Object-Oriented Design Lecture 9
CS 3500 Fall 2010 (Pucella) Friday, Oct 15, 2010

9 Implementing Subtyping

Last time, we saw the kind of code reuse we can obtain when we have a subtyping relation
between two types. But we didn’t say that much about how to get subtyping. In fact,
the only subtyping we’'ve seen is in the Specification Design Pattern, here we defined the
concrete classes describing the representation of data corresponding to each of the creators
as subtypes of an abstract class defining the signature. How about other kind of subtypings
between ADTs? Note that for the time being we will look at subtyping between abstract
classes only. It makes a lot of things much simpler.

There are three main reasons for introducing subtyping between types D and C"

(1) D may be a generalization of C' with extra operations defined. For instance, a CPoint
is a Point with extra operations to deal with the fact that CPoints have a color.

(2) D may be a restricted form of C' with additional properties coming from the restriction,
but no additional operations. For instance, a nonempty list NEList is a List with the
additional property that it is never empty.

(3) D may bear some relationship to C' that makes it a suitable candidate for subtyping in
the context of the application at hand. This is much more ad hoc, in the sense that it
really depends on the application. For example, lists could be declared to be a subtype
of trees, since a list can be seen as a degenerate tree in which every node only has a
right subtree (which is the rest of the list, recursively). It rarely is useful to think of
lists as trees, but the point is we could, and some applications may benefit from it.

We won’t have much to say about (3), but (1) and (2) are common enough that it pays to
see how to set-up those kind of subtyping relations.
9.1 Subtyping by Generalization

Consider our standard ADTs POINT, simplified somewhat so that it only has one creator to
simplify our examples

CREATORS
cartesian : (Double, Double) -> Point

OPERATIONS
xCoord :
yCoord :
move :
rotate :

add :
isEqual :

and CPOINT:

CREATORS
cartesian : (Double,

OPERATIONS
xCoord :
yCoord :
color :
updateColor :
move :
rotate :

add :
isEqual :

with the usual specification.!

We want to set things up so that CPoint is a subtype of Point. Let’s get a version going
for the ADT without methods add() and isEqual() first. We’'ll see that they cause a few

problems.

Ideally, we would like it to be the case that we could call the following code with either
Points or CPoints. That will be our test to make sure that our subtyping enables us to get

reuse.

() -> Double

() -> Double

(Double, Double) -> Point
(Double) -> Point

(Point) -> Point
(Point) -> Boolean

Double, Color) -> CPoint

() -> Double
() -> Double
() -> Color

(Color) -> CPoint
(Double, Double) -> CPoint
(Double) -> CPoint

(CPoint) -> CPoint
(CPoint) -> Boolean

def negatePoint (p:Point):Point =

p.move (-2*p.xCoord (),

def addPoint (p:Point,

-2%p.yCoord())

q:Point) :Point =

p.move(q.xCoord(),q.yCoord())

'For add () in CPoint, assume that the color of the result of p.add(q) is the color of g.

def rotateAroundPoint (p:Point, angle:Double, center:Point):Point =
addPoint (center,addPoint (p,negatePoint (center)) .rotate(angle))

Let’s first define an implementation for ADT POINT using the Specification Design Pattern,
as usual — remember, we do not have add() and isEqual() in the abstract class, so while
we do have those methods implemented in the implementation class for cartesian points,
those methods are not accessible. (Why?)

object Point {

def cartesian (x:Double,y:Double):Point =
new CarPoint(x,y)

private class CarPoint (first:Double, second:Double) extends Point {
def xCoord () :Double
first

def yCoord () :Double
second

def move (dx:Double,dy:Double):Point =
cartesian(first+dx,second+dy)

def rotate (theta:Double) :Point =
new CarPoint(first * math.cos(theta) - second * math.sin(theta),
first * math.sin(theta) + second * math.cos(theta))

def add (p:Point):Point =
move (p.xCoord() ,p.yCoord())

def isEqual (q:Point):Boolean =
(first==q.xCoord() && second==q.yCoord())

// CANONICAL

override def toString ():String =
"cart (" + first + "," + second + ")"

override def equals (other : Any):Boolean =
other match {
case that : Point => this.isEqual(that)
case _ => false

override def hashCode ():Int =
41 * (
41 + first.hashCode()
) + second.hashCode()

abstract class Point {

def xCoord () :Double
def yCoord () :Double

def move (dx:Double,dy:Double) :Point
def rotate (t:Double) :Point

Now, onto an implementation for ADT CPOINT. Again, we implement it using the Specifi-
cation Design Pattern. The implementation is completely straightforward. And it turns out
that we can specify that a CPoint is a subtype of Point by simply stating that the abstract
class CPoint extends Point. Note that subtyping relationship is between the abstract class
representing the signatures here. There is no relationship between the implementation of
those signatures. (Draw a diagram of the subtyping relationship, if it helps you.)

object CPoint {

def cartesian (x:Double,y:Double,c:Color):CPoint =
new CarCPoint(x,y,c)

private class CarCPoint (first:Double, second:Double,
col: Color) extends CPoint {

def color ():Color = col

def updateColor (c:Color):CPoint =
new CarCPoint(first,second,c)

def xCoord () :Double
first

def yCoord () :Double
second

def move (dx:Double,dy:Double):CPoint =
new CarCPoint(first+dx, second+dy,col)

def add (cp:CPoint):CPoint =
new CarCPoint(first+cp.xCoord(),second+cp.yCoord(),cp.color())

def rotate (theta:Double) :CPoint =
new CarCPoint(first * math.cos(theta) - second * math.sin(theta),
first * math.sin(theta) + second * math.cos(theta),
col)

def isEqual (q:CPoint):Boolean =
(first==q.xCoord() && second==q.yCoord() && col==q.color())

// CANONICAL

override def toString ():String =
"Cart(" + first + “"' + second + |l,ll + col + n)u

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)

case _ => false

}
override def hashCode ():Int =
41 x (

41 * (

41 + first.hashCode()
) + second.hashCode()
) + col.hashCode()

abstract class CPoint extends Point {

def color ():Color
def updateColor (c:Color):CPoint

def xCoord () :Double

def yCoord ():Double

def move (dx:Double,dy:Double):CPoint
def rotate (t:Double):CPoint
}

And it’s that simple. Let’s make sure we can call our rotateAroundPoint () function with
Points:

val p : Point = Point.cartesian(1,1)

val q : Point = Point.cartesian(1,2)

val r : Point = rotateAroundPoint(q,math.Pi/2,p)
println("Result = " + r)

Running this yields:
Result = cart(0.0,1.0)

And we can reuse the same rotateAroundPoint () function to work with CPoints as well:
val p : Point = CPoint.cartesian(l,1,Color.blue())
val q : Point = CPoint.cartesian(1,2,Color.red())

val r : Point = TestCore.rotateAroundPoint(q,math.Pi/2,p)
println("Result = " + 1)

yielding
Result = cart(0.0,1.0,blue)

What about those two operations we haven’t dealt with yet, add() and isEqual()? They're
already implemented in both implementation classes CarPoint and CarCPoint. It’s just a
matter of revealing them through the abstract classes. It’s no problem to add them to the
Point abstract class:

object Point {

def cartesian (x:Double,y:Double):Point =
new CarPoint(x,y)

private class CarPoint (first:Double, second:Double) extends Point {
def xCoord () :Double =
first

def yCoord ():Double =
second

def move (dx:Double,dy:Double):Point =
cartesian(first+dx,second+dy)

def rotate (theta:Double) :Point =
new CarPoint(first * math.cos(theta) - second * math.sin(theta),
first * math.sin(theta) + second * math.cos(theta))

def add (p:Point):Point =
move (p.xCoord() ,p.yCoord())

def isEqual (q:Point):Boolean =
(first==q.xCoord() && second==q.yCoord())

// CANONICAL

override def toString ():String =
"cart(" + first + "," + second + ")"

override def equals (other : Any):Boolean =
other match {
case that : Point => this.isEqual(that)
case _ => false

override def hashCode ():Int =
41 * (
41 + first.hashCode()
) + second.hashCode()

abstract class Point {

def xCoord () :Double
def yCoord () :Double

def move (dx:Double,dy:Double) :Point
def rotate (t:Double) :Point

def add (p:Point):Point
def isEqual (p:Point):Boolean

2 J
The problems occur when we try to do the same thing with the CPoint abstract class. If we
simply update it to be:

abstract class CPoint extends Point {

def color ():Color
def updateColor (c:Color):CPoint

def xCoord () :Double
def yCoord () :Double

def move (dx:Double,dy:Double):CPoint
def rotate (t:Double):CPoint

def add (p:CPoint) :CPoint
def isEqual (p:CPoint):Boolean

}
then the Scala type checker complains horribly:

CPoint.scala:8: error: class CarCPoint needs to be abstract, since:

method isEqual in class CPoint of type (p: Point)Boolean is not defined

method add in class CPoint of type (p: Point)Point is not defined
private class CarCPoint (first:Double, second:Double,

~

one error found

Basically, the type checker is complaining that we’re missing methods add () and isEqual ()
that can work on Points in our CPoint class. The type checker complaining means that
there’s a possibility of our code being unsafe. So what’s the problem?

The problem is subtle. Can we come up with code that, were the code above to be accepted
by the type checker, would be unsafe — that is, cause a method-not-found error?

Here’s the offending code:

CPoint.cartesian(2,4,Color.yellow())
Point.cartesian(0,100)
p.add(q)

val p:Point
val q:Point
val r:Point

What’s going on here? Note that if we assume that the type checker accepted our CPoint
implementation and made CPoint a subtype of Point, then the static types all agree (after
the type checker adds the upcast in the first binding to treat the CPoint as a Point). But
what happens during execution? p is bound to a CPoint (so that the dynamic type of p is
CPoint) and q is bound to a Point. The call p.add(q) requires the system to look at the
appropriate add () method in the dynamic type of p, so in CPoint. The add() method in
CPoint expects a value of static type CPoint, and we're giving it q, a value of static type
Point. We would need a downcast for this to work, and the type checker never introduces
downcasts for us, so this fails to type check. And indeed, were we to execute this, the add ()
method in CPoint would try to access the color () method on g, and since q is a Point,
the method color() would not be found. So the type checker prevented this error from
happening.

Great. But then how do we get CPoint to be a subtype of Point, since we still intuitively
believe that they should be subtypes? The solution is in the example above. We need to
provide methods add() (and isEqual()) in CPoint that can work with Points, on top of
those we already have that can work with CPoints.

The easiest way to do this is simply to add a new method declaration to the CPoint abstract
class, telling Scala that there is an additional add () method (and isEqual() method) of the
appropriate type, and implement those two new methods in CarCPoint:

object CPoint {

def cartesian (x:Double,y:Double,c:Color):CPoint =
new CarCPoint(x,y,c)

private class CarCPoint (first:Double, second:Double,
col: Color) extends CPoint {

def color ():Color = col

def updateColor (c:Color):CPoint =
new CarCPoint(first,second,c)

def xCoord () :Double
first

def yCoord () :Double
second

def move (dx:Double,dy:Double):CPoint =
new CarCPoint(first+dx, second+dy,col)

def add (cp:CPoint):CPoint =
new CarCPoint(first+cp.xCoord(),second+cp.yCoord(),cp.color())

def add (p:Point):Point =

p match {

case cp:CPoint => add(cp)

case _ => Point.cartesian(first+p.xCoord(),second+p.yCoord())
}

def rotate (theta:Double):CPoint =
new CarCPoint(first * math.cos(theta) - second * math.sin(theta),
first * math.sin(theta) + second * math.cos(theta),
col)

def isEqual (q:CPoint):Boolean =
(first==q.xCoord() && second==q.yCoord() && col==q.color())

def isEqual (q:Point):Boolean =

q match {
case cq:CPoint => isEqual(cq)
case _ => false

}

// CANONICAL

override def toString ():String =
"cart(" + first + "," + second + "," + col + n)u

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)

case _ => false
}
override def hashCode ():Int =
41 x (
41 * (

41 + first.hashCode()
) + second.hashCode()
) + col.hashCode()

10

abstract class CPoint extends Point {

def color ():Color
def updateColor (c:Color):CPoint

def xCoord () :Double
def yCoord () :Double

def move (dx:Double,dy:Double):CPoint
def rotate (t:Double):CPoint

def add (p:CPoint):CPoint
def isEqual (p:CPoint):Boolean

// needed for subtyping
def add (p:Point):Point
def isEqual (p:Point):Boolean

A couple of things to notice: first, there are now multiple add() and isEqual() methods
available in CPoint (and in CarCPoint). This is called overloading, and it is allowed, as long
as the methods take arguments of different types.

How does Scala resolve the overloading? That is, given something like cp.add(q), where cp
is a value with dynamic type CPoint, how does it decide which of the two add () methods
available in CPoint to call? It decides based on the static type of the argument. So if q is
of static type Point, then Scala will call the add(p:Point) method in CPoint. If q is of
static type CPoint, then it will call the add(cp:CPoint) method in CPoint. This may be
counterintuitive (I certainly find it counterintuitive myself) but that’s the way it is.

The second thing to notice is that in the implementation of add() that takes a Point as
an argument, we do a dynamic check to see if the value we took as an argument really has
dynamic type CPoint — if so, we may as well call the add() method that can deal with
CPoints. If not, then we add the points as though they were Points. A similar deal occurs
with isEqual() — if the argument really has dynamic type CPoint, we call the isEqual ()
method that can deal with CPoints, and if not, then we return false, because points and
colored points should not be equal.

This kind of problem will occur every time you try to define a subtype D for a type C'
whose signature contains methods that expect arguments of type C'. In D, those methods
will generally take values of type D, and you will need to define “bridge methods” in D
for those methods that can also take values of type C'. Unfortunately, there is in general

11

no principled way to devise those bridge methods. You’ll need to think them through from
scratch, depending on the ADT and what it might mean to perform the operation at hand
on values of different types.

With the (corrected) code above, we can try a different version of our test, since now we
have an add () we can call:

def negatePoint (p:Point):Point =
p.move (-2xp.xCoord () ,-2*p.yCoord())

def rotateAroundPoint (p:Point, angle:Double, center:Point):Point =
p-add(negatePoint (center)) .rotate(angle) .add(center)

Running the examples above with this version of rotateAroundPoint () gives exactly the
same results, as expected.

9.2 Subtyping by Restriction

Subtyping by restricting an ADT is less frequent, but still sometimes useful. Let’s illustrate
it with non-empty lists as a subtype of lists.

First, recall the LisT ADT:

CREATORS
empty : () -> List
cons : (Int, List) -> List
OPERATIONS
isEmpty : () -> Boolean
first : () -> Int
rest : () -> List
length : () -> Int
append : (List) -> List
find : (Int) —-> Boolean
isEqual : (List) -> Boolean

with the usual specification:

empty () .isEmpty () = true
cons(n,L) .isEmpty () = false
cons(n,L) .first() =n
cons(n,L) .rest() =L
empty () .length() =0

12

cons(n,L) .length() =1+ L.length()
empty () .append(M) = M
cons(n,L) .append (M) = cons(n,L.append(M))
empty () .find(f) = false

true ifn=f
cons(n,L).find(f) = ¢ true if L.find(f) = true

false otherwise

t if M .isEmpt — ¢t
empty () .isEqual (M) = { ' o0 1sEmp yO = true
false otherwise

false if M .isEmpty () = true

cons(n,L) .isEqual(M) = < true ifn=M.first()
and L.isEqual (M .rest()) = true

The implementation, you'll recall, is completely straightforward using the Specification De-
sign Pattern:

object List {
def empty ():List = new ListEmpty()

def cons (n:Int, L:List):List = new ListCons(n,L)

// EMPTY LIST REPRESENTATION

//
private class ListEmpty () extends List {

def isEmpty () :Boolean = true

def first ():Int =
throw new RuntimeException("empty().first()")

def rest ():List =
throw new RuntimeException("empty().rest()")

def length ():Int = 0

Il
=

def append (M:List):List

def find (f:Int):Boolean = false

13

def isEqual (M:List):Boolean = M.isEmpty()
override def equals (other:Any):Boolean =
other match {
case that:List => this.isEqual(that)
case _ => false

override def hashCode ():Int = 41

override def toString ():String = ""

// CONS LIST REPRESENTATION
//

private class ListCons (n:Int, L:List) extends List {

def isEmpty ():Boolean = false

def first ():Int n

def rest ():List = L

def length ():Int = 1 + L.lengthQ

def append (M:List):List = List.cons(n,L.append(M))

def find (f:Int):Boolean { (f ==n) || L.find(f) }
def isEqual (M:List):Boolean =
(' (M.isEmpty()) && n==M.first() && L.isEqual(M.rest()))
override def equals (other : Any) : Boolean =
other match {
case that:List => this.isEqual(that)
case _ => false

override def hashCode ():Int =
41 * (
41 + n.hashCode()

14

) + L.hashCode()

override def toString ():String =
n+ " " + L.toString()

abstract class List {

def isEmpty () :Boolean

def first ():Int

def rest ():List

def length ():Int

def append (M:List):List

def find (f:Int):Boolean

def isEqual (M:List):Boolean
}

Here are a few test functions to compute the average of the elements of a list:

def sum (x:List):Int =
if (x.isEmpty())
0
else
x.first() + sum(x.rest())

def average (x:List):Int = {
if (x.isEmpty())
throw new IllegalArgumentException("Average of empty list")
else
(sum(x) / x.length())
}

We can try this out on a sample list:

val L1:List = List.cons(33,List.cons(66,List.cons(99,List.empty())))
println("Sum = " + sum(L1))
println("Average = " + average(L1))

which yields:

Sum = 198
Average = 66

15

Now, consider the following variant defining non-empty lists, the NEL1sT ADT:

CREATORS
singleton : (Int) -> NEList
cons : (Int, List) -> NEList
OPERATIONS
isEmpty : () -> Boolean
isSingleton : () -> Boolean
first : () -> Int
rest : () -> List
length : () -> Int
append : (List) -> NEList
find : (Int) -> Boolean
isEqual : (List) -> Boolean

with the expected specification:

singleton(n) .isEmpty () = false
cons(n, L) .isEmpty () = false

singleton(n) .isSingleton() = true

true if L.isEmpty() = true

cons(n, L) .isSingleton() =
& { false otherwise

singleton(n) .first() =n

cons(n,L) . first() = n

singleton(n) .rest() =L

cons(n,L).rest() =L

singleton(n).length() =1

cons(n,L) .length() =1+ L.length()
singleton(n) .append(M) = cons(n,M)

cons(n, L) .append (M) = cons(n,L.append(M))

t if n =
singleton(n) .find(f) = e mn f
false otherwise

true ifn=7f
cons(n,L).find(f) = ¢ true if L.find(f) = true

false otherwise

16

false if M .isEmpty() = true
t if M.first() =
singleton(n) .isEqual (M) = e irstO =n
and M .rest().isEmpty() = true

false otherwise

false if M .isEmpty () = true
cons(n, L) .isEqual (M) =< true ifn= M .first()
and L.isEqual (M .rest()) = true

Again, this is straightforward to implement using the Specification Design Pattern, without
knowing anything about the implementation of lists. Note that we do not need “bridge
methods” because we cleverly (!) defined the isEqual() and append() methods in NEList
to expect a List as argument, and not an NEList — in both cases because the operation
makes perfect sense when given a non-empty list.

object NEList {
def singleton (n:Int):NEList = new Singleton(n)
def cons (n:Int, L:List):NEList = new Cons(n,L)
// SINGLETON LIST REPRESENTATION
//
private class Singleton (n:Int) extends NEList {

def isEmpty ():Boolean = false

def isSingleton ():Boolean = true

def first ():Int n

def rest ():List = List.empty()

def length ():Int =1

def append (M:List):NEList = cons(n,M)
def find (f:Int):Boolean = (f==n)

def isEqual (M:List):Boolean = {

M.length()==1 && M.first()==n
}

17

override def equals (other:Any):Boolean =
other match {
case that:List => this.isEqual(that)
case _ => false

override def hashCode ():Int = 41
override def toString ():String = n.toString()

3

// CONS LIST REPRESENTATION

//

private class Cons (n:Int, L:List) extends NEList {
def isEmpty ():Boolean = false

def isSingleton ():Boolean = L.isEmpty()

def first ():Int n

def rest ():List =L

def length ():Int = 1 + L.lengthQ

def append (M:List):NEList = cons(n,L.append(M))

def find (f:Int):Boolean = { (f == n) || L.find(f) }

def isEqual (M:List):Boolean =
{ '(M.isEmpty()) && n==M.first() && L.isEqual(M.rest()) %}

override def equals (other:Any):Boolean =
other match {
case that:List => this.isEqual(that)
case _ => false

override def hashCode ():Int =
41 x (

18

41 + n.hashCode()
) + L.hashCode()

override def toString ():String = n + " " + L.toString()
}
}

abstract class NEList extends List {

def isEmpty () :Boolean

def isSingleton () :Boolean
def first ():Int

def rest ():List

def length ():Int

def find (f:Int):Boolean

def append (M:List):NEList
def isEqual (M:List):Boolean

We can certainly check that the previously defined sum() and average() functions work
with NEList, but we can do a bit better here. the average() function above needed to
check that the list was non-empty before computing the average. With an NEList, we do
not need to do this check. So we can define a variant of average() that works on NELists
and that does not perform that check. (We're using overloading to define a method with the
same name as before, but working on different types — recall that Scala will disambiguate
based on the static type of the argument.)

def average (x:NEList):Int = {
(sum(x) / x.length())
}

Trying it out on the previous list, but now reconstructed as a NEList:
val L2:NEList = NEList.cons(33,NEList.cons(66,NEList.singleton(99)))
println("Sum = " + sum(L2))
println("Average (no check) = " + average(L2))

which yields, as before

Sum = 198
Average (no check) = 66

19

The result is of course the same, but the average function now does not need to do the
emptiness check.

This may not look like a big win, but that’s because the example is rather simple. More
involved examples can be devised, for instance, a subtype of Atlas from your last homework
that guarantees that all the exits lead to room that actually occur in the atlas. I'll leave
that as an exercise.

20

