use trigrams
- Find 'THE'
- Identify word boundaries

Polyalphabetic Ciphers

- Previous ciphers were monoalphabetic
- Each alphabetic character mapped to a unique alphabetic character
- This makes statistical analysis easier
- Obvious idea
- Polyalphabetic ciphers
- Encrypt multiple characters at a time

Vigenère Cipher

- Let m be a positive integer (the key length)
- $P=C=K=Z_{26} \times \ldots \times Z_{26}=\left(Z_{26}\right)^{m}$
- For $k=\left(k_{1}, \ldots, k_{m}\right)$:
- $e_{k}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+k_{1}(\bmod 26), \ldots, x_{m}+k_{m}(\bmod m)\right)$
- $d_{k}\left(y_{1}, \ldots, y_{m}\right)=\left(y_{1}-k_{1}(\bmod 26), \ldots, y_{m}-k_{m}(\bmod m)\right)$
- Size of keyspace?

Cryptanalysis of Vigenère Cipher

- Thought to thwart statistical analysis, until mid-1800
- Main idea: first figure out key length (m)
- Two identical segments of plaintext are encrypted to the same ciphertext if they are δ position apart, where $\delta=0(\bmod m)$
- Kasiski Test: find all identical segments of length > 3 and record the distance between them: $\delta_{1}, \delta_{2}, \ldots$
- m divides $\operatorname{gcd}\left(\delta_{1}, \delta_{2, \ldots}\right)$

Index of Coincidence

- We can get further evidence for the value of m as follows
- The index of coincidence of a string $X=x_{1} \ldots x_{n}$ is the probability that two random elements of X are identical
- Written $\mathrm{I}_{\mathrm{c}}(\mathrm{X})$
- Let f_{i} be the \# of occurrences of letter i in $\mathrm{X} ; \mathrm{I}_{\mathrm{c}}(\mathrm{X})=$?
- For an arbitrary string of English text, $I_{c}(X) \approx 0.065$
- If X is a shift ciphertext from English, $I_{c}(X) \approx 0.065$
- For $m=1,2,3, \ldots$ decompose ciphertext into substrings y_{i} of all $m^{\text {th }}$ letters; compute I_{c} of all substrings
- $\mathrm{I}_{\mathrm{c}} \mathrm{s}$ will be ≈ 0.065 for the right m
- $I_{c} s$ will be ≈ 0.038 for wrong m

Then what?

- Once you have a guess for m, how do you get keys?
- Each substring y_{i} :
- Has length $n^{\prime}=n / m$
- Encrypted by a shift k_{i}
- Probability distribution of letters: $f_{0} / n^{\prime}, \ldots, f_{25} / n^{\prime}$
- $f_{0+k i}(\bmod 26) / n^{\prime}, \ldots, f_{25+k i}(\bmod 26) / n^{\prime}$ should be close to p_{0}, \ldots, p_{25}
- Let $M_{g}=\sum_{i=0, \ldots, 25} p_{i}\left(f_{i+g}(\bmod 26) / n^{\prime}\right)$
- If $g=k_{i}$, then $M_{g} \approx 0.065$
- If $g \neq k_{i}$, then M_{g} is usually smaller

Hill Cipher

- A more complex form of polyalphabetic cipher
- Again, let m be a positive integer
- $P=C=\left(Z_{26}\right)^{m}$
- To encrypt: (case $m=2$)
- Take linear combinations of plaintext $\left(x_{1}, x_{2}\right)$
- E.g., $y_{1}=11 x_{1}+3 x_{2}(\bmod 26)$

$$
y_{2}=8 x_{1}+7 x_{2}(\bmod 26)
$$

- Can be written as a matrix multiplication (mod 26)

Hill Cipher, Continued

- $K=\operatorname{Mat}\left(Z_{26}, m\right) \quad$ (tentatively)
- $e_{k}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{m}\right) k$
- $d_{k}\left(y_{1}, \ldots, y_{m}\right)=?$
- Similar problem as for affine ciphers
- Want to be able to reconstruct plaintext
- Solve m linear equations (mod 26)
- I.e., find k^{-1} such that k^{-1} is the identity matrix
- Need a key k to have an inverse matrix k^{-1}

Cryptanalysis of Hill Cipher

- Much harder to break with ciphertext only
- Easy with known plaintext
- Recall: want to find secret matrix k
- Assumptions:
- m is known
- Construct m distinct plaintext-ciphertext pairs
- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{m}, Y_{m}\right)$
- Define matrix Y with rows Y_{1}, \ldots, Y_{m}
- Define matrix X with rows X_{1}, \ldots, X_{m}
- Verify: $Y=X k$
- If X is invertible, then $k=X^{-1} Y$!

