
Object-Oriented Design Lecture 8
CS 3500 Spring 2011 (Pucella) Friday, Feb 4, 2011

8 Hiding Implementation Details

Last time we saw the Interpreter Design Pattern as a rather mechanical way to get an
implementation that almost out-of-the-box implements a specification for an ADT, using
a natural representation via concrete subclasses capturing what each of the creators of the
ADT is doing.

That design pattern however reveals a lot of implementation details. The problem with reveal
implementation details is that (1) it is information that is not part of the ADT signature,
so it shouldn’t be available, and (2) if it’s there, someone will use it, and if someone uses it,
that someone will be in trouble if later on you come back and reimplement the ADT using
another implementatin that still satisfies the specification but does not reveal quite the same
information as your original implementation.

Let’s illustrate this with another example, which will come in handy later.

8.1 Another Example: Lists of Integers

Here is an ADT for lists of integers, using different creators than the usual empty/cons
creators that you know and love.

CREATORS
empty : () -> List
singleton: Int -> List
merge : (List,List) -> List

OPERATIONS
isEmpty : () -> Boolean
first : () -> Int
rest : () -> List
length: () -> Int
find : Int -> Boolean
isEqual : List -> Boolean

and the obvious specification:

empty().isEmpty() = true

87

singleton(i).isEmpty() = false

merge(L,M).isEmpty() =

{
true if L.isEmpty() = true and M.isEmpty() = true

false otherwise

singleton(i).first() = i

merge(L,M).first() =

{
M.first() if L.isEmpty() = true

L.first() otherwise

singleton(i).rest() = empty()

merge(L,M).rest() =

{
M.rest() if L.isEmpty() = true

merge(L.rest(),M) otherwise

empty().length() = 0

singleton(i).length() = 1

merge(L,M).length() = L.length() + M.length()

empty().find(f) = false

singleton(i).find(f) =

{
true if i = f

false otherwise

merge(L,M).find(f) =

true if L.find(f) = true

true if M.find(f) = true

false otherwise

empty().isEqual(N) =

{
true if N.isEmpty() = true

false otherwise

singleton(i).isEqual(N) =

true if N.isEmpty() = false

and N.first() = i

and N.rest().isEmpty() = true

false otherwise

merge(L,M).isEqual(N) =

true if N.isEmpty() = true

and merge(L,M).isEmpty() = true

true if N.isEmpty() = false

and N.first() = merge(L,M).first()

and N.rest().isEqual(merge(L,M).first()) = true

false otherwise

88

Applying the Interpreter Design Pattern, and providing a reasonable implementation for the
canonical methods, we get something like:! "
/*
* The default result of the InterpreterDesign Pattern
*
*/

object List {

def empty ():List = new ListEmpty()
def singleton (i:Int):List = new ListSingleton(i)
def merge (L:List, M:List):List = new ListMerge(L,M)

}

class ListEmpty () extends List {

def isEmpty ():Boolean = true

def first ():Int = throw new RuntimeException("empty().first()")

def rest ():List = throw new RuntimeException("empty().rest()")

def isEqual (L:List):Boolean = L.isEmpty()

def length ():Int = 0

def find (f:Int):Boolean = false

override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}

override def hashCode () : Int = 41

override def toString ():String = ""
}

89

class ListSingleton (i:Int) extends List {

def isEmpty ():Boolean = false

def first ():Int = i

def rest ():List = List.empty()

def isEqual (L:List):Boolean =
(!L.isEmpty() && L.first()==i && L.rest().isEmpty())

def length ():Int = 1

def find (f:Int):Boolean = (i==f)

override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}

override def hashCode () : Int = 41 + i.hashCode()

override def toString ():String = " " + i.toString()
}

class ListMerge (L:List, M:List) extends List {

def isEmpty ():Boolean = (L.isEmpty() && M.isEmpty())

def first ():Int =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List =
if (L.isEmpty())
M.rest()

else

90

List.merge(L.rest(),M)

def isEqual (N:List):Boolean =
((L.isEmpty() && M.isEmpty() && N.isEmpty()) ||
(!N.isEmpty() && !this.isEmpty() &&
N.first()==this.first() &&
N.rest().isEqual(this.rest())))

def length ():Int = L.length() + M.length()

def find (f:Int):Boolean = (L.find(f) || M.find(f))

override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}

override def hashCode () : Int =
41 * (
41 + L.hashCode()

) + M.hashCode()

override def toString ():String = L.toString() + M.toString()
}

abstract class List {
// declarations (so, no code)

def isEmpty ():Boolean
def first ():Int
def rest ():List
def isEqual (L:List):Boolean
def length ():Int
def find (f:Int):Boolean

}# $

91

Note the structure: a module List, an abstract class List that declares but does not define
the operations of the ADT,12 and two concrete classes that are subtypes of the list List and
that actually define the operations declared in the abstract class (as well as the canonical
methods).

Here’s a simple interactive session illustrating the code above:

scala> val l = List.merge(List.singleton(66),List.singleton(99))
l: List = 66 99

scala> l.first()
res0: Int = 66

scala> l.rest()
res1: List = 99

scala> l.rest().first()
res2: Int = 99

scala> l.length()
res3: Int = 2

Now, the way I chose to print lists (in the toString() canonical method is ugly. Let’s do
something better that uses brackets at the beginning and the end of the list. That’s easy to
do if we have a helper method, which I’ll call toStringLst(), and change toString() to
use that helper method – in ListEmpty:

def toStringLst () : String = ""

override def toString () : String = "[]"

in ListSingleton:

def toStringLst () : String = " " + n

override def toString () : String = "[" + toStringLst() + "]"

and in ListMerge:

12A declaration is a promise that you will implement the method when you subclass the abstract class.
In other words, it’s a promise that any subtype of the abstract will supply an implementation for those
methods. You do not need to declare the canonical methods, because their canonical: they’re always
declarted by default in every class, abstract or otherwise. A definition is a declaration that also supplies
some code defining the method.

92

def toStringLst () : String = L.toStringLst() + M.toStringLst()

override def toString () : String = "[" + toStringLst() + "]"

Of course, if we make this change, then the code does not type-check anymore. Why?
Look at the code. In the toString() implementation of ListMerge, we have a call to
L.toStringLst(), where L is a List. When the type checker looks at List to see if a
toStringLst() method is declared there, there isn’t one. So it gives an error.13 Thus, in
order to satisfy the type checker, we need to make sure that every subtype of List defines
toStringLst(), which is done by declaring toStringLst() in List. Here is the resulting
implementation of the List ADT in full! "
/*
* The default result of the Interpreter Design Pattern
* with a nicer toString() method
*
*/

object List {

def empty ():List = new ListEmpty()
def singleton (i:Int):List = new ListSingleton(i)
def merge (L:List, M:List):List = new ListMerge(L,M)

}

class ListEmpty () extends List {

def isEmpty ():Boolean = true

def first ():Int = throw new RuntimeException("empty().first()")

def rest ():List = throw new RuntimeException("empty().rest()")

def isEqual (L:List):Boolean = L.isEmpty()

def length ():Int = 0

13Recall, the type checker is in charge of ensuring safety — that you never try to call methods that don’t
exist. Because List does not declare toStringLst(), someone could presumably add another subtype to
List that does not define toStringLst() (since it’s not declared in the abstract class List, subtypes of
List are under no obligation to define it), and that new subtype could be used in the construction of a List
using merge(), and when toString() on that list tries to call toStringLst() on that new subtype of List,
it will fail to find it, breaking safety.

93

def find (f:Int):Boolean = false

override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}

override def hashCode () : Int = 41

def toStringLst () : String = ""

override def toString () : String = "[]"
}

class ListSingleton (i:Int) extends List {

def isEmpty ():Boolean = false

def first ():Int = i

def rest ():List = List.empty()

def isEqual (L:List):Boolean =
(!L.isEmpty() && L.first()==i && L.rest().isEmpty())

def length ():Int = 1

def find (f:Int):Boolean = (i==f)

override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}

override def hashCode () : Int = 41 + i.hashCode()

def toStringLst () : String = " " + n

94

override def toString () : String = "[" + toStringLst() + "]"
}

class ListMerge (L:List, M:List) extends List {

def isEmpty ():Boolean = (L.isEmpty() && M.isEmpty())

def first ():Int =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List =
if (L.isEmpty())
M.rest()

else
List.merge(L.rest(),M)

def isEqual (N:List):Boolean =
((L.isEmpty() && M.isEmpty() && N.isEmpty()) ||
(!N.isEmpty() && !this.isEmpty() &&
N.first()==this.first() &&
N.rest().isEqual(this.rest())))

def length ():Int = L.length() + M.length()

def find (f:Int):Boolean = (L.find(f) || M.find(f))

override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}

override def hashCode () : Int =
41 * (
41 + L.hashCode()

) + M.hashCode()

95

def toStringLst () : String = L.toStringLst() + M.toStringLst()

override def toString () : String = "[" + toStringLst() + "]"
}

abstract class List {
// declarations (so, no code)

def isEmpty ():Boolean
def first ():Int
def rest ():List
def isEqual (L:List):Boolean
def length ():Int
def find (f:Int):Boolean

// needed to satisfy the type checker
def toStringLst ():String

}# $
We can test this as before:

scala> val l = List.merge(List.singleton(66),List.singleton(99))
l: List = [66 99]

scala> l.first()
res0: Int = 66

scala> l.rest()
res1: List = [99]

scala> l.rest().first()
res2: Int = 99

scala> l.length()
res3: Int = 2

That’s a bit nicer.

Now, the problem with the above implementation is that it reveals two things: first, that
there is a helper function called toStringLst(), even though it’s not actually part of the

96

ADT, and second, that the implementation is in terms of three concrete classes ListEmpty,
ListSingleton, and ListMerge.

To wit, continuing with the above example:

// accessing a function not in the ADT signature:
scala> l.toStringLst()
res0: String = 66 99

// accessing the representation classes directly
scala> val m = new ListMerge(l,new ListSingleton(33))
m: ListMerge = [66 99 33]

That’s bad: if later on we decide on a new implementation of toString() and get ride of
toStringLst(), then anyone that relied on that helper function existing will have their code
suddenly stop working. The function is not in the signature, so it should not be available to
anyone else. Similarly, if later on we decide on a new implementation of lists altogether, one
that does not rely on three concrete classes, but perhaps on four, or just one, not necessarily
using named ListMerge (say), then anyone creating a direct form of ListMerge will have
their code suddenly stop working.

So: how do we hide the helper method, and how do we hide the fact that there are those
two representation classes?

Let’s deal with the second question first, partly because we cannot really hide helper functions
in an abstract/concrete class combo without doing this first.

8.2 Hiding Representation Classes

So how do we hide information. The main tool we have for hiding information is to make
that information private to some area of the code. For instance, if we mark a method as
private, as in:

class Foo1 {

def method1 (x:Int):Int = x+method2(x)

private def method2 (x:Int):Int = x*2
}

then method2 is only visible from within an instance of Foo1, while method1 is visible from
outside as well as from within. Thus, while this works:

val f = new Foo1
f.method1(10)

97

this causes a compile-time error saying that method2 is inaccessible:

val f = new Foo1
f.method2(10)

We can similarly make fields private. For instance,

class Bar (x:Int) {

val field1:Int = x+1

private val field2:Int = 2*x
}

and the following works:

val b = new Bar(5)
b.field1

while the following fails for the same reason as f.method2(10) failed earlier:

val b = new Bar(5)
b.field2

So in general, we can make any component of a class private and thus hide it from whatever
is outside the class. Thus, to hide the representation classes ListEmpty, ListSingleton,
and ListMerge, then, it turns out we can simply them component of List! Such classes,
nested inside other classes, are called nested classes.14 Here is a simple example of a nested
class, not hidden:

object Foo2 {

def method1 (x:Int):Bar = new Bar(2*x)

class Bar (value:Int) {

def method2 (y:Int):Int = value+y
}

}

14Following Java-based terminology, a class defined inside a module is sometimes called a nested class,
while a class defined inside another class is a special kind of nested class called an inner class. Inner classes
are exceedingly expressive, and are related to closures. In other words, inner classes give you lambda.

98

If we call method1 in Foo2, the result with be an instance of class Foo2.Bar:

val b = Foo2.method1(10)
b.method2(30)

and the result should be 50. Note the type of b: Foo2.Bar — it has type Bar defined inside
of Foo2. Classes accessed just like fields or methods when they occur inside Foo2. We can
create instances of Foo2.Bar directly too:

val b = new Foo2.Bar(10)
b.method2(30)

which returns value 40.

Now, if we hide the nested class Bar:

object Foo3 {

def method1 (x:Int):Bar = new Bar(2*x)

private class Bar (value:Int) {

def method2 (y:Int):Int = value+y
}

}

then we get a problem trying to compile because our hiding worked too well: we do not have
access to type Bar anymore (since Bar is hidden) and the system does not know how to refer
to the value returned by method1() — the Scala compiler complains that the private class
Bar escapes the class in which it is defined to be private. So one trick there is to simply use
an abstract class to tell the compiler that yes, there is such a class, and it implements the
following functions, but the implementation remains hidden:

object Foo4 {

def method1 (x:Int):Bar = new BarImplementation(2*x)

private class BarImplementation (value:Int) extends Bar {

def method2 (y:Int):Int = value+y
}

}

99

abstract class Bar {

def method2 (y:Int):Int
}

Now we can still create instances of BarImplementation by calling Foo4.method1(), but
not directly by calling new Foo4.Bar().

Make sure you understand how the above works, since it’s the structure we are going to be
using. Question: what happens if you make FOOx above a class instead of an object? Try
it — see how you can make it work. Again, use the analogy that such defined classes are
accessed just like fields or methods.

Here is the above structure applied to our implementation of the List ADT — where I’ve
compressed the nested classes to make the structure more apparent.! "
/*
* The default result of the Interpreter Design Pattern
* with a nicer toString() method
* modified to hide concrete representation classes
*
*/

object List {

def empty ():List = new ListEmpty()
def singleton (i:Int):List = new ListSingleton(i)
def merge (L:List, M:List):List = new ListMerge(L,M)

private class ListEmpty () extends List {

def isEmpty ():Boolean = true
def first ():Int = throw new RuntimeException("empty().first()")
def rest ():List = throw new RuntimeException("empty().rest()")
def isEqual (L:List):Boolean = L.isEmpty()
def length ():Int = 0
def find (f:Int):Boolean = false
override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}

100

override def hashCode () : Int = 41
def toStringLst () : String = ""
override def toString () : String = "[]"

}

private class ListSingleton (i:Int) extends List {
def isEmpty ():Boolean = false
def first ():Int = i
def rest ():List = List.empty()
def isEqual (L:List):Boolean =
(!L.isEmpty() && L.first()==i && L.rest().isEmpty())

def length ():Int = 1
def find (f:Int):Boolean = (i==f)
override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}
override def hashCode () : Int = 41 + i.hashCode()
def toStringLst () : String = " " + n
override def toString () : String = "[" + toStringLst() + "]"

}

private class ListMerge (L:List, M:List) extends List {
def isEmpty ():Boolean = (L.isEmpty() && M.isEmpty())
def first ():Int =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List =
if (L.isEmpty())
M.rest()

else
List.merge(L.rest(),M)

def isEqual (N:List):Boolean =
((L.isEmpty() && M.isEmpty() && N.isEmpty()) ||
(!N.isEmpty() && !this.isEmpty() &&
N.first()==this.first() &&
N.rest().isEqual(this.rest())))

101

def length ():Int = L.length() + M.length()
def find (f:Int):Boolean = (L.find(f) || M.find(f))
override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}
override def hashCode () : Int =
41 * (
41 + L.hashCode()

) + M.hashCode()
def toStringLst () : String = L.toStringLst() + M.toStringLst()
override def toString () : String = "[" + toStringLst() + "]"

}
}

abstract class List {
def isEmpty ():Boolean
def first ():Int
def rest ():List
def isEqual (L:List):Boolean
def length ():Int
def find (f:Int):Boolean

// needed to satisfy the type checker
def toStringLst ():String

}# $
8.3 Hiding Helper Functions

Now there only remain the question of how to hide the helper function.

If a helper function was only needed in one particular class, then hiding that helper function
is easy — it’s just like hiding method2() in Foo1 above: method2() is only needed inside
Foo1, by method method1() in particular, so it is marked private. So hiding a helper
function used only within a class is trivial.

The problem, as we saw, is that toStringLst() is called across the concrete classes that
are subtypes of List, and because of that, we had to declare it in the abstract class List.
So we want to say that toStringLst() is only available within List. The way to do this
is to make it the method private. In an abstract class, though, Scala will not let us use the
keywork private. In an abstract class, for a declaration (not a definition) we have to use

102

protected.15! "
/*
* The default result of the Interpreter Design Pattern
* with a nicer toString() method
* modified to hide concrete representation classes
* and to hide helper functions
*
*/

object List {

def empty ():List = new ListEmpty()
def singleton (i:Int):List = new ListSingleton(i)
def merge (L:List, M:List):List = new ListMerge(L,M)

private class ListEmpty () extends List {

def isEmpty ():Boolean = true
def first ():Int = throw new RuntimeException("empty().first()")
def rest ():List = throw new RuntimeException("empty().rest()")
def isEqual (L:List):Boolean = L.isEmpty()
def length ():Int = 0
def find (f:Int):Boolean = false
override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}
override def hashCode () : Int = 41
def toStringLst () : String = ""
override def toString () : String = "[]"

}

private class ListSingleton (i:Int) extends List {
def isEmpty ():Boolean = false

15We will returned to protected later — it has to do with inheritance, and the use of protected in
abstract classes instead of private is to maintain consistency with the rest of the language. But we haven’t
seen the rest of the language, so the consistency is not apparent yet. So for now, just remember that in
abstract classes, protected is equivalent to private.

103

def first ():Int = i
def rest ():List = List.empty()
def isEqual (L:List):Boolean =
(!L.isEmpty() && L.first()==i && L.rest().isEmpty())

def length ():Int = 1
def find (f:Int):Boolean = (i==f)
override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}
override def hashCode () : Int = 41 + i.hashCode()
def toStringLst () : String = " " + n
override def toString () : String = "[" + toStringLst() + "]"

}

private class ListMerge (L:List, M:List) extends List {
def isEmpty ():Boolean = (L.isEmpty() && M.isEmpty())
def first ():Int =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List =
if (L.isEmpty())
M.rest()

else
List.merge(L.rest(),M)

def isEqual (N:List):Boolean =
((L.isEmpty() && M.isEmpty() && N.isEmpty()) ||
(!N.isEmpty() && !this.isEmpty() &&
N.first()==this.first() &&
N.rest().isEqual(this.rest())))

def length ():Int = L.length() + M.length()
def find (f:Int):Boolean = (L.find(f) || M.find(f))
override def equals (other : Any) : Boolean =
other match {
case that : List => this.isEqual(that)
case _ => false

}
override def hashCode () : Int =

104

41 * (
41 + L.hashCode()

) + M.hashCode()
def toStringLst () : String = L.toStringLst() + M.toStringLst()
override def toString () : String = "[" + toStringLst() + "]"

}
}

abstract class List {
def isEmpty ():Boolean
def first ():Int
def rest ():List
def isEqual (L:List):Boolean
def length ():Int
def find (f:Int):Boolean

protected def toStringLst ():String
}
}# $

And there: we cannot create instances of ListEmpty, ListSingleton, and ListMerge from
outside List (and therefore we have to use the creators to create lists), and once we have a
list we cannot call its toStringLst() function, as the compiler will prevent. For instance,
if we try what we tried before but with our new code:

scala> val l = List.merge(List.singleton(66),List.singleton(99))
l: List = [66 99]

scala> l.toStringLst()
<console>:7: error: method toStringLst cannot be accessed in List

l.toStringLst()
^

scala> val m = new ListMerge(l,new ListSingleton(33))
<console>:6: error: not found: type ListMerge

val m = new ListMerge(l,new ListSingleton(33))
^

scala> val m = new List.ListMerge(l,new List.ListSingleton(33))
<console>:6: error: class ListMerge cannot be accessed in object List

val m = new List.ListMerge(l,new List.ListSingleton(33))
scala>

105

Things fail miserably, as they should.

Now, note something interesting. The above should not work! We’re declaring toStringLst()
protected in List. Which is the same as making it private — it means, in particular,
that there we are not allowed to refer to that method from outside the class List itself.
But we’re invoking toStringLst() on something of type List in ListMerge in method
toStringLst(). Why does the compiler let us do that? The answer is that we’re made
use of a particular back-door in Scala. The fact that the module in which ListEmpty,
ListSingleton, and ListMerge are defined has the same name List as the abstract class is
the key point — as I mentioned earlier in the course, they are called companions: a module
and a class of the same name. Being companions means that they can access each other’s
private components as though they were defined within themselves. So in the case of List,
for the purposes of what’s private/public, it’s as if we had defined:

object/class List {

def empty ():List = new ListEmpty()
def singleton (i:Int):List = new ListSingleton(i)
def merge (L:List, M:List):List = new ListMerge(L,M)

private class ListEmpty () extends List {
...

}

private class ListSingleton (i:Int) extends List {
...

}

private class ListMerge (L:List, M:List) extends List {
...

}

def isEmpty () : Boolean
def first () : Int
def rest () : List
def length () : Int
def find (f:Int) : Boolean
def isEqual (M:List) : Boolean

protected def toStringLst () : String
}

meaning that whatever is inside this combo List can access toStringLst() since it is defined

106

within the same scope. And since ListCons is inside the scope (it is a component within
List), it can access toStringLst().

This works only because the module and the class have the same name List. If we change
that, that is, if we change the name of module List to something like ListCreators, our
code breaks: the system complains that toString() in ListCreators.ListMerge attempts
to call the inaccessible method toStringLst() in List. If you ever get that error, you’ll
know where to look.

107

