Object-Oriented Design Lecture 20
CS 3500 Spring 2010 (Pucella) Tuesday, Mar 30, 2010

20 Subclassing and Mutation

Suppose we have a class A that subclasses a class B (which I will write A < B). Should we
consider a collection of As to be a subclass of a collection of Bs — more concretely, should
A[] < B[], or List<A> < List, or Option<A> < Option? Intuitively, the answer
should be yes. After all, if I write an operation that can happily work with a collection of
Bs, then giving it a collection of As should work just as well, because every A is a B due
to subclassing. Unfortunately, in the presence of mutation, things are not that simple, and
that simple intuition sometimes fail. Let’s look at (the skeleton of) two examples, one that
matches our intuition and one that doesn’t.

Let’s work with the points and colored points introduced in previous lectures. We know that
CPoint < Point. Assume we have an operation showCollection() that takes a collection
of Points and can display them on the screen. (I don’t what exactly — nor do I especially
care what the collection is.) Here’s the operation:

public static void showCollection (Collection-of-Points coll) {
// show the points in coll, somehow:
// take each point in the collection,
// extract its xPos() and yPos(),
// and plot it or something

If we create a collection of colored points, it should be possible to pass it to showCollection():

Collection-of-CPoints c = ... // some code to create a collection of
// colored points

showCollection(c);

// here, for fun, let’s just print the color of the points in ¢

// for each colored point in c, extract its color() and print it

That should work perfectly fine, right? Right. If you work through the execution by hand,
you see that you create a collection of colored point ¢ — the dynamic type of c is a collection
of CPoints — you pass it to showCollection(), which looks at every point in the collection,
extract its xPos() and yPos() — which we know is fine because the dynamic type of each
element in the collection is a CPoint, which does have a xPos() and yPos() method —
then the function returns, and the collection c is looked at again, this time we exact the

color() out of every element — which is fine because the run-time type of each element
of the collection is CPoint and therefore has a color () method — and everything executes
without a hitch.

Consider the following slight variant, though, when the collection is mutable. The function
showCollection() now does something additional: it mutates the collection.

public static void showCollection (Collection-of-Points coll) {
// show the points in coll, somehow:
// take each point in the collection,
// extract its xPos() and yPos(),
// and plot it or something

// then do something sneaky
first-element-of (coll) = Point.create(0,0);

This is pseudo-code for updating the first element of the collection to be a newly-created
Point. Note that this should work because the type of coll is a collection of Points —
replace the first Point by another Point should be fine. But put that new function in
conjunction with the old code:

Collection-of-CPoints c = ... // some code to create a collection of
// colored points

showCollection(c);

// here, for fun, let’s just print the color of the points in ¢

// for each colored point in c, extract its color() and print it

and everything fails. Let’s run this one through, keeping track of the run-time type of
everything we have. Again, we create a collection of colored point ¢ — the dynamic type
of ¢ is a collection of CPoints — you pass it to showCollection(), which looks at every
point in the collection, extract its xPos() and yPos() — which we know is fine because the
dynamic type of each element in the collection is a CPoint, which does have a xPos() and
yPos () method — then it changes the first element of the collection to be a Point — so
now the first element of the collection has run-time type Point, while everything else in the
collection has run-time type CPoint — then the function returns, and the collection c is
looked at again, this time we exact the color() out of every element — which fails on the
first element because it has run-time type Point, so does not provide a color() method.
Method not found. Ouch.

The above examples look very similar, and are undistinguishable if you just look at the type
of the data and the functions. The crux: should we allow the call to showCollection()
when the value supplies is a collection of CPoints while the function expects a collection of

Points? One example shows that sometimes treating a collection of CPoints as a collection
of Points is fine, other times, it’s not.

So: you're designing a language. You have that A < B. Do you consider a collection of As to
be a subclass of a collection of Bs— thereby accepting the code above — or do not consider
a collection of As to be a subclass of a collection of Bs? You have to make a choice. There
are really only three choices possible:

(1) Allow a collection of As to be a subclass of a collection of Bs, but do runtime checks to
prevent potential problems like the one above.

(2) Disallow a collection of As to be a subclass of a collection of Bs.

(3) Sometimes allow a collection of As to be a subclass of a collection of Bs, and sometimes
disallow it, depending on properties of the collection.

Java, it turns out, uses both (1) and (2), depending on the kind of collection you have.
Roughly: arrays are handled using (1), while polymorphic collections (using generics) are
handled using (2). Let’s investigate.

Recall what I pointed out earlier in the course, that the main property enforced by the Java
type system is safety, defined as follows: if a program type checks, then at no point during
the execution of the program does the system attempt to invoke a method meth on an object
that does not provide method meth.

20.1 Subclassing for Arrays in Java

Arrays are treated specially in Java. The type system uses the following rule to determine
subclassing for array types: whenever S is a subclass of T, then S[] is a subclass of T[].

Let’s look at the two examples above, specialized to use arrays as the collections.

First, some code showing that it ought to make sense to pass an array of CPoints to a
function expecting an array of Points:

public class Test1 {

public static void showCollection (Point|] coll) {
System.out.println("In showCollection()");
for (Point p : coll)
System.out.println(" element = " + p.xPos() + " " + p.yPos());
}

public static void main (String[] argv) {

CPoint[] coll = new CPoint[2];

coll[0] = CPoint.create(10,10,"red");
coll[1] = CPoint.create(20,20,"blue");

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color

" + cp.color());
showCollection(coll);
System.out.println("In main()");

for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

Of course, this code executes perfectly well: it is okay to pass the array of CPoints to
showCollection(), because each CPoint has both a xPos() and yPos() method, and exe-
cution proceeds without encountering an undefined method:

In main()
element color = red
element color = blue

In showCollection()
element 10 10
element 20 20

In main()
element color
element color

red
blue

The problem is that, as we saw above, the following variant also type checks, and for the
same reason:

public class Test2 {

public static void showCollection (Point|] coll) {
System.out.println("In showCollection()");
for (Point p : coll)
System.out.println(" element = " + p.xPos() + " " + p.yPos());

coll[0] = Point.create(0,0);

}
public static void main (String[] argv) {
CPoint[] coll = new CPoint[2];

coll[0] = CPoint.create(10,10,"red");
coll[1] = CPoint.create(20,20,"blue");

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color

" + cp.color());
showCollection(coll);
System.out.println("In main()");

for (CPoint cp : coll)
System.out.println(" element color

" + cp.color());

Test2 is very similar to Test1, except that function showCollection() now modifies the
first element of the array, making it hold a new Point. First, make sure that you under-
stand why the code above type checks: Because CPoint < Point, the type system lets
you pass a CPoint[] to a method expecting a Point[]. And because the array coll in
showCollection() is declared to be an array of Points (that its compile-time type), the
type system is quite happy to let you update the first element in the array into a different
Point.

The problem is that passing an object (including an array) to a method in Java only passes
a reference to that object. The object is not actually copied, as we saw when we saw
the mutation model. So when function showCollection() updates the array through its
argument coll, it ends up modifying the underlying array coll in function main(). But
that means that when we come back from the showCollection() function, array coll is
an array of CPoints where the first element of the array is not a CPoint any longer, but
rather a Point. And when we attempt to invoke method color () on that first element, Java
would choke because that first element, being a plain Point, does not in fact implement the
color() method. That contradicts the guarantee the type system is supposed to make. In
other word, the type system messed up — it said something was okay when it wasn’t.

Java trades off this inadequacy of the type system by doing a runtime check at the statement
that causes the problem: the update col1[0] = Point.create(0,0). Java catches the fact
that you are attempting to modify an array by putting in an object that is not a subclass

of the dynamic type of the data in the array, and throws an ArrayStoreException. Here,
that’s because we are trying to put a Point into an array with dynamic type CPOint []:

In main()
element color = red
element color = blue

In showCollection()
element = 10 10
element = 20 20
Exception in thread "main" java.lang.ArrayStoreException: Point
at Test2.showCollection(Test2.java:9)
at Test2.main(Test2.java:23)

The point remains: the type system does not fully do its job, and has to deleguate to the
runtime system the responsability of ensuring that the problem above does not occur. And
that’s a problem — recall that lecture we had about why it was a good idea to report errors
early, such as when the program is being compiled as opposed to when it executes?

That’s approach (1), then, accept the subclassing between collections, which Java uses for
arrays.

20.2 Subclassing for Generics in Java

The above examples use arrays. What about using a polymorphic class that is not predefined
like arrays are? For example, the List<A> ADT that we’ve been using for the past weeks,
augmented with both functional and mutable iterators? To make the comparison with arrays,
let’s make List mutable by introducing a mutateFirst () method that lets you mutate the
first element of a (nonempty) list. Here is the implementation:

import java.util.Iterator;
import java.lang.Iterable;

public abstract class List<A> implements Iterable<A> { // we can
// iterate over
// instances of
// this class
public static List empty () {
return new EmptyList();
}
public static List cons (B i, List 1) {
return new ConsList(i,l);

}

public abstract boolean isEmpty ();
public abstract A first ();
public abstract List<A> rest ();

public abstract Funclterator<A> funclterator ();
public Iterator<A> iterator () {
return IteratorFromFunclteratorAdapter.create(this.funclterator());

}

public abstract void mutateFirst (A element);

class EmptyList<A> extends List<A> {
public EmptyList () {}

public boolean isEmpty () {
return true;

public A first () {
throw new Error("EmptyList.first()");
}
public List<A> rest () {
throw new Error("EmptyList.rest()");
}
public Funclterator<A> funclterator () {
return new Iterator<A>();
}
public void mutateFirst (A element) {
throw new Error("EmptyList.mutateFirst()");

}

private class Iterator<A> implements Funclterator<A> {
public Iterator () {}

public boolean hasElement () {
return false;
}
public A element () {
throw new java.util. NoSuchElementException
("EmptyList.Iterator.element()");

}

public Funclterator<A> moveToNext () {
throw new java.util. NoSuchElementException
("EmptyList.Iterator.moveToNext()");

class ConsList<A> extends List<A> {
private A firstElement;
private List<A> restElements;

public ConsList (A f, List<A> 1) {
firstElement = f;
restElements = r;

}

public boolean isEmpty () {
return false;

public A first () {
return firstElement;

}

public List<A> rest () {
return restElements;

}

public Funclterator<A> funclterator () {
return new Iterator<A>();

}

public void mutateFirst (A element) {
firstElement = element;

}

private class Iterator<A> implements Funclterator<A> {
public Tterator () {}

public boolean hasElement () {
return true;

}

public A element () {
return firstElement;

}

public Funclterator<A> moveToNext () {
return restElements.funclterator();

}
}
}

Given this implementation of List, here is Test1 using List:

public class Test3 {
public static void showCollection (List<Point> coll) {
System.out.println("In showCollection()");
for (Point p : coll)
System.out.println(" element = " + p.xPos() + " " + p.yPos());
}
public static void main (String[] argv) {

List<CPoint> coll = List.empty/();

coll = List.cons(CPoint.create(20,20,"blue"),coll);
coll = List.cons(CPoint.create(10,10,"red"),coll);

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

showCollection(coll);

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color

" + cp.color());

Trying to compile this program fails miserably: it does not type check — on my machine:

> javac Test3.java
Test3.java:22: showCollection(List<Point>) in Test3 cannot be applied
to (List<CPoint>)

showCollection(coll);

1 error

This is because it is not the case that if S is a subclass of T, then List<S> is a subclass of
List<T>. And that’s the case for all uses of generics.! This seems counterintuitive, but it
prevents us from writing code such as in Test2 that updates a collection and forces us to do
a runtime check and possibly throw an exception. Bottom line: we cannot write code such
as that in Test2 using generics.

Of course, we also cannot write code such as in Test3, which is very much like throwing the
baby out with the bathwater, because code such as that in Test3 is actually quite useful,
and works fine. (See Test1, which is the same but for arrays.) It’s only when we update a
collection that problems occur. There are ways to restore some amount of subclassing and
get Test3 to compile, but there is no one-size-fits-all solution. The idea is to be explicit
about where we want subclassing to occur. Consider the type for showCollection() in
Test3. Suppose we wanted to be explicit about the kind of subclassing we allowed here.
Roughly, we would like it to say that showCollection accepts any list with some type of
element T that is a subclass of Point. We don’t care and don’t know what that type of
element T is, so we’ll write it down as a question mark. We therefore get the code:

public class Test4 {
public static void showCollection (List<? extends Point> coll) {
System.out.println("In showCollection()");
for (Point p : coll)
System.out.println(" element = " 4 p.xPos() + " " + p.yPos());
}
public static void main (String[] argv) {

List<CPoint> coll = List.empty();

coll = List.cons(CPoint.create(20,20,"blue"),coll);
coll = List.cons(CPoint.create(10,10,"red"),coll);

System.out.println("In main()");
for (CPoint cp : coll)

"'Why, one might ask? Wouldn’t it have made more sense to make generics behave like arrays? Turns
out that’s because of the way that generics are implemented: parameters are erased and replaced by Object
before execution, meaning that the system does not have the dynamic data required to do the kind of
checking that occurs at updates in order to throw the exception we saw in Test2.

10

System.out.println(" element color = " + cp.color());
showCollection(coll);
System.out.println("In main()");

for (CPoint cp : coll)
System.out.println(" element color

" + cp.color());

And this type checks perfectly okay, and executes perfectly okay:

In main()

element color = red
element color blue
In showCollection()
element = 10 10
element = 20 20

In main()

element color = red
element color blue

The subclassing rule for this kind of generics is as follows: if S is a subclass of T, then
List<S> is a subclass of List<? extends T>. Wrap your head around this rule, and the
above example.

So, we can reinstate some form of subclassing for generics. Have we added too much? Can
we write a version of Test2 in this setting?

public class Test5 {
public static void showCollection (List<? extends Point> coll) {
System.out.println("In showCollection()");
for (Point p : coll)
System.out.println(" element = " 4 p.xPos() + " " + p.yPos());

coll.mutateFirst(Point.create(0,0));

}

public static void main (String[] argv) {
List<CPoint> coll = List.empty();

11

coll = List.cons(CPoint.create(20,20,"blue"),coll);
coll = List.cons(CPoint.create(10,10,"red"),coll);

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

showCollection(coll);
System.out.println("In main()");

for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

Bang! Fails to type check. On my machine:

> javac Testb.java

Test5.java:10: mutateFirst(capture of 7 extends Point) in

List<capture of ? extends Point> cannot be applied to (Point)
coll.mutateFirst(Point.create(0,0));

~

1 error

The reason for the type-checking failure here is a bit subtle. Note that the type of coll, as
far as Java is concerned is List<T> for some unknown T. (That’s what the ? says.) Now,
method mutateFirst () in List<A> has signature:

public void mutateFirst (A element);

So in order for the invocation of mutateFirst() to type check, it must be the case that
Point.create(0,0) be an expression returning a value of type T, where T is an unknown
type. Java cannot establish that Point.create(0,0) has type T, because, and that’s the
key, T is unknown!

Leaving aside the details, the main consequence of this is that the <? extends T> notation
permits the use of subclassing in some instances, and disallows it in the cases where it could
cause an exception.

So, generics in Java are typed using approach (2), and it works pretty well.

12

20.3 Subclassing by Distinguishing Mutable and Immutable Classes

There is a third approach to managing subclassing in the presence of mutation, one that
Java does not implement. But the basic idea here is to sometimes allow subclassing, and
sometimes not. If you look at all the examples above, all those that involve immutable classes
have no problem with subclassing. The only examples where sometimes bad can occur is
when we mutate a collection (Test2, or Test5).

So one approach, which some languages implement, is to allow subclassing when classes
are immutable (so that immutable classes are treated like arrays in Java), and disallow
subclassing when classes are mutable (so that mutable classes are treated like generics in
Java).

Of course, in order to do so, it must be possible for the programming language to distinguish
mutable from immutable classes. That distinction is pretty much impossible to make in
Java, at least for a comiler — we saw, for instance, that mutability was contagious, so that
something may look immutable while still depending on something mutable, making the
resulting class mutable as well. Languages such as ML or Haskell do make such a distinction
possible. In those languages, everything is immutable by default, and you have to explicitly
define a piece of data to be mutable. In such languages, approach (3), a mix of allowing and
disallowing subclassing for collections is possible.

13

