
Object-Oriented Design Lecture 15
CS 3500 Spring 2011 (Pucella) Tuesday, Mar 8, 2011

15 Design Pattern: Streams

We last two lectures ago that subtyping multiple types is useful for code reuse. One special
case of this is when you want your ADT to provide one or more of what we might call
“standardized interfaces”. For instance, most aggregates structures (lists, trees, graphs,
arrays, queues, stacks, etc) provide ways of traversing the structure and getting one’s hands
on all the elements in it, in some order.

15.1 Streams for Aggregate Structures

Let’s look at one such way. We will use streams of values as a way to get at all the elements
of an aggregate structure. Think of a stream as a (possibly infinite) list of values. The
interface to streams is defined by the following parameterized trait:! "
trait Stream[A] {

def hasElement ():Boolean
def head ():A
def tail ():Stream[A]

}# $
As an example, here is how we can have our List[T] ADT implement stream functionality.
We start with the standard List[T] ADT, and add the following operations as specified by
trait Stream:

hasElement : () -> Boolean
head : () -> T
tail : () -> Stream[T]

with specification:

empty().hasElement() = false

singleton(i).hasElement() = true

merge(L,M).hasElement() =

{
true if L.hasElement() = true or M.hasElement() = true

false otherwise

160

singleton(i).head() = i

merge(L,M).head() =

{
L.head() if L.hasElement() = true

M.head() otherwise

singleton(i).tail() = empty()

merge(L,M).tail() =

{
merge(L.tail(),M) if L.hasElement() = true

M.rest() otherwise

Adding this to the List specification, it is easy enough to apply the Interpreter Design
Pattern and get an easy implementation:! "
object List {

def empty[A] ():List[A] = new ListEmpty[A]()

def singleton[B] (i:B):List[B] = new ListSingleton[B](i)

def merge[C] (L:List[C], M:List[C]):List[C] = new ListMerge[C](L,M)

private class ListEmpty[T] () extends List[T] {

def isEmpty ():Boolean = true
def first ():T = throw new RuntimeException("empty().first()")
def rest ():List[T] = throw new RuntimeException("empty().rest()")

def length ():Int = 0

def hasElement ():Boolean = false
def head ():T = throw new RuntimeException("empty().head()")
def tail ():Stream[T] = throw new RuntimeException("empty().tail()")

override def hashCode ():Int = 41

override def toString ():String = ""
}

private class ListSingleton[U] (i:U) extends List[U] {

161

def isEmpty ():Boolean = false
def first ():U = i
def rest ():List[U] = List.empty()

def hasElement ():Boolean = true
def head ():U = i
def tail ():Stream[U] = List.empty[U]() // uses an upcast!

def length ():Int = 1

override def hashCode ():Int = 41 + i.hashCode()

override def toString ():String = " " + i.toString()
}

private class ListMerge[V] (L:List[V], M:List[V]) extends List[V] {

def isEmpty ():Boolean =
(L.isEmpty() && M.isEmpty())

def first ():V =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List[V] =
if (L.isEmpty())
M.rest()

else
List.merge(L.rest(),M)

def length ():Int = L.length() + M.length()

// uses the intuition that a list is already a finite stream of
// values

def hasElement ():Boolean = !(this.isEmpty())
def head ():V = this.first()
def tail ():Stream[V] = this.rest() // again, uses an upcast

override def hashCode ():Int =

162

41 * (
41 + L.hashCode()

) + M.hashCode()

override def toString ():String = L.toString() + M.toString()
}

}

abstract class List[T] extends Stream[T] {

def isEmpty ():Boolean
def first ():T
def rest ():List[T]
def length ():Int

// stream operations
def hasElement ():Boolean
def head ():T
def tail ():Stream[T]

}# $
Note that when we are subtyping a single trait, then we use extends instead of with.

Let’s illustrate this with several functions that work on streams, such as printAll() that
prints the elements from a stream, and sumAll that sums up the elements of a stream of
integers.

def printAll[A] (st:Stream[A]):Unit =
if (st.hasElement()) {
println(" " + st.head());
printAll(st.tail())

} else
()

def sumAll (st:Stream[Int]):Int =
if (st.hasElement())
st.head() + sumAll(st.tail())

else
0

We will see that we will be able to reuse all of those functions for all our aggregate structures
that implement the Stream trait.

val L1:List = List.merge(List.singleton(33),

163

List.merge(List.singleton(66),
List.merge(List.singleton(99),List.empty())))

println("Printing L1 = ")
printAll[Int](L1)
println("Sum L1 = " + sumAll(L1))

which yields an output:

Printing L1 =
33
66
99

Sum L1 = 198

Of course, the stream functions also work with stream of different types, since they are
parameterized by the type of stream taken as input:

val L2:List[String] = List.merge(List.singleton("hello"),
List.merge(List.singleton("world"),List.empty()))

println("L2 = " + L2)
println("Elements L2 = ")
printAll[String](L2)

with output:

L2 = hello world
Elements L2 =
hello
world

Recall binary trees from last lecture. Streams from binary trees are somewhat less trivial
than for lists — for instance, in what order are you going to stream the content of the tree?

We saw the description of ADT last time, so we simply extend it with the stream operations.
I will not describe the specification of the stream operations, but will simply say that they
should deliver all the elements of the tree, in some order. (It’s that last bit, the “in some
order” one, that is a pain to specify.)

Here is the code obtained from the Interpreter Design Pattern, with the stream operations
added in as well:! "
object BinTree {

def empty[T] ():BinTree[T] = new Empty[T]()

164

def node[T] (n:T, l:BinTree[T], r:BinTree[T]):BinTree[T] =
new Node[T](n,l,r)

private class Empty[T] extends BinTree[T] {

def isEmpty ():Boolean = true
def root ():T =
throw new RuntimeException("BinTree.empty().root()")

def left ():BinTree[T] =
throw new RuntimeException("BinTree.empty().left()")

def right ():BinTree[T] =
throw new RuntimeException("BinTree.empty().right()")

def size ():Int = 0

// canonical methods?
override def toString ():String = "-"

// stream methods
def hasElement ():Boolean = false

def head ():T =
throw new RuntimeException("BinTree.empty().head()")

def tail ():Stream[T] =
throw new RuntimeException("BinTree.empty().tail()")

}

private class Node[T] (n:T, l:BinTree[T], r:BinTree[T])
extends BinTree[T] {

def isEmpty ():Boolean = false
def root ():T = n
def left ():BinTree[T] = l
def right ():BinTree[T] = r
def size ():Int = 1 + l.size() + r.size()

// canonical methods?
override def toString ():String = n + "[" + l + "," + r + "]"

// stream methods
def hasElement ():Boolean = true

165

def head ():T = n

def tail ():Stream[T] = new Sequence[T](l,r)
}

private class Sequence[T] (fst:Stream[T],snd:Stream[T]) extends Stream[
T] {

// stream methods
def hasElement ():Boolean = {
fst.hasElement() || snd.hasElement()

}

def head ():T =
if (fst.hasElement())
fst.head()

else
snd.head()

def tail ():Stream[T] =
if (fst.hasElement())
new Sequence[T](fst.tail(),snd)

else
snd.tail()

}
}

abstract class BinTree[T] extends Stream[T] {

def isEmpty ():Boolean
def root ():T
def left ():BinTree[T]
def right ():BinTree[T]
def size ():Int

def hasElement ():Boolean
def head ():T
def tail ():Stream[T]

}# $

166

Consider the implementation of the stream operations. The stream operations for empty()
are straightforward, but for node(), not so much. The head() of the stream clearly should
be the root of the tree, but what about the tail()? We want to return a stream that will
deliver all the elements of the tree without its root. One way to do that is to have tail()
return a new tree surgically altered so that it doesn’t have its root anymore. You could come
up with a way to do that, but it’s messy. An alternative, which is what I used here, is to
realize that since tail() only needs to return a Stream[T], there is no reason why it should
return a binary tree. It can return anything that is a subtype of Stream[T], and as long as
that anything can deliver the rest of the elements stored in the tree (without the root), it’s
good enough for us. And the best way to think of what that should be is to realize that to
deliver all the elemet from the left subtree and from the right subtree, we could simply first
deliver all the elements from the left subtree as a stream, and then the element of the right
substree as a stream. So we would like a gadget that lets us take two streams and creates
a new stream that sequences those two streams one after the other, that is delivers all the
elements of the first stream followed by all the elements of the second stream. That’s the
purpose of the Sequence helper class, which implements such a gadget.

Here is an example:

val T = BinTree // convenient abbreviation for BinTree module

val T1:BinTree[Int] = T.node(33,
T.node(66,

T.node(99,T.empty(),T.empty()),
T.empty()),

T.node(11,
T.node(22,T.empty(),T.empty()),
T.node(44,T.empty(),T.empty())))

println("T1 = " + T1)
println("Elements T1 = ")
printAll(T1)
println("Sum T1 = " + sumAll(T1))

which yields:

T1 = 33[66[99[-,-],-],11[22[-,-],44[-,-]]]
Elements T1 =
33
66
99
11
22
44

Sum T1 = 275

167

15.2 Stream Programming

Let me take a bit of a detour here and look at a few more examples of the kind of thing you
can do with streams (and polymorphism).

The idea that I want to propose is to consider that a stream is a way to produce elements (the
exact kind of elements produced depending of course on the type of the stream). Putting it
another way, a stream is a standardized interface to something that can produce elements.
Having a standardized interface means that as soon as you have a gadget that can connect to
that standardized interface, you can connect it to anything that implement that standardized
interface. If that gadget itself produces elements according to that standardized interface,
you have the beginning of a system that lets you connect gadgets together in a standardized
way. In the case of streams, they produce elements. You can imagine connecting gadgets to
those strams that modify the elements produced before passing them on, or combining the
elements from two streams into a single element. Those gadgets for all intents and purpose
can be made to look like streams to the outside world.

Recall that for us streams are subtypes of the following trait:! "
trait Stream[A] {
def hasElement ():Boolean
def head ():A
def tail ():Stream[A]

}# $
Recall also the following functions that work on streams, introduced last time:

def printAll[T] (st:Stream[T]):Unit =
if (st.hasElement()) {
println(" " + st.head());
printAll(st.tail())

}

def sumAll (st:Stream[Int]):T =
if (st.hasElement())
st.head().add(sumAll(st.tail()))

else
0

Functions printAll() and sumAll() print all the elements of a stream and sum all the
elements of a stream (of integers), respectively. For reasons that will soon become clear, we
introduce another function:

def printN[T] (st:Stream[T], n:Int):Unit =

168

if (st.hasElement())
if (n > 0) {
println(" " + st.head())
printN(st.tail(),n-1)

}
else
println(" ...")

Function printN() prints the first n elements of a stream, for a provided n. This is important
because as far as the definition of streams is concerned, there is nothing that prevents a
stream from producing an infinite sequence of values. This may seem counterintuitive at
first, because right now the only streams we have seen are those giving all the elements
stored in an aggregate structure, and all our aggregate structures have only held finitely
many elements. But as we will see below, there are perfectly natural streams that are
infinite in nature, and more importantly, it makes sense to work with them. As long as we
don’t try to print or work with all the elements of such a stream. Thus, we have a printN()
function to only look at a finite prefix of a stream.

Above, we extended List and BinTree as subtyped of Stream, meaning that we could use
stream operations on such types.

Let’s start by defining some streams independently of any underlying aggregate structure.
The simplest kind of stream is an empty stream:! "

def empty[T] ():Stream[T] =
new Empty[T]

class Empty[T] extends Stream[T] {

def hasElement ():Boolean = false

def head ():T = throw new RuntimeException("empty().head()")
def tail ():Stream[T] = throw new RuntimeException("empty().tail()")

}# $
Equally simple is the (infinite) constant stream that delivers a single value whenever asked
for an element.! "

def constant[T] (v:T):Stream[T] =
new Constant[T](v)

class Constant[T] (v:T) extends Stream[T] {

def hasElement ():Boolean = true

169

def head ():T = v

def tail ():Stream[T] = this
}# $

That stream is not doing anything especially interesting by itself:

println("Constant(99) = ")
printN(constant(99),20)

outputs:

Constant(99) =
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
...

Note the ... at the end indicating that the stream is not empty when we stopped printing.

One step higher on the complexity scale is a stream that counts upwards from a given integer:! "
def intsFrom (v:Int):Stream[Int] =
new IntsFrom(v)

class IntsFrom (v:Int) extends Stream[Int] {

170

def hasElement ():Boolean = true

def head ():Int = v
def tail ():Stream[Int] = new IntsFrom(v+1)

}# $
The interesting to note here is that tail() produce a new instance of intsFrom() that
naturally enough, starts counting one higher.

println("intsFrom(10) = ")
printN(intsFrom(10),20)

produces output

intsFrom(10) =
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
...

The only thing we’ve done until now has been to produce streams. Let’s start worrying about
transforming streams. The following gadget connects to a incoming stream and produces
one out of every two element of that incoming stream, dropping all other elements on the
floor.! "

def oneOutOfTwo[T] (st:Stream[T]):Stream[T] =

171

new OneOutOfTwo[T](st)

class OneOutOfTwo[T] (st:Stream[T]) extends Stream[T] {

def hasElement ():Boolean = st.hasElement()

def head ():T = st.head()

def tail ():Stream[T] =
if (st.tail().hasElement())
new OneOutOfTwo(st.tail().tail())

else
empty()

}# $
Note that tail() method is set up so that it always returns a new instance of the gadget
that is ready to deliver the next element from the incoming stream to be delivered. If there
are no more elements to be delivered, then it returns an empty stream. We can now produce
the stream of odd numbers and the stream of even numbers by skipping one out of two
elements from the appropriate stream of integers:

println("Odds = ")
printN(oneOutOfTwo(intsFrom(1)),20)
println("Evens = ")
printN(oneOutOfTwo(intsFrom(2)),20)

which produces:

Odds =
1
3
5
7
9
11
13
15
17
19
21
23
25

172

27
29
31
33
35
37
39
...

Evens =
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
...

Let’s look at a slightly more complex gadget. Suppose we have two streams. We can imagine
a gadget that connects those two streams in sequence: it first delivers all the elements from
the first streams, and when the elements of that stream are exhausted, it delivers the elements
of the second stream.! "

def sequence[T] (st1:Stream[T], st2:Stream[T]):Stream[T] =
new Sequence[T](st1,st2)

class Sequence[T] (st1:Stream[T], st2:Stream[T]) extends Stream[T] {

def hasElement ():Boolean = {
st1.hasElement() || st2.hasElement()

173

}

def head ():T =
if (st1.hasElement())
st1.head()

else
st2.head()

def tail ():Stream[T] =
if (st1.hasElement())
new Sequence[T](st1.tail(),st2)

else
st2.tail()

}# $
When we create a sequence(), we give it two streams (that produce the same type of
elements). The Sequence class records the current first stream and the current second
stream. When we ask for an element, it returns an element from the first stream if one is
available, otherwise, from the second. When taking the tail of the produced stream, it tries
to take the tail of the first stream. If the first stream is exhausted, then it takes the tail of
the second stream. Think about it some, read the code, meditate on it. Try drawing pictures
to understand what is happening. This is a common pattern when working with streams.

println("Sequence(T1,L3) = ")
printAll(sequence(T1,L3))

produces output:

Sequence(T1,L3) =
33
66
99
11
22
44
33
66
99

Let’s complicate things even further. Right now, all our gadgets have returned elements of
the same type as the elements of the streams they are connected to. Let’s write a gadget
that returns something different. In particular, let’s write a gadget that connects to two

174

streams and that returns pairs of elements, one taken from each stream. We need to figure
out what happens when one of the streams the gadget is connected to exhausts before the
other does. For simplicity, we make the gadget exhaust itself when one of the streams it is
connected to has no more elements.! "

def zip[T,U] (st1:Stream[T],st2:Stream[U]):Stream[Pair[T,U]] =
new Zip[T,U](st1,st2)

class Zip[T,U] (st1:Stream[T],st2:Stream[U]) extends Stream[Pair[T,U]]
{

def hasElement ():Boolean = {
st1.hasElement() && st2.hasElement()

}

def head ():Pair[T,U] = Pair.create(st1.head(),st2.head())

def tail ():Stream[Pair[T,U]] = new Zip[T,U](st1.tail(),st2.tail())
}# $

This code uses the following Pair[T,U] ADT for representing pairs of values of different
types:

CREATORS
create : (T,U) -> Pair[T,U]

OPERATIONS
first : () -> T
second : () -> U

with the obvious specification. Here is the resulting implementation, using the Interpreter
Design Pattern:! "
object Pair {

def create[T,U] (f:T,s:U):Pair[T,U] =
new PairImpl[T,U](f,s)

private class PairImpl[T,U] (f:T,s:U) extends Pair[T,U] {

def first ():T = f
def second ():U = s

// canonical methods?

175

override def toString ():String =
"(" + f.toString() + "," + s.toString() + ")"

}
}

abstract class Pair[T,U] {

def first ():T
def second ():U

}# $
We create a zip() gadget by passing in two streams to connect to. When calling head(), we
read the head of both streams we’re connected to, and create a pair that we return. When
calling tail(), we simply take the tail of the underlying streams, creating a new Zip gadget
connected to the newly created streams. There’s actually less bookkeeping in Zip than in
Sequence.

println("Zip(Constant(99),IntsFrom(3)) = ")
printN(zip(constant(99),intsFrom(3)),20)
println("Zip(Constant(99),T1) = ")
printN(zip(constant(99),T1),20)

procudes output:

Zip(Constant(99),IntsFrom(3)) =
(99,3)
(99,4)
(99,5)
(99,6)
(99,7)
(99,8)
(99,9)
(99,10)
(99,11)
(99,12)
(99,13)
(99,14)
(99,15)
(99,16)
(99,17)
(99,18)

176

(99,19)
(99,20)
(99,21)
(99,22)
...

Zip(Constant(99),T1) =
(99,33)
(99,66)
(99,99)
(99,11)
(99,22)
(99,44)

The above gadgets are all fairly straightforward, in the sense that they do not require tricks
of any kinds, or any fields beyond the obvious ones, or any feature we have not seen yet.
The following few examples require a bit more cleverness.

First, let’s write a variant of the zip() gadget that connects to two streams and returns
pairs of elements from those two streams. Instead of pairing the first elements together, then
the second elements together, then the third elements together and so, however, we want
to produce pairs of all the possible combinations of an element from the first stream and
an element of the second stream. Call it a cartesian() gadget (inspired by the cartesian
product of two sets in set theory).! "

def cartesian[T,U] (st1:Stream[T],st2:Stream[U]):Stream[Pair[T,U]] =
zip(new Duplicates[T](st1,1,1),new Prefixes[U](st2,st2,1,1))

class Duplicates[T] (st:Stream[T],init:Int,curr:Int)
extends Stream[T] {

def hasElement ():Boolean = st.hasElement()

def head ():T = st.head()

def tail ():Stream[T] =
if (curr > 1)
new Duplicates(st,init,curr-1)

else
new Duplicates(st.tail(),init+1,init+1)

}

class Prefixes[T] (st:Stream[T], ost:Stream[T],
init:Int, curr:Int) extends Stream[T] {

177

def hasElement ():Boolean = st.hasElement()

def head ():T = st.head ()

def tail ():Stream[T] =
if (curr > 1)
new Prefixes(st.tail(),ost,init,curr-1)

else
new Prefixes(ost,ost,init+1,init+1)

}# $
The trick here is to figure how to code the gadget in such a way that we are not stuck trying
to pair everything in the second stream with the first element of the first stream, because
then if the second stream is infinite then we never get to the point where we can pair the
second element of the first stream with anything in the second stream, let along the third
element of the first stream, or the fourth. Study the above code. Intuitively, Duplicates
produces, from the stream a b c d e ..., the stream a b b c c c d d d d e e e e e
..., while Prefixes produces, from the stream a b c d e, the stream a a b a b c a b
c d a b c d e. The final result works, though:

println("Cartesian(T1,IntsFrom(1)) = ")
printN(cartesian(T1,intsFrom(1)),20)

produces output:

Cartesian(T1,IntsFrom(1)) =
(33,1)
(66,1)
(66,2)
(99,1)
(99,2)
(99,3)
(11,1)
(11,2)
(11,3)
(11,4)
(22,1)
(22,2)
(22,3)
(22,4)
(22,5)

178

(44,1)
(44,2)
(44,3)
(44,4)
(44,5)
...

The next two gadgets operate on a stream by modifying it using a function, the way you’ve
seen functions acting on lists in Fundies 1. The first gadget, map() takes a stream and a
function that can transform the elements of that stream, and produces a new stream where
each element from the connected stream has been transformed by the function.! "

def map[T,U] (st:Stream[T],f:(T)=>U):Stream[U] =
new Map[T,U](st,f)

class Map[T,U] (st:Stream[T], f:(T)=>U) extends Stream[U] {

def hasElement ():Boolean = st.hasElement()

def head ():U = f(st.head())

def tail ():Stream[U] = new Map(st.tail(),f)
}# $

The code is simple, once one knows how to specify that an argument to a function is itself
a function. In Scala, the type of “function taking an A to a B” is written (A)=>B; the type
of “function taking an A and a B to a C” is written (A,B)=>C, and so on. Thus, the type
of map() says it expects a stream of Ts and a function (T)=>U transforming Ts to Us, and
constructs a stream of Us. To call map(), we need to give it a function of the right type, like
this:

def sq (x:Int):Int = x*x
println("Squares(IntsFrom(1)) = ")
val squares:Stream[Int] = map(intsFrom(1),sq)
printN(squares,20)

which produces output:

Squares(IntsFrom1) =
1
4
9
16

179

25
36
49
64
81
100
121
144
169
196
225
256
289
324
361
400
...

A related gadget is one that takes a predicate (that is, a function that returns a Boolean)
and filters a stream, keeping only the elements for which the predicate returns true.! "

def filter[T] (st:Stream[T],p:(T)=>Boolean):Stream[T] =
new Filter[T](st,p)

class Filter[T] (st:Stream[T], p:(T)=>Boolean) extends Stream[T] {

private def findNext (s:Stream[T]):Stream[T] =
if (s.hasElement()) {
if (p(s.head()))
s

else
findNext(s.tail())

} else
s

def hasElement ():Boolean = findNext(st).hasElement()

def head ():T = findNext(st).head()

def tail ():Stream[T] = new Filter(findNext(st).tail(),p)
}# $

Note that here, the next element to return is not the first element of the connected stream

180

(i.e., we do not try to maintain the invariant that the next element on the connected stream
satisfies the predicate). Trying to do that leads to problems when the connected stream
runs out of elements satisfying the predicate. Note that in the above implementation, if the
connected stream has no more elements satisfying the predicate, and we ask the filter()
gadget for the next element on the stream satisfying the predicate, the code will enter an
infinite loop. This is unavoidable.

def digitTest (x:Int):Boolean = (x % 10 <= 5)
println("Squares with last digit <= 5) = ")
printN(filter(squares, digitTest, 20)

We now have enough ingredients to compute the stream of all prime numbers, using (a variant
of) the Sieve of Eratosthenes. The sieve computes the list of prime numbers by essentially
starting with all integers from 2 on, and then keeping 2 and removing all multiples of 2, then
moving to the next unremoved integer (3), keeping it and removing all multiples of 3, moving
to the next unremoved integer (5), keeping it and removing all multiples of 5, and so on.
You can convince yourself that what you are left with is the stream of all prime numbers.! "

def sieve (st:Stream[Int]):Stream[Int] =
new Sieve(st)

class Sieve (st:Stream[Int]) extends Stream[Int] {

def hasElement ():Boolean = st.hasElement()

def head ():Int = st.head()

def tail ():Stream[Int] = {
def notDivisibleBy (x:Int):Boolean = !(x % st.head() == 0)
val multRemoved:Stream[Int] = filter(st.tail(),notDivisibleBy)
new Sieve(multRemoved)

}
}# $

We can now compute the stream of prime numbers by taking

val primes:Stream[Int] = sieve(intsFrom(2))

and indeed:

println("Primes = ")
printN(primes,12)

producing output:

181

Primes =
2
3
5
7
11
13
17
19
23
29
31
37
...

Note, however, that this is far from being an efficient way for computing prime numbers, as
you can tell immediately by trying to print the first 100 elements of primes.

182

