
Object-Oriented Design Lecture 9
CS 3500 Spring 2011 (Pucella) Tuesday, Feb 8, 2011

9 Static Versus Dynamic Types

Subtpying is a great way to enable client-side reuse, requiring a client to write a single
function that can work with argument of several types, namely all the subtypes of the type
that has been declared. But subtyping brings a whole range of issues to the fore. Not
the least of which the need to distinguish between static types (or compile-time types) and
dynamic types (or run-time types).

Types are associated with identifiers in your program — such identifiers include field decla-
rations such as x in val x : T= ... and parameter names in methods, such as y in def m
(y:T):U = The type of those identifiers describe the kind of values they can be bound
to. (Once you have the static type of the identifiers of your program, you can determine
what is the static type of every expression in your program. For instance if m is a method
in some class T declared as

def m (x:Int):Int = ...

then an expression such as exp.m(10) has static type Int if exp has static type T , since m
is a method declared to return a value of type Int if given a value of type Int.)

The static type of an identifier is the type that the identifier is declared to have in the source
code. For instance, if we declare val x:Point = ..., then identifier x has static type Point.

In contrast, the dynamic type of an identifier only makes sense when the program is execut-
ing and that identifier has actually been bound to a value, and is the actual type of the value
that the identifier is bound to. (Note that an identifier may be bound to different values
at different points in a program execution — for instance, the parameter to a method will
be bound to different values when the method is called with different arguments at different
points in the program execution.) The best way to think about it is to use the following
execution model for Scala: during program execution, doing a new C(...) creates a struc-
ture (just like a struct in Scheme) whose fields are the field of class C along with an extra
field holding the name of the class C, which is of course the actual type of the newly-created
structure. When that structure is bound to an identifier, the dynamic type of that identifier
is the type in the structure. (Just like for static types, every expression in a program, during
execution, has a dynamic type, which is the type of the value that the expression evaluates
to during execution.)

To show the difference between static types and dynamic types, recall the rotateAroundPoint()
method for points, declared to have signature

108

def rotateAroundPoint (p:Point, a:angle, c:Point):Point

The static type of both p and q is Point. The static return type of the method is also Point.

In contrast, the dynamic type of p and q only make sense when the method is called at
execution. For instance, writing

val p1:Point = Point.cartesian(0,1)
val cq1:CPoint = CPoint.cartesian(10,20,Color.red())
val result:Point = rotatePointAround(p1,math.Pi/2,cq1)

has the following effect: p1 is bound to an actual point (intuitively a structure with fields
containing coordinates 0 and 1), cq1 is bound to an actual color pointed (intuitively a
structure with fields containing coordinates 10 and 20 and a color field containing red),
and the call to rotateAroundPoint() ensure that in the body of rotateAroundPoint()
parameter p is bound to the actual point (0, 1) — and thus the dynamic type of p is a Point
— while parameter q is bound to the actual color point (10, 20, red) — and thus the dynamic
type of q is a CPoint. Here, the static and dynamic types of p in rotateAroundPoint()
agree, but the static and dynamic types of q in rotateAroundPoint() differ.

The static type is what’s used by Scala to do type checking. That makes sense, because type
checking occurs before the program is run, and because the dynamic type of an identifier
depends on the execution of the program, we do not know the dynamic type of identifiers
before program execution. Thus, the only thing that the type checker can work with is the
static type of identifiers. What the type checker does, then is whenever the code says that
there is a method call such as p.foo(), it checks the static type of p, and asks whether the
static type of p has a method foo(); if yes, checking continues, if not, a type-checking error
is reported saying that foo() is undefined in the static type of p.

(There is another restriction on the type checker, which is more pragmatic: you want it to
be fast. People don’t like when type checking or compiling in general takes too long. So to
make sure that type checking can be done quickly, when type checking a method call, the
type checker only uses the signature of the method — that is, its declared parameter types,
and its declared return type. It does not actually look inside the method to see the kind of
calls that are being made. It relies on the fact that it has type checked that method already
to make sure it is guaranteed to be safe. This is going to be important later.)

We could imagine that the dynamic type of identifiers could be “guessed” or somewhat
derived by the type checker, but there are deep reasons why that cannot be done. To give
you an idea of the difficulties involved, consider that the actual type of values may and in
fact often will depend on some a priori unpredictable value. For instance, suppose that x is
an integer derived from something the user input to the program, then the following code

if (x>0)
Point.cartesian(1.0,2.0)

109

else
CPoint.cartesian(10.0,20.0,Color.blue())

creates either an actual Point or an actual CPoint depending on the value of x — whether
the result has dynamic type Point or CPoint therefore depends on user input, which is
definitely unknown before the program executes.

So the type checker uses the static types to do its job. Why do we even care about dynamic
types? Because that’s what gives OO languages much of their expressive power.

9.1 Dynamic Dispatch

Consider the following function

def printPoint (p:Point):Unit =
println(p.toString())

Clearly, because printPoint() expects a Point, we should be able to give it a CPoint, since
CPoint is a subtype of Point — we will see below exactly how we can reason about those
kind of situations formally, but for now, let’s rely on our intuition.

So the following two calls should be acceptable:

printPoint(Point.cartesian(1.0,2.0))
printPoint(CPoint.cartesian(10.0,20.0,Color.red())

What gets printed? When you call

printPoint(Point.cartesian(1.0,2.0)),

this eventually invokes method toString() — which toString() method is invoked? The
one defined for the actual instance that is passed to printPoint() — the toString()
method in Point. So this prints cart(1.0,2.0). By way of contrast, when you call

printPoint(CPoint.cartesian(10.0,20.0,Color.red())),

this eventually invokes the toString() method defined for the actual instance that is passed
to printPoint() — the toString() method in CPoint. So this prints cart(10.0,20.0,red).

In Scala (and in Java, and in several modern object-oriented languages), when you invoke a
method on an instance, then the method that gets called is the method defined in the actual
type of the instance. So if you write p.toString(), the method toString() that is called
is the one defined in the dynamic type of p, since the dynamic type is the one corresponding
to the actual type of the value carried by p. This is called dynamic dispatch — the method

110

called (or dispatched) is the one in the dynamic type of the value on which you invoke the
method.

(In some other languages, the method called is the one defined in the static type of the value
on which the method is invoked. That’s the default behavior in C++, for instance. That’s
called, naturally enough, static dispatch.)

Dynamic dispatch is pretty powerful, because it makes it easy to adjust the behavior of
objects by simply giving different definitions for a given method. It is one of the hallmarks
of object-oriented programming, and one of the reason it took off when it did. But it’s also
a software-engineering nightmare. Why?

Consider the definition printPoint() above. Someone looking at the code might think that
the call to toString() is to the method defined in Point, but we know that’s not true. The
methods invoked depend on the dynamic type of the value passed to printPoint(), which
can be of any subtype of Point. But that means that someone can define a subtype of Point
that happens to do anything in its toString(), and the function printPoint() will happily
call that method. Unless one knows exactly what the possible subtypes of Point exist and
what their methods are doing, it is essentially impossible to predict just what printPoint()
does. This gets worse when developing a library and offer something like printPoint(),
because then you cannot guarantee anything to users about what the function can do.16

So what do we have? The type checker uses static types to do its check, while the execution
engine uses dynamic types to determine exactly what method to call during executon. Recall
that the purpose of the type system is to ensure safety, namely, that there is never an attempt
during execution to invoke a method that does not exist. Whether there is an attempt to
invoke a method that does not exist depends on the dynamic type (since that’s what the
execution engine uses to find the method to execute), but the type checker only has access
to the static types. It turns out that in order for the type checker to never accept a program
that is not safe, it suffices for the type checker to guarantee the following invariant: that
during execution, the dynamic type of an identifier is always a subtype of its static type.
(Why is this enough?) This forces the type checker to reject some programs when it cannot
guarantee that this invariant will hold.

And understanding subtyping is in part understanding why the type checker rejects some
programs but not others. We will see that next time.

16One way around this is to restrict the extent to which Point can be subtyped. Languages have ways to
do that.

111

