
Science of Computer Programming 167 (2018) 1–24
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Checking multi-view consistency of discrete systems with

respect to periodic sampling abstractions ✩

Maria Pittou a,∗, Panagiotis Manolios b,∗, Jan Reineke c, Stavros Tripakis a,∗
a Aalto University, Finland
b Northeastern University, United States of America
c Saarland University, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 June 2017
Received in revised form 15 June 2018
Accepted 4 July 2018
Available online 17 July 2018

Keywords:
Multi-view modeling
View consistency
Formal methods
Modeling
Verification

In multi-view modeling (MVM) the system under development is described by distinct
models, called views, which capture different perspectives of the system. Possible overlaps
of the views may give rise to inconsistencies. Following the formal MVM framework of [33],
the view consistency problem asks to check the consistency of a given set of views with
respect to a given set of abstraction functions. Existing work checks view consistency
of discrete systems (transition systems or finite automata) with respect to two types of
abstraction functions: (1) projections of state variables and (2) projections of an alphabet
of events onto a subalphabet. In this paper, we study view consistency with respect to
timing abstractions, specifically, periodic sampling, for automata and transition systems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Designing complex systems, such as distributed, embedded, or cyber-physical systems, is a challenging task. As many of
these systems are safety-critical, design by trial-and-error is not a viable option, and more rigorous methods such as model-
based design are preferred (see [38] for an overview). Model-based design often involves several experts and stakeholders,
or teams thereof, each having their own perspective, or view, of the system. These views are typically captured concretely
using different kinds of models [5,39,26]. These models cover different and potentially overlapping aspects of the system. In
such a multi-view modeling setting, a basic problem is to check that the views are consistent, i.e., that they do not contradict
each other [34,26]. A formal framework that allows one to reason about multi-view modeling in general, and provides a
mathematical definition of view consistency, has been proposed in [33]. In this paper we extend this formal framework
along multiple directions, as explained below.

In the MVM framework of [33], systems and views are formalized as sets of behaviors. View behaviors are obtained
by applying some kind of abstraction functions to system behaviors. In a nutshell, the view consistency problem can be
formulated as follows. Given a set of views V1, . . . , Vn , and corresponding abstraction functions α1, . . . , αn , does there exist
a system S such that Vi = αi(S) for all i = 1, . . . , n? If such a witness system S exists, then the views V1, . . . , Vn are deemed
consistent, otherwise they are deemed inconsistent.1

✩ This work was partially supported by the Academy of Finland and the U.S. National Science Foundation (awards #1329759, #1139138, and #1319580).
This paper is an extended and modified version of conference paper [27].

* Corresponding authors.
E-mail address: mpittou5@gmail.com (M. Pittou).

1 The framework of [33] allows for a more flexible definition of consistency where conformance of the view Vi to an abstracted system αi(S) need not
be equality. In this paper we use equality as the conformance relation.
https://doi.org/10.1016/j.scico.2018.07.003
0167-6423/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2018.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:mpittou5@gmail.com
https://doi.org/10.1016/j.scico.2018.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.07.003&domain=pdf

2 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
The formal framework of [33] is abstract, in the sense that it does not a priori prescribe how to specify behaviors,
systems, or views; neither does it specify what the abstraction functions are. This abstract framework has been instantiated
in previous work [33,32,28,27] along several dimensions:

• In [33], an instantiation of the abstract MVM framework is considered where systems and views are specified as
symbolic transition systems (STSs). The view consistency problem is studied w.r.t. abstraction functions which are pro-
jections of state variables.

• [32] extends the results of [33], by considering an instantiation of the abstract MVM framework where systems and
views are specified as automata (over finite or infinite words) and where abstraction functions are projections of the
alphabet of events onto a subalphabet.

• [28] further extends some of the results of [32] by studying the view consistency problem for the case of infinitary
languages, i.e., languages containing both finite and infinite words, and their corresponding representation as pairs of
automata over finite words and ω-automata.

• In all three papers [33,32,28], the abstraction functions considered are projections, either of state variables, or of events
in the alphabet. [27] considers a different kind of abstraction functions, namely, periodic sampling. This paper is the
journal version of [27] and extends its results along multiple dimensions, while also providing new results to the
general abstract multi-view modeling framework of [33].

Sampling is a widely used mechanism in observation, control, embedded software, and other settings, and therefore is
a natural choice to consider when studying different kinds of abstractions for MVM. There are different types of sampling
typically used in control, such as time-driven/periodic, or event-driven. In the former, the sampling points are determined
based on time, whereas in the latter, they are determined based on some event (e.g., some type of state change). In this
paper, we consider only time-driven and in fact periodic sampling. The study of other types of sampling abstractions is left
as future work. In periodic sampling the system is sampled at periodic intervals, i.e., at times 0, T , 2T , and so on, where T
is the period.

For instance, consider a drive-by-wire system in a modern car. In the final system running in the car, there may be several
sensors placed at different locations and monitoring different parts of the car, often by periodically sampling some physical
values (e.g., temperature, pressure, etc.). There may also be several control programs periodically executing, reading inputs
from the sensors (or receiving them from other programs), performing computations, and writing their outputs to actuators
(or sending them to other programs). The programs may communicate over networks which are themselves time-triggered,
and often periodic. The periods in the system need not all be the same. Such multi-periodic systems are very common in
the domain of embedded systems (e.g., see [7]) and naturally give rise to multi-periodic sampling abstractions. Although at
runtime the consistency of the different periodically-sampled views of the system is ensured (since by definition the witness
system under execution exists), this is not necessarily the case at design time. This is where the MVM framework can be
of use. In particular, when different design teams each employ a model of the system sampled at a different period, the
consistency of those models/views needs to be ensured.

As a concrete example, consider two views of the system, denoted V 2 and V 5. V 2 is supposed to model the behavior of
the system sampled with period 2, while V 5 models the behavior of the system sampled with period 5. Suppose that both
V 2 and V 5 assert that the system contains a certain boolean variable b, which is initially 0 and then alternates between 0
and 1 at every transition. Although it may at first appear that V 2 and V 5 are consistent with each other, they are not. The
reason is that V 2 asserts that b will be 0 at times 0, 4, 8, 12, and so on, and 1 at times 2, 6, 10, and so on. On the other
hand, V 5 asserts that b will be 0 at times 0, 10, 20, and so on, and 1 at times 5, 15, and so on. At time 10, there is an
inconsistency, as V 2 asserts b to be 1 while V 5 asserts b to be 0. Discovering such inconsistencies automatically (not only
for simple cases like this one, but for more complex and general models) can be achieved using the models and algorithms
provided in this paper.

Sometimes the sampling does not start at time 0 but at some other time called the initial phase. For simplicity, in this
paper we consider that the initial phase is 0. However, our results should be easy to extend to the general case (an example
of how this could be done is provided in Section 5.2).

This paper significantly extends the results of [27] on the study of MVM under multi-periodic sampling abstractions.
Specifically, the contributions of this paper are the following:

(1) We introduce the concept of canonical witness system candidate (see Section 4.3), namely, S# = ⋂n
i=1 α−1

i (Vi), where
α−1

i is the inverse of abstraction function αi . S# is important as it provides a necessary and sufficient condition for check-
ing view consistency (Theorem 5). In particular, views V1, . . . , Vn are consistent iff S# is a valid witness, i.e., iff for all
i = 1, . . . , n, αi(S#) = Vi . The concept of canonical witness system candidate extends the abstract multi-view modeling
framework of [33], as it is a general result which holds independently of the particular instantiation of the framework. The
concept can be used in any instance of the framework, and is indeed used to derive algorithms for the several instances of
the view consistency problem studied in this paper.

(2) We introduce and study the multi-view consistency problem for views represented as non-deterministic Büchi au-
tomata (NBA) and periodic sampling abstraction functions on infinite words. Such a periodic sampling function takes an
infinite word w and returns a new infinite word by taking one out of every T letters in w , where T is the given period.
We solve the multi-view consistency problem in this setting by applying the necessary and sufficient condition from contri-

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 3
bution (1) above. To this end, we develop methods to compute the canonical witness system candidate in the NBA setting.
This involves being able to compute forward and inverse periodic samplings of ω-regular languages as represented by their
corresponding NBA. We provide such methods, which proves closure of ω-regular languages with respect to forward and
inverse periodic sampling. In the process, we need to consider NBA with ε-transitions, and we provide a method to elim-
inate such transitions while preserving the language of the NBA. All these results extend the results of [27]. Although [27]
considers periodic sampling abstraction functions, the setting there is that of STSs, and not that of ω-regular languages and
NBA, which are novel contributions of this work. STSs lack acceptance conditions and hence cannot capture liveness prop-
erties. Büchi automata can model liveness. On the other hand, Büchi automata are not symbolic. Therefore, both models are
useful to consider. We also note that symbolic transition systems and Büchi automata are both standard formalisms used by
widespread verification tools such as SMV [25] or Spin [14].

(3) We re-consider the setting of STSs and periodic sampling abstraction functions of [27]. The problem of checking
view consistency in that setting was already studied in [27], but only a sound and incomplete algorithm was provided
there. In this paper, we provide a novel, sound and complete method to solve the problem. The method applies the generic
necessary and sufficient condition from (1) and relies on computing the canonical witness system candidate in the STS
setting. For this computation, closure properties of STSs with respect to forward and inverse periodic sampling abstraction
functions are studied. As in [27], STSs with observable and unobservable variables are considered, and both the classes of
FOSs (fully-observable systems) and nFOSs (non-fully-observable systems) are considered and their closure w.r.t. forward
and inverse periodic sampling is examined. We show that both FOSs and nFOSs are closed under forward periodic sampling,
but only nFOSs are generally closed under inverse periodic sampling.

(4) We also answer another question left open in [27]. There, three variants of the view consistency problem were
proposed. Using the numbering in this paper: Problem 3, which simply asks for a semantic witness system (i.e., a set of
behaviors); Problem 4, which asks for a witness system that can be represented as an nFOS; and Problem 5, which asks for
a witness system that can be represented as a FOS. While it is clear that existence of a FOS witness implies existence of an
nFOS, and that the latter implies existence of a semantic witness, the reverse directions are not obvious. The non-equivalence
of Problems 4 and 5 was shown in [27] but the question whether Problems 3 and 4 are equivalent was left open. In this
paper, we show that Problems 3 and 4 are equivalent, that is, the existence of a semantic witness implies the existence of
an nFOS witness.

(5) We have added several new examples throughout the paper, plus two complete examples illustrating the process of
checking view consistency in the NBA and the STS settings in Sections 5.5 and 6.5, respectively.

2. Related work

Multi-view modeling is a well-known concept in the software and system engineering communities, (cf., standards such
as ISO 42010 [16]). Existing work mainly focuses on designing architectures that combine various modeling tools or ele-
ments of these tools [5,12]. Then, checking for multi-view consistency consists in checking the consistency of the different
architectures. Consistency problems on the behavioral aspects of a system have been discussed widely within the context
of multi-modeling languages such as UML [31,41,9,22,23] and SysML [34]. Architectural views and structural consistency
notions are also studied in [4,3,24]. A static, logic-based setting for consistency is also studied in [11].

The above work focuses on architectural, structural, and generally static notions of views. In this work we consider only
behavioral aspects of systems, and in that sense, our approach focuses on dynamics. Dynamical, behavioral views are also
studied in [29,30] within the context of cyber-physical systems. The aim there is mainly aiding the verification process,
rather than checking view consistency. [31] follows a “hybrid” approach, where model-checking techniques are used to
check consistency between class diagrams and state machines.

In our framework, view consistency problems admit a yes/no answer. This may be too strict in some contexts, and indeed,
some work follows a more lenient approach which may leave room for inconsistencies [10], or opt for more light-weight
detection and tracking of ontological overlaps [36].

Other approaches to multi-view modeling include interface theories [8,13], specification and abstraction/refinement theo-
ries [17,6], and contract theories [2]. In aspect-oriented modeling [20], aspects are used instead of views in order to describe
tangled and scattered behaviors across a system. Similarly to multi-view modeling, the main concern is again to identify
conflicts among the multiple aspects. Several multi-view modeling techniques encompass metamodeling methods [19,18] in
order to transform the views into a common metamodel and capture their dependencies. Extensive surveys of multi-view
modeling approaches can be found in [1,26].

Our work follows the setting introduced in [33] and further investigated in [32,28]. However, the abstraction functions
studied in this paper are different from those considered in the papers above, as stated in the introduction. This paper is a
modified version of conference paper [27]. Compared to [27] and previous publications [33,32], new material in this paper
includes: Section 4.3 on the canonical witness system candidate, with the necessary and sufficient condition for view consis-
tency Theorem 5; Section 5 on the instantiation of the multi-view modeling framework to the case of ω-regular languages
represented as Büchi automata, and periodic sampling abstraction functions; Section 6.4 on solving view consistency prob-
lems in the case of STSs using new sound and complete methods (the sound but incomplete algorithm proposed in [27] has
been omitted from this paper); extensive revisions compared to [27] in the constructions of forward and inverse periodic

4 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
samplings of STSs (Sections 6.2 and 6.3); Section 3.1.4 on eliminating ε-transitions from Büchi automata; Section 3.2.4 on
transforming nFOSs to Büchi automata; and two complete examples in Sections 5.5 and 6.5.

3. Background: automata and transition systems

Sets and functions Let S denote an arbitrary finite set: |S| denotes its cardinality. For any set S , we use P(S) or 2S to denote
its powerset. Also: B = {0, 1} is the set of booleans, N = {0, 1, 2, . . .} is the set of natural numbers and N>0 = {1, 2, . . .}. The
notation f : A → B is used to denote a function f from set A to set B .

Alphabets, finite words, infinite words, ε-elimination A finite alphabet � is a non-empty finite set of symbols. As usual, ε
denotes the empty word, �∗ is the set of all finite words over �, and �ω is the set of all infinite words over �. We denote
a finite (resp. infinite) word over some alphabet � by w = a0 · · ·an−1 (resp. w = a0a1 · · ·), where ai ∈ � for all 0 ≤ i ≤ n − 1
(resp. for all i ≥ 0). Consider, for example, the alphabet � = {a, b, c}. Then cb, aabbcc ∈ �∗ , and abbb · · · = abω, abcabc · · · =
(abc)ω ∈ �ω , where uω denotes the infinite repetition of finite word u. It is sometimes convenient to consider ε to be
a special symbol, not in �. Then, given a word w over � ∪ {ε}, the ε-elimination of w is the new word w ′ obtained
by removing from w all ε symbols, so that w ′ is a word over �. For example, if w = aεεbcε then its ε-elimination is
w ′ = abc.

Languages A ∗-language (star language) L on � is a set of finite words, subset of �∗ , i.e., L ⊆ �∗ , and an ω-language
(omega language) L on � is a set of infinite words, subset of �ω , i.e., L ⊆ �ω . For example, consider the alphabet � = {a, b}.
Then, L1 = a∗b∗ ⊆ �∗ is a star language and L2 = a∗(ba)ω ⊆ �ω is an omega language, where u∗ denotes a finite number of
zero or more repetitions of finite word u.

Complexity classes We use P, NP, PSPACE, etc. for the standard complexity classes [21].

3.1. Automata

3.1.1. Nondeterministic Büchi automata
A nondeterministic Büchi automaton (NBA for short) over a finite alphabet �, is a tuple A = (Q , �, Q 0, �, F), where Q

is the finite set of states, � is the alphabet, Q 0 ⊆ Q is the set of initial states, � ⊆ Q ×� × Q is the transition function, and
F ⊆ Q is the set of final states. When (q, a, q′) ∈ �, we write q a→ q′ . A run P w of A over an infinite word w = a0a1 · · · ∈ �ω

is an infinite sequence P w : (q0, a0, q1)(q1, a1, q2) · · · such that q0 ∈ Q 0 is an initial state and (qi, ai, qi+1) ∈ � for every i ≥ 0.
For every run P w of A over an infinite word w ∈ �ω we denote with Inf (P w) the set of states occurring an infinite number
of times along P w . Then, a run P w of A over w ∈ �ω is called accepting if Inf (P w) ∩ F �= ∅. An infinite word w ∈ �ω

is accepted by A if there is an accepting run P w of A over w . The language accepted by A, written L(A), is the omega
language containing the set of all infinite words accepted by A: L(A) = {w ∈ �ω | ∃ infinite accepting run P w of A over w}.
A language L is called ω-regular if there exists a Büchi automaton A over � accepting L, i.e., L = L(A).

3.1.2. Closure properties of NBA under union and intersection
Next, we recall the closure of NBA under union and intersection. The latter result is necessary for the application of the

theory presented in Section 5.

Lemma 1. [37] Let A1 = (Q 1, �, Q 01 , �1, F1) and A2 = (Q 2, �, Q 02 , �2, F2) be two NBA. Let A1 ⊕ A2 = (Q 1 ∪ Q 2, �, Q 01 ∪
Q 02 , �, F1 ∪ F2) where � = {(q, σ , q′) | (q, σ , q′) ∈ �1 or (q, σ , q′) ∈ �2}. Then, L(A1 ⊕ A2) = L(A1) ∪ L(A2).

Lemma 2. [37] Let A1 = (Q 1, �, Q 01 , �1, F1) and A2 = (Q 2, �, Q 02 , �2, F2) be two NBA. Let A1 ⊗ A2 = (Q 1 × Q 2 ×
{1, 2}, �, Q 01 × Q 02 × {1}, �, Q 1 × F2 × {2}) where � = {((q1, q2, 1), σ , (q′

1, q
′
2, j)) | (q1, σ , q′

1) ∈ �1 and (q2, σ , q′
2) ∈

�2 and if q1 ∈ F1 then j = 2 else j = 1} ∪ {((q1, q2, 2), σ , (q′
1, q

′
2, j)) | (q1, σ , q′

1) ∈ �1 and (q2, σ , q′
2) ∈ �2 and if q2 ∈ F2 then

j = 1, else j = 2}. Then, L(A1 ⊗ A2) = L(A1) ∩ L(A2).

3.1.3. Nondeterministic Büchi automata with epsilon transitions
In Section 5 we study problems that necessitate both the use of a variant of NBA with “silent” or ε-transitions and the

elimination of such transitions with the aim of obtaining a standard NBA accepting an equivalent language. Although the
elimination of ε-transitions is standard for finite automata over finite words [15], we have not managed to find a published
procedure to eliminate ε-transitions in NBA. Therefore we propose such a procedure here.

An NBA with ε-transitions over alphabet � is an NBA over � ∪ {ε}, where ε is the empty-word symbol, assumed to be
not in �. That is, an NBA with ε-transitions is a tuple A = (Q , � ∪{ε}, Q 0, �, F), where � ⊆ Q × (� ∪{ε}) × Q , with ε /∈ �.
A can have transitions of two kinds: either of the form (q, a, q′), where a ∈ �, or (q, ε, q′). The latter is an ε-transition. Such
transitions do not “add letters” to the word accepted by the automaton. Formally, consider an infinite word w = x0x1 · · ·
over � ∪{ε}. That is, every xi can be either a symbol in �, or ε . A run P w of A over w is an infinite sequence of transitions

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 5
(q0, x0, q1)(q1, x1, q2) · · · such that q0 ∈ Q 0 and (qi, xi, qi+1) ∈ � for every i ≥ 0. P w is accepting if it visits a state in F
infinitely many times. A word w ′ ∈ �ω is accepted by A if w ′ is the ε-elimination of some word w ∈ (� ∪ {ε})ω and A has
an accepting run over w . The language of A, L(A) ⊆ �ω , is the omega language containing the set of all infinite words over
� that are accepted by A.

In the sequel, we use the notation ε∗→ for the reflexive transitive closure of ε→, i.e., of ε-transitions. Namely, q ε
∗→ q′ iff

q = q′ or � contains a set of transitions (q, ε, q1), (q1, ε, q2), . . . , (qk, ε, q′), for some k ≥ 0.
In what follows, when we say Büchi automaton or NBA we implicitly mean a Büchi automaton without ε-transitions.

When we want to say that the automaton may have ε-transitions, we state that explicitly.

3.1.4. Eliminating epsilon transitions from NBA
Given an NBA with ε-transitions A, we want to produce a standard NBA A′ (without ε-transitions) such that L(A) =

L(A′). Let A = (Q , � ∪ {ε}, Q 0, �, F). Define A′ = (Q , �, Q 0, �′, F), where: �′ = {(q, a, q′) | a ∈ � ∧ ∃q1, q2 ∈ Q : q ε
∗→ q1

a→
q2

ε∗→ q′}.

Theorem 1. L(A) = L(A′).

Proof. Let w ∈ L(A′) and consider an accepting run P ′
w = (q0, a0, q1)(q1, a1, q2) · · · of A′ over w . By construction of �′ , for

every i ≥ 0, there exist some states q̄i and q̄i
′ such that qi

ε∗→ q̄i , q̄i
ai→ q̄i

′ , and q̄i
′ ε∗→ qi+1 are transitions and runs of �.

We construct a run P w of A over w , such that for every i ≥ 0, the transition (qi, ai, qi+1) of P ′
w is replaced with the finite

subrun qi
ε∗→ q̄i

ai→ q̄i
′ ε∗→ qi+1. Every state visited infinitely often in P ′

w is also visited infinitely often in P w . Specifically,
every accepting state visited infinitely often in P ′

w is also visited infinitely often in P w . Therefore, and since P ′
w is an

accepting run of A′ , P w is an accepting run of A over w . Hence, w ∈ L(A).
Conversely, let w ∈ L(A). Note that w is by definition an infinite word in �ω . Let w = a0a1 · · · , with ai ∈ � for all i ≥ 0.

Consider an accepting run P w of A over w . P w must be comprised of segments of the form

P w = q0
ε∗→ q̄0

a0→ q1
ε∗→ q̄1

a1→ q2 · · ·qi
ε∗→ q̄i

ai→ qi+1 · · · .

Let Q i be the set of states appearing in qi
ε∗→ q̄i and notice that

P ′
w = q0

a0→ q′
1

a1→ q′
2 · · ·q′

i
ai→ q′

i+1 · · ·
is a run of A′ over w , when q′

i ∈ Q i for all i > 0, no matter how the q′
i are chosen, because:

for all i ≥ 0,q′
i

ε∗→ q̄i
ai→ qi+1

ε∗→ q′
i+1 in �, so q′

i
ai→ q′

i+1 in �′ (where q′
0 = q0).

Since P w is accepting, there exists some final state, say q, that appears infinitely often in P w , i.e., q is an element of Q i
for infinitely many i. Hence, P ′

w is also an accepting run of A′ over w , if we define q′
i , for i > 0, as follows: q′

i = q when
q ∈ Q i and q′

i = qi otherwise. Since q appears in infinitely many Q i , it appears infinitely often in P ′
w and we established

above that P ′
w is a run of A′ over w , so it is also an accepting run, i.e., w ∈ L(A′). �

Theorem 2. Given an NBA with ε-transitions A = (Q , � ∪{ε}, Q 0, �, F) we can construct an equivalent NBA A′ without ε-transitions
in O (|Q |3 +|�| · |Q |2) time and O (|�| · |Q |2) space. Thus, the problem of transforming an NBA with ε-transitions into an equivalent
NBA without ε-transitions is in P.

Proof. Let A′ = (Q , �, Q 0, �′, F) where �′ = {(q, a, q′) | a ∈ � ∧ ∃q1, q2 ∈ Q : q ε
∗→ q1

a→ q2
ε∗→ q′}. The transitive closure of

epsilon transitions in A can be determined by Warshall’s algorithm [40], which has run time complexity O (|Q |3). Then,
constructing the NBA A′ takes at most |�| · |Q |2 steps. Therefore, the construction of A′ requires O (|Q |3 + |�| · |Q |2) time.
Since A′ has the same set of states Q as the original NBA A, we have that A′ has at most |�| · |Q |2 transitions, i.e., requires
O (|�| · |Q |2) space. �
Example 1. Consider the NBA A with ε-transitions over � = {b, c}, shown in the left part of Fig. 1. Eliminating ε-transitions
from A results in the equivalent NBA A′ shown in the right part of Fig. 1.

3.2. Symbolic transition systems

We consider finite state transition systems described symbolically, as in [33]. The state space of a transition system is
described by a (finite) set of boolean variables X , resulting in 2n states where n = |X |, and a state s over X is a function
s : X → B. A behavior over X is an infinite sequence of states over X , σ = s0s1 · · · , where si is the state at position i. We

6 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Fig. 1. Example of NBA epsilon removal. NBA A over � = {b, c} ∪ {ε} and equivalent NBA A′ without ε-transitions.

denote with U(X) the set of all possible behaviors over X . Semantically, a transition system S over the state space X is a set
of behaviors over X , i.e., S ⊆ U(X).

To represent transition systems syntactically, we use a finite-state symbolic representation.2 In the sequel we use the term
symbolic transition system to distinguish the syntactic object defined below, from the semantic object (set of behaviors).
Notation-wise, semantic transition systems are denoted by S and symbolic transition systems are denoted by S . Note that
our transition systems have no notion of accepting conditions. Throughout this paper, we are interested only in the infinite
behaviors generated by those systems (as these have good closure properties after periodic sampling), and hence behaviors
that deadlock (i.e., finite ones) are neglected.

As in [33,32], we consider symbolic transition systems of two kinds: first, fully-observable systems where all variables are
observable; second, non-fully-observable systems which also have internal, unobservable variables. The latter are introduced
because fully observable systems are not always closed under operations such as union [33]. As it turns out, fully-observable
systems are also not generally closed under the various abstraction functions (or their inverses) considered in this paper.

3.2.1. Fully-observable symbolic transition systems
A fully-observable symbolic transition system (FOS for short) is a triple S = (X, θ, φ) where X is the finite set of boolean

variables, θ is a boolean expression over X characterizing the set of all initial states, and φ is a boolean expression over
X ∪ X ′ , where X ′ = {x′ | x ∈ X} is the set of next state variables. φ captures the transition relation: it characterizes pairs of
states (s, s′) representing a transition from s to s′ . We write θ(s) to denote that s satisfies θ . We write φ(s, s′) to denote
that the pair (s, s′) satisfies φ, i.e., that there is a transition from s to s′ .

A behavior of a FOS (X, θ, φ) is an infinite sequence of states over X , σ = s0s1 · · · , such that σ can be generated by the
FOS, i.e., such that θ(s0) and ∀i : φ(si, si+1). We denote by � S � the set of all behaviors of S .

3.2.2. Non-fully-observable symbolic transition systems
Fully-observable systems can be extended with a set of internal, unobservable state variables. Before describing how these

are used, we introduce the notion of a hiding function.
Consider a state s over the set of variables X and a subset Y ⊆ X . The hiding function hY projects s onto the set of

variables Y , hence hY hides from s all variables in X \ Y . Then hY (s) is defined to be the new state s′ , that is, s′ : Y → B

such that s′(x) = s(x) for every x ∈ Y . We extend hiding to behaviors and systems in the standard way. If σ = s0s1 · · · is a
behavior over X , then hY (σ) is a behavior over Y defined by hY (σ) = hY (s0)hY (s1) · · · . If S is a transition system over X
and Y ⊆ X , then hY (S) = {hY (σ) | σ ∈ S}.

Formally, a non-fully-observable symbolic transition system (nFOS for short) is a tuple S = (X, Z , θ, φ) where X, Z are
disjoint finite sets of variables such that X describes the set of observable variables, and Z the set of internal (unobservable)
variables. The initial condition θ is a boolean expression over X ∪ Z , and the transition relation φ is a boolean expression
over X ∪ Z ∪ X ′ ∪ Z ′ .

A behavior of an nFOS S = (X, Z , θ, φ) is an infinite sequence of states over X ∪ Z which can be generated by S , in the
same manner as with behaviors generated by a FOS. The observable behavior of a behavior σ over X ∪ Z is the behavior
hX (σ) over X . In what follows we denote by � S � the set of all behaviors of S (over X ∪ Z), and by � S �o the set of its
observable behaviors (over X). If S has no internal variables, i.e., if Z = ∅, then S is a FOS and we have � S � = � S �o .

3.2.3. Closure and non-closure properties of FOSs and nFOSs under union and intersection
In the sequel, we recall the closure and non-closure properties of FOSs and nFOSs with respect to the operations of union

and intersection, studied in [33,32]. Some of these properties will be used in Section 6.

Lemma 3. [33,32] Fully-observable systems over a set of variables X are not closed under union, i.e., there exist S1 = (X, θ1, φ1) and
S2 = (X, θ2, φ2) such that there is no S = (X, θ, φ) such that � S � = � S1 � ∪ � S2 �.

Lemma 4. [33,32] Let S1 = (X, θ1, φ1) and S2 = (X, θ2, φ2) be two FOSs and let S1 ⊗ S2 = (X, θ1 ∧ θ2, φ1 ∧ φ2). Then, � S1 ⊗ S2 � =
� S1 � ∩ � S2 �.

2 Our syntactic representation is finite state, and therefore it cannot capture all possible semantic transition systems, since there are infinite sets that
cannot be represented in a finite way.

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 7
Fig. 2. Example nFOS-to-NBA transformation: from the nFOS S (left) to the NBA AS (right).

Lemma 5. [33,32] Let S1 = (X, Z1, θ1, φ1) and S2 = (X, Z2, θ2, φ2) be nFOSs, such that Z1 ∩ Z2 = ∅. Let z be a fresh variable not in
X ∪ Z1 ∪ Z2 . Let: S1 ⊗ S2 = (X, Z1 ∪ Z2, θ1 ∧θ2, φ1 ∧φ2) and S1 ⊕ S2 = (X, Z1 ∪ Z2 ∪{z}, (θ1 ∧ z) ∨(θ2 ∧¬z), (z → φ1 ∧ z′) ∧(¬z →
φ2 ∧ ¬z′)). Then, � S1 ⊗ S2 �o = � S1 �o ∩ � S2 �o and � S1 ⊕ S2 �o = � S1 �o ∪ � S2 �o .

3.2.4. Transformation of nFOSs to Büchi automata
As shown in Section 6.4, we can reduce view consistency problems for nFOSs to checking view consistency for Büchi

automata. In order to achieve this, we need to be able to convert an nFOS to a Büchi automaton. In the sequel we show
how we can obtain such a transformation from nFOSs to NBA.3

Consider an nFOS S = (X, Z , θ, φ). We want to construct an NBA A S , such that � S �o = L(A S). We define A S =
(Q , �, Q 0, �, F) such that Q is the set of functions from X ∪ Z to B, � is the set of functions from X to B, Q 0 = {q ∈ Q |
θ(q)}, F = Q , and the transition function � ⊆ Q × � × Q is defined by � = {(q, a, q′) | φ(q, q′) and a = hX (q)}. The idea of
the transformation is that a transition (q, q′) in S is mapped into a transition (q, a, q′) in A S where a is the observable part
of the state q.

Theorem 3. Let S and A S be as above. Then: (1) The observable behaviors of S coincide with the language of A S , i.e., � S �o = L(A S).
(2) The problem of constructing NBA A S from nFOS S such that � S �o = L(A S), is in EXPTIME.

Proof. First we prove part (1), namely that � S �o = L(A S). Let σ = s0s1 · · · ∈ � S �o . Then there exists some behavior σ ′ =
s′

0s′
1 · · · ∈ � S � such that hX (σ ′) = σ . Moreover, θ(s′

0) and φ(s′
i, s

′
i+1) for i ≥ 0, and by definition of A S , we get that s′

0 ∈
Q 0 and (s′

i, ai, s′
i+1) ∈ � where ai = hX (s′

i), i.e., ai = si , for i ≥ 0. Then, we define the path Pσ of A S over σ by Pσ =
(s′

0, s0, s′
1)(s′

1, s1, s′
2) · · · , which is moreover accepting because by construction of A S , s′

i ∈ F for every i ≥ 0. Hence, σ ∈ L(A S)

and � S �o ⊆ L(A S).
Conversely, let w = a0a1 · · · ∈ L(A S) and consider the accepting path P w = (q0, a0, q1)(q1, a1, q2) · · · of A S over w , where

qi ∈ F for every i ≥ 0. By definition of A, the following conditions hold: (i) θ(q0) because q0 ∈ Q 0; (ii) φ(qi, qi+1) and (iii)
hX (qi) = ai , because (qi, ai, qi+1) ∈ � for i ≥ 0. Then, by (i) and (ii) we get q0q1 · · · ∈ � S �. Therefore, hX (q0q1 · · ·) ∈ � S �o ,
which by (iii) implies that w = a0a1 · · · ∈ � S �o , and we are done.

Next, we consider part (2), the complexity analysis. Let n = |X | + |Z |. Let A S = (Q , �, Q 0, �, F) be defined according to
the construction before Theorem 3. Then, we have that |Q | = 2|X∪Z | = 2m+n . Also, the number of transitions in the worst
case is |�| = |Q | · |Q | = 22(m+n) , because if θ = true, then the system moves from any of the |Q | states to any other state.
Therefore, the space complexity of the construction of A S is O (22(m+n)). This is not surprising, since NBA are explicit-state,
whereas nFOSs are symbolic, which can be exponentially more succinct. For the time complexity, we additionally have to
account for the time it takes to evaluate θ and φ for each valuation of the variables. Given a particular valuation of the
variables, it is feasible to evaluate θ and φ in time polynomial in their sizes |θ | and |φ| and the number of variables n + m.
Thus, the time complexity of the construction of A S is O (22(m+n) · poly(|θ |, |φ|, n + m)) which is in EXPTIME. �
Example 2. Consider the nFOS S = (X = {x1, x2}, Z = {z}, θ, φ), where θ and φ are defined as shown in Fig. 2 (left). Then,
the NBA A S that corresponds to nFOS S , is shown in the right part of Fig. 2. We have that � S �o = L(A)S .

3.2.5. Equivalence checking of nFOSs
In order to solve the view consistency problem for symbolic transition systems we need to be able to check equivalence

of nFOS systems w.r.t. their observable behaviors. In the sequel, we provide a theorem which proves that the equivalence
problem of nFOS systems w.r.t. their observable behaviors is decidable in EXPSPACE. The subsequent material is used in
Section 6.

Theorem 4. Given nFOS systems S1 = (X, Z1, θ1, φ1) and S2 = (X, Z2, θ2, φ2), where Z1 ∩ Z2 = ∅, checking whether � S1 �o = � S2 �o

is in EXPSPACE.

3 Although we can transform nFOSs to NBA, the inverse transformation is not generally possible. This is because nFOSs have no acceptance conditions,
therefore they cannot capture Büchi acceptance conditions.

8 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Proof. Consider two nFOS systems Si = (Xi, Zi, θi, φi) for i = 1, 2. By Theorem 3 we can construct for S1 and S2 the NBA
A S1 and A S2 , respectively, such that � S1 �o = L(A S1) and � S2 �o = L(A S2). By Theorem 3 we have that the construction of
each NBA A Si is in EXPTIME and that the resulting automata are at most exponential in the size of the input nFOS systems.
Also the problem of checking L(A S1) = L(A S2) is an instance of the nondeterministic Buchi automaton (NBA) equivalence
problem, which is in PSPACE [35]. Hence, checking whether S1 and S2 are equivalent w.r.t. their observable behaviors, is
decidable and is in EXPSPACE. �
Remark 1. The above theorem is a special case of a similar result (Theorem 3.4) studied in [33,32], which compares the ob-
servable behaviors of nFOS systems w.r.t. an arbitrary partial order. However, the complexity in Theorem 4 is different from
the PSPACE result proved in Theorem 3.4 of [32]. In the latter, the complexity is computed in terms of explicit-state repre-
sentation of the systems rather than in terms of the size of their symbolic representation. On the other hand, Theorem 4
uses the symbolic representation of nFOS systems, which can be exponentially more succinct. This justifies the discrepancy
between the two complexity results.

4. Multi-view modeling

In this section, we recall the formal multi-view modeling framework proposed in [33] and also followed in the journal
version of that paper [32]. We also provide, in Section 4.3, a new result, not contained in [33,32]. This result is a generic
theorem providing a necessary and sufficient condition for view consistency independent of the particular instantiation of
systems, views, and abstraction functions. The result (Theorem 5) is used in subsequent sections to derive algorithms for
checking view consistency in specific instances of the abstract framework.

4.1. Systems, views, and abstraction functions

Following [33], a system is a set of behaviors. The framework is semantic and abstract, in the sense that there is no
restriction on the types of behaviors considered. The set of all possible system behaviors is denoted U . A system S is a
subset of U : S ⊆ U .

A view is also a set of behaviors, but the view behaviors “live” in a different domain than the system behaviors (cf.
examples in [33,32]). Intuitively a view is an incomplete picture of a system, and may therefore be obtained by some kind
of abstraction, of the system behaviors. Formally, let Di denote the i-th view domain, i.e., the universe of behaviors of the
i-th view.4 A view Vi from the i-th viewpoint is a subset of Di : Vi ⊆ Di . The abstraction function corresponding to the i-th
viewpoint is a function αi : U →Di , for i = 1, . . . , n and n ∈ Z>0.

We lift abstraction functions to sets in the usual way: αi : 2U → 2Di , where for S ⊆ U :

αi(S) = {αi(ρ) | ρ ∈ S}
Moreover, we also define the inverse (image) of an abstraction function in the usual way: α−1

i : 2Di → 2U , where for
V ⊆Di :

α−1
i (V) = {ρ ∈ U | αi(ρ) ∈ V}

or equivalently

α−1
i (V) =

⋃
{S ⊆ U | αi(S) = V}.

4.2. View consistency

In multi-view modeling, the system S is typically unknown. Instead, only the views are available. Then, the following
questions arise: are the views consistent with each other? and what does consistency mean formally? The formal framework de-
veloped in [33,32] proposes a versatile definition of view consistency which is parameterized by a notion of conformance.
In the strictest case, conformance is modeled by equality. For simplicity, we only consider this strict notion of view consis-
tency, w.r.t. =, in this paper. Formally, a set of views V1, . . . , Vn over view domains D1, . . . , Dn , are consistent with respect
to a set of abstraction functions α1, . . . , αn , if there exists a system S over U so that Vi = αi(S), for all i = 1, . . . , n. We call
such a system S a witness to the consistency of V1, . . . , Vn . If there is no such system, then we conclude that the views are
inconsistent. For the special case where n = 1 (i.e., when we have just one view V1) we say that S is a witness to the lonely
consistency of V1.

The proof of the following lemma is straightforward and is omitted.

Lemma 6 (Monotonicity of abstraction functions and their inverses). Let αi be an abstraction function, and let α−1
i be its inverse. We

have: (1) If S ⊆ S ′ then αi(S) ⊆ αi(S ′). (2) If V ⊆ V ′ then α−1
i (V) ⊆ α−1

i (V ′). (3) α−1
i (αi(S)) ⊇ S . (4) αi(α

−1
i (V)) = V .

4 There is no a priori relation between the system domain U and the view domain Di .

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 9
4.3. The canonical witness system candidate and its use in a necessary and sufficient condition for view consistency

Given views V1, . . . , Vn and the corresponding abstraction functions α1, . . . , αn , we define the following system, called
the canonical witness system candidate, and denoted by S#:

S# =
n⋂

i=1

α−1
i (Vi) (1)

Note that α−1
i (Vi) ⊆ U , for all i, therefore also S# ⊆ U , which means that S# is indeed a system (i.e., a set of behaviors in

U).

Theorem 5. V1, . . . , Vn are consistent iff for all i = 1, . . . , n, αi(S#) = Vi .

Proof. If part: If for all i = 1, . . . , n, αi(S#) = Vi then S# is a valid witness system, and therefore by definition the views are
consistent.

Only if part: Suppose that the views are consistent. So there exists a witness system S . We need to show that S# is also
a valid witness. Pick an index i in the range 1, . . . , n. We know that αi(S) = Vi . By Lemma 6, α−1

i (αi(S)) ⊇ S . Therefore,
S ⊆ α−1

i (Vi). Since this holds for all i = 1, . . . , n, we also have S ⊆ ⋂n
i=1 α−1

i (Vi), i.e., S ⊆ S#. By Lemma 6, αi(S) ⊆ αi(S#),
i.e., Vi ⊆ αi(S#), for all i = 1, . . . , n. To show that S# is a valid witness, it remains to show that also Vi ⊇ αi(S#), for all
i = 1, . . . , n. Pick an index i in the range 1, . . . , n. By definition of S#, we have S# = ⋂n

i=1 α−1
i (Vi) ⊆ α−1

i (Vi). By Lemma 6,
αi(S#) ⊆ αi(α

−1
i (Vi)), and by Lemma 6, αi(S#) ⊆ Vi . �

Remark 2. In the proof of Theorem 5 it is shown that S# ⊇ S for any other witness S . This means that the canonical
witness S# is the most general witness (i.e., the greatest w.r.t. the subset order).

Theorem 5 suggests the following generic algorithm to check the consistency of multiple views:

1. Compute the canonical witness system candidate S#. This in itself involves computing the inverse abstractions α−1
i (Vi)

and then calculating their intersection.
2. Compute the abstractions αi(S#) of S#, and check whether they are equal to the corresponding views Vi .

In Sections 5 and 6 we show how to instantiate this generic algorithm for systems and views represented by Büchi
automata and symbolic transition systems, respectively, where abstraction functions perform periodic sampling.

Remark 3. Note that when n = 1, the single view V1 ⊆D1 is always consistent to itself provided that a−1
1 (V1) exists. Indeed,

in that case the canonical witness is S# = a−1
1 (V1).

5. Multi-view consistency of Büchi automata w.r.t. periodic sampling

In this section we instantiate the multi-view modeling framework to the case where systems and views are described
by Büchi automata, and where abstraction functions perform periodic sampling. We show how the multi-view consistency
problem can be solved in this setting by applying Theorem 5. This involves showing how to implement on Büchi automata
the various operations needed to compute the canonical witness system candidate from (1) and check that its forward
periodic sampling equals each corresponding view.

5.1. Periodic sampling of infinite words and languages

A period is any T ∈ N>0. We define the periodic sampling of an infinite word so that one out of every T letters of
the word is selected and the rest are discarded. For simplicity, we assume that there is no initial offset, i.e., the periodic
sampling starts at position 0. Let w = a0a1a2 · · · ∈ �ω be an infinite word, with ai ∈ �, for all i ≥ 0. Let w(i) denote ai . We
define the periodic sampling abstraction function w.r.t. T , αT : �ω → �ω , where for given word w ∈ �ω , αT (w) is the word
w ′ ∈ �ω such that w ′(i) = w(i · T). For instance, if T = 2 and w = a0a1a2 · · · , then w ′ = a0a2a4 · · · . We “lift” αT to sets of
words in the usual way. If L ⊆ �ω is a set of words, then αT (L) = {αT (w) | w ∈ L}. In what follows we refer to periodic
sampling abstraction functions simply by periodic sampling. Note that αT is an abstraction function from system domain
U = �ω to view domain D = �ω .

The inverse abstraction function, which we will call inverse periodic sampling, is the function α−1
T : 2�ω → 2�ω

, defined as
explained in Section 4.1, namely: α−1(L) = {w ∈ �ω | αT (w) ∈ L}.
T

10 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Fig. 3. Example of NBA periodic sampling. NBA A over � = {a,b}, and Aε , aT (A), obtained with period T = 2.

5.2. Periodic sampling of Büchi automata

Given a Büchi automaton (without ε-transitions) A, and a period T , we want to construct a new Büchi automaton
(without ε-transitions) denoted αT (A), such that L(αT (A)) = αT (L(A)). We will show that such a construction indeed exists,
which proves that Büchi automata (or equivalently, ω-regular languages) are closed under (forward) periodic sampling. We
assume T ≥ 2 (if T = 1 then αT (A) is identical to A).

Let A = (Q , �, Q 0, �, F). We first define Aε , which is a Büchi automaton with ε-transitions:

Aε = (Q × {0, . . . , T − 1},� ∪ {ε}, Q 0 × {0},�′, F × {0, . . . , T − 1}) (2)

where

�′ = {((q,0),a, (q′,1)) | (q,a,q′) ∈ �}
∪ {((q, i), ε, (q′, i + 1)) | 1 ≤ i < T − 1 and (q,a,q′) ∈ �}
∪ {((q, T − 1), ε, (q′,0)) | (q,a,q′) ∈ �}.

The idea behind Aε is that states are augmented with a modulo-T counter and only the letters on transitions from 0 to
1 are kept. On the remaining transitions, the letters are “hidden”, i.e., replaced by ε .

Next, we transform Aε into αT (A) by eliminating from Aε all its ε-transitions, as explained in Section 3.1.4.

Example 3. Consider the NBA A over � = {a, b}, shown in the top-left part of Fig. 3. Applying periodic sampling on A with
period T = 2 we obtain the automaton Aε shown in the top-right part of Fig. 3. Removing the epsilon transitions from the
latter, we obtain the automaton aT (A) at the bottom of Fig. 3.

Theorem 6 that follows shows that the language of αT (A) coincides with the periodic sampling with period T of the
language of A.

Theorem 6. L(αT (A)) = αT (L(A)).

Proof. Let w = a0a1 · · · ∈ αT (L(A)). Then, there exists some word w ′ = a′
0a′

1 · · · ∈ L(A) such that αT (w ′) = w , i.e., a′
i·T = ai

for all i ≥ 0. By Theorem 1, L(αT (A)) = L(Aε), where Aε is the intermediate automaton with ε-transitions built during
the construction of αT (A), as defined in (2) above. Therefore, to show w ∈ L(αT (A)) it suffices to show w ∈ L(Aε). For

this, and since w ′ ∈ L(A), consider an infinite accepting run P w ′ = q0
a′

0→ q1
a′

1→ q2 · · ·qT −1
a′

T −1→ qT
a′

T→ qT +1 · · · of A over w ′ .

Define P w = (q0, 0)
a′

0→ (q1, 1) ε→ (q2, 2) · · · (qT −1, T − 1) ε→ (qT , 0)
a′

T→ (qT +1, 1) · · · . Observe that, by definition of Aε , P w is
an accepting run of Aε over w , and hence w ∈ L(Aε).

Conversely, let w = a0a1 · · · ∈ L(αT (A)). By Theorem 1, L(Aε) = L(αT (A)), and hence w ∈ L(Aε). By construction of Aε ,
there exists an accepting run P w of Aε over w , such that P w = (q0, 0)

a0→ (q1, 1) ε→ (q2, 2) · · · (qT −1, T − 1) ε→ (qT , 0) a1→
(qT +1, 1) · · · . By construction of Aε , this means that A has an accepting run P w ′ = q0

a0→ q1
b1→ q2

b2→ ·· ·qT −1
bT −1→ qT

a1→
qT +1 · · · over w ′ = a0b1 · · ·bT −1a1 · · · . Therefore, w ′ ∈ L(A). Observe that w = αT (w ′). Therefore, w ∈ αT (L(A)) and the
proof is complete. �

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 11
Fig. 4. Left: unfolding the NBA A of the top-left part of Fig. 3 for τ = 1. Right: modifying the initial state and discarding unreachable states.

Theorem 7. Given a NBA A = (Q , �, Q 0, �, F) we can construct: (1) the NBA Aε described above in O (T · (|Q | + |�|)) time and
space; (2) the NBA aT (A) in O (T 3 · |Q |3 + |�| · T 2 · |Q |2) time and O (|�| · T 2 · |Q |2) space.

Proof. Part (1): Let Aε = (Q ′, �′, Q ′
0, �

′, F ′) be constructed according to Section 5.2. Then, we have that |Q ′| = T · |Q |,
|�′| = |�| + 1, and |�′| = T · |�|. Therefore, constructing Aε requires O (T · (|Q | + |�|)) time and space.

Part (2): The NBA A has at most |�| = |�| · |Q |2 transitions. By part (1) of the current proof, the automaton Aε has
|Q ′| = T · |Q | states and |�′| = T · |�| ≤ T · |�| · |Q |2 transitions. Following the construction in Section 3.1.4, we derive the
NBA aT (A) = (Q ′, �, Q ′

0, �
′′, F ′). Then, the number of the transitions in aT (A) is at most |�′′| = |�| · (T · |Q |)2. Hence, the

construction of aT (A) requires T · |Q | + T · |�| · |Q |2 + |�| · T 2 · |Q |2 space, and hence the space complexity is O (|�| · T 2 ·
|Q |2). Computing the closure of epsilon transitions in Aε requires, by Warshall’s algorithm [40], O (T 3 · |Q |3) time. Thus,
computing aT (A) requires at most T 3 · |Q |3 + T · |�| · |Q |2 + |�| · T 2 · |Q |2 + T · |Q | steps. Therefore, the time complexity is
O (T 3 · |Q |3 + |�| · T 2 · |Q |2). �

Both the constructions of Aε and aT (A) are polynomial in the size of the input automata and the value of T , but
exponential in T ’s representation. Hence, the problem of constructing aT (A) is in EXPTIME.

As mentioned earlier, throughout this paper we assume for simplicity that sampling is done with an initial phase/offset
of 0. A thorough treatment of the problem for offsets greater than 0 is left for future work. Here, we illustrate by example
how some of the results can be easily extended to offsets greater than 0. For example, suppose we want to compute the
sampling of the infinite word ababab · · · with period T = 2. If the offset is 0, the result is aaa · · · . If the offset is 1, the result
is bbb · · · . Suppose we want to compute the sampling of a Büchi automaton A, i.e., of all infinite words accepted by the
automaton, w.r.t. some period T and some initial offset τ ≥ 0. To do that, we can use the same method presented above for
τ = 0, after transforming A into a new automaton Aτ to take into account the possibly non-zero initial offset. To obtain Aτ

from A, we unfold the transitions of A for τ steps, starting from the initial states of A. We then discard the newly unfolded
states up to the first τ − 1 steps, and make the new states reached at the τ -th step the new initial states of Aτ . An example
of this process applied to the NBA A of the top-left part of Fig. 3 for τ = 1 is shown in Fig. 4.

5.3. Inverse periodic sampling of Büchi automata

Given a Büchi automaton A, and a period T , we want to construct a new Büchi automaton, which we will denote α−1
T (A),

such that L(α−1
T (A)) = α−1

T (L(A)). We will show that such a construction indeed exists, which proves that Büchi automata
(or equivalently, ω-regular languages) are closed under inverse periodic sampling. We assume T ≥ 2 (if T = 1 then α−1

T (A)

is identical to A).
Let A = (Q , �, Q 0, �, F). We define α−1

T (A) to be the following Büchi automaton:

α−1
T (A) = (Q ∪ Q × {1, . . . , T − 1},�, Q 0,�

′, F)

where

�′ = {(q,a, (q′,1)) | (q,a,q′) ∈ �}
∪ {((q′, i),a, (q′, i + 1)) | 1 ≤ i < T − 1 and a ∈ �}
∪ {((q′, T − 1),a,q′) | a ∈ �}.

The idea behind the construction of α−1
T (A) is to replace each transition (q, a, q′) of A by a DAG (directed acyclic graph)

starting at q and ending at q′ . Each run in this DAG starting at q and ending at q′ corresponds to a sequence of T transitions,
the first of which has the original letter a of the original transition of A, while the remaining may have any letter in �
(since that letter will be deleted during sampling). A state of α−1

T (A) can be of two kinds: either an original state q of A, or
a state of the form (q′, i), where q′ is a state of A and i is between 1 and T − 1 (note that we assume T ≥ 2, so this range
contains at least the number 1). In the latter case, the state (q′, i) records the fact that there are T − i steps remaining until
the destination state q′ is reached.

Example 4. Consider the NBA A over � = {a, b, c, d} shown in the left part of Fig. 5. The inverse periodic sampling of A
w.r.t. T = 3 is the automaton a−1

T (A) shown to the right part of Fig. 5.

12 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Fig. 5. Example of NBA inverse periodic sampling. NBA A over � = {a,b, c,d} and a−1
T (A) when T = 3.

Fig. 6. NBA view A (left), canonical witness (middle), and its periodic sampling (right).

Theorem 8. L(α−1
T (A)) = α−1

T (L(A)).

Proof. Let w = a0a1 · · · ∈ L(α−1
T (A)). By definition of α−1

T (A), an accepting run of α−1
T (A) over w must have the form:

P w =q0
a0→ (q1,1) · · · (q1, T − 1)

aT −1→ q1
aT→ (q2,1) · · · (q2, T − 1)

a2T −1→ q2

a2T→ (q3,1) · · ·qk−1
a(k−1)T→ (qk,1) · · · (qk, T − 1)

akT −1→ qk
akT→ (qk+1,1) · · ·

Let P w ′ = q0
a0→ q1

aT→ q2 · · · . By definition of α−1
T (A), P w ′ must be an accepting run of A over w ′ , where w ′ = αT (w).

Therefore, αT (w) ∈ L(A), which means that w ∈ α−1
T (L(A)).

Conversely, let w = a0a1 · · · ∈ α−1
T (L(A)). Then, there exists a word w ′ ∈ L(A) such that w ′ = αT (w) = a0aT a2T · · · . Con-

sider an accepting run P w ′ = q0
a0→ q1

aT→ q2 · · ·qk−1
a(k−1)T→ qk

akT→ qk+1 · · · , of A over w ′ . By definition, α−1
T (A) must have a

run P w = q0
a0→ (q1, 1) a1→ (q1, 2) · · · (q1, T − 1)

aT −1→ q1
aT→ ·· · over w . Moreover, since P w ′ is accepting, P w is also accept-

ing, because all states visited in P w ′ , namely, q0, q1, q2, · · · , are also visited in P w . Thus, w ∈ L(α−1
T (A)) and the proof is

complete. �
Theorem 9. Given a NBA A = (Q , �, Q 0, �, F) we can construct the NBA a−1

T (A) in O (T · (|Q | + |�|)) time and space.

Proof. Let a−1
T (A) = (Q ′, �′, Q ′

0, �
′, F ′) be constructed according to Section 5.3. Then, |Q ′| = |Q ∪ Q × {1, . . . , T − 1}| =

T · |Q |, |�′| = |�|, and |�′| = T · |�|. The latter is obtained by the fact that for every transition in A we create a DAG of
T − 1 transitions in a−1

T (A). Since a−1
T (A) has T times the number of states and transitions of the input automaton A, the

construction of the former requires O (T · (|Q | + |�|)) space and time. �
The following is a simple example involving a single view. It is provided to illustrate the difference between an arbitrary

witness, and the canonical witness which is the most general, as stated in Remark 2.

Example 5. Consider the NBA view A over the alphabet � = {a, b}, shown to the left of Fig. 6. Note that L(A) = aω =
{aaa · · · }. Let T = 2. Then, a witness to the lonely consistency of L(A) is L(A) itself (this is because αT (aω) = aω). But L(A)

is not the most general witness. The latter is the canonical witness L# = (a�)ω obtained as the language of A# = a−1
T (A),

shown in Fig. 6. Indeed, applying periodic sampling to A# we derive the automaton aT (A#) shown in the rightmost part of
Fig. 6. Then, we get that aT (L(A#)) = L#, and L# ⊇ L(A).

5.4. Checking consistency of Büchi automaton views w.r.t. periodic sampling

Next we show how we can apply the results of Theorems 5, 6, and 8 to check view consistency in a multi-periodic
sampling setting where the views are ω-regular languages represented by Büchi automata.

Let � be a finite alphabet and let U =D1 =D2 = · · · =Dn = �ω , for some n ≥ 1. Consider n ω-regular languages over �,
L1, L2, . . . , Ln ⊆ �ω , where each Li is represented by a Büchi automaton Ai , so that Li = L(Ai), for i = 1, . . . , n. Let T1, . . . , Tn
be n periods. Then, we consider the following two variants of the consistency problem.

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 13
Fig. 7. NBA A1 and A2.

Problem 1. Check whether L1, . . . , Ln are consistent, i.e., check whether there exists an ω-language L over �, such that
αTi (L) = Li for every 1 ≤ i ≤ n.

Problem 2. Check whether L1, . . . , Ln are consistent with an ω-regular witness, i.e., check whether there exists a Büchi
automaton A over �, such that αTi (L(A)) = Li for every 1 ≤ i ≤ n.

The two problems are different a priori, because Problem 1 asks for an arbitrary witness ω-language L, not necessarily
regular, whereas Problem 2 asks for a regular witness, represented by a Büchi automaton. Obviously a solution to Problem 2
implies a solution to Problem 1. In the result that follows we show that the two problems are indeed equivalent.

Theorem 10.

1. There is a solution to Problem 1 if and only if there is a solution to Problem 2.
2. Problems 1 and 2 are decidable.
3. Problems 1 and 2 can be decided in 2 − EXPSPACE.

Proof. Part 1: The if part is trivial. For the only if part, suppose there is a solution for Problem 1, that is, L1, . . . , Ln are
consistent. Then, by Theorem 5, the ω-language L# = α−1

T1
(L1) ∩· · ·∩α−1

Tn
(Ln) is a witness to their consistency. By Theorem 8,

α−1
Ti

(Li) = α−1
Ti

(L(Ai)) = L(α−1
Ti

(Ai)), for i = 1, . . . , n, hence L# = L(α−1
T1

(A1)) ∩ · · · ∩ L(α−1
Tn

(An)). By Lemma 2, which can be
easily extended to n NBA, there exists a product automaton A# = α−1

T1
(A1) ⊗ · · · ⊗ α−1

Tn
(An) such that L(A#) = L(α−1

T1
(A1)) ∩

· · · ∩ L(α−1
Tn

(An)). Therefore, there exists a product automaton A# such that L(A#) = L#, and A# is a solution to Problem 2.
Part 2: We will only consider Problem 1, since Problems 1 and 2 are equivalent. By Theorem 5, L1, . . . , Ln are consis-

tent iff αTi (L#) = Li for every 1 ≤ i ≤ n. By Part 1 of the current theorem, L# = L(A#), hence L1, . . . , Ln are consistent iff
αTi (L(A#)) = Li for every 1 ≤ i ≤ n. By Theorem 6, we have αTi (L(A#)) = L(αTi (A#)), for i = 1, . . . , n. Therefore, L1, . . . , Ln
are consistent iff for all i = 1, . . . , n, L(αTi (A#)) = Li , or equivalently, L(αTi (A#)) = L(Ai). The latter equality is a language
equivalence problem for Büchi automata, which is decidable [37]. Therefore, the whole process is decidable, by computing
inverse periodic sampling, product, forward periodic sampling, and then checking language equivalence on Büchi automata.

Part 3: We will only consider Problem 1, since Problems 1 and 2 are equivalent. By Part 2 of the current theorem,
L1, . . . , Ln are consistent iff for all i = 1, . . . , n, L(αTi (A#)) = Li , or equivalently, L(αTi (A#)) = L(Ai). The latter is a language
equivalence problem for Büchi automata, for each 1 ≤ i ≤ n, which is PSPACE-complete [37]. By Theorem 9 we have that
the construction of A# is linear in the value of Ti but it is exponential in time and space in the representation of Ti , for
1 ≤ i ≤ n. Fix an i, with 1 ≤ i ≤ n. By Theorem 7, the size of aTi (A#) is doubly exponential in the representation of Ti ,
and exponential in the representations of all T j with j �= i, 1 ≤ j ≤ n. Hence, checking whether L1, . . . , Ln are consistent is
decided in 2 − EXPSPACE. �
5.5. Example: checking consistency of two NBA views

Consider two NBA views A1 = ({p0, p1}, �, p0, �1, p1) and A2 = ({q0, q1}, �, q0, �2, q0), where � = {a, b, c} and �i are
defined as shown in Fig. 7, for i = 1, 2. Let T1 = 2 and T2 = 3. We will show that the views A1 and A2 are inconsistent.
For this, we construct the canonical witness system candidate A# = a−1

T1
(A1) ⊗ a−1

T2
(A2). Then, it suffices to prove that there

exists an i = 1, 2, such that L(aTi (A#)) �= L(Ai).
We first compute the inverse periodic samplings a−1

Ti
(Ai), for i = 1, 2, according to the algorithm described in Section 5.3.

The inverse periodic samplings are shown in Fig. 8. For convenience in the product construction that follows, we rename the
states of the inverse automata with new labels x1, x2, x3, y1, . . . , y6. Next, we compute according to Lemma 2 the product
NBA A# = a−1

T1
(A1) ⊗ a−1

T2
(A2), shown in Fig. 9.

In order to show inconsistency, we will show that L(aT2 (A#)) �= L(A2). For this, we need to compute aT2 (A#). We do
that using the algorithm described in Section 5.2. First, we construct A#,ε , shown in Fig. 10. A#,ε is obtained from A# by
replacing every second and third transition of A# with an ε transition, to model sampling with period T2 = 3. Then we
remove ε transitions from A#,ε as explained in Section 3.1.4, to obtain the NBA aT2 (A#) shown in Fig. 11. In order not to
clatter the figure, the letters of (all) outgoing transitions from a state are written below the state’s label. For instance, the
state (k2, 1) moves with the letter b to either of states (k7, 0), (k6, 2), or (k5, 1). We observe that all behaviors of aT2 (A#)

are of the form (a ∪ b)ba · · · , while all behaviors of A2 are of the form (a ∪ b)b(a ∪ b) · · · . Hence, L(aT2(A#)) is missing all

14 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Fig. 8. NBA a−1
T1

(A1) and a−1
T2

(A2), where T1 = 2, T2 = 3, and A1, A2 are the NBA of Fig. 7.

Fig. 9. A# = a−1
T1

(A1) ⊗ a−1
T2

(A2).

Fig. 10. NBA with ε-transitions A#,ε obtained from A# of Fig. 9 w.r.t. period T2 = 3.

Fig. 11. aT2 (A#) where A# is the NBA of Fig. 9 and T2 = 3.

words of L(A2) whose third letter is b. Therefore, L(aT2(A#)) �= L(A2) and by Theorem 5 we conclude that the views A1
and A2 are inconsistent.

6. Multi-view consistency of symbolic transition systems w.r.t. periodic sampling

In Section 5 we instantiate the multi-view modeling framework to the case of ω-regular languages and Büchi automata,
where abstraction functions perform periodic sampling of infinite words by removing letters from these words. In this sec-
tion, we instantiate the multi-view modeling framework to the case of symbolic transition systems as defined in Section 3.2.
Here, as in Section 5, abstraction functions perform periodic sampling. The difference is that in Section 5 abstraction func-
tions perform periodic sampling of infinite words generated by Büchi automata, whereas in this section abstraction functions
perform periodic sampling of infinite sequences of states generated by symbolic transition systems.

Initially, we define the notion of periodic sampling and its inverse for transition systems, and then we investigate the
closure of symbolic transition systems under these operations. Afterwards, we solve the multi-view consistency problem in
this setting by applying Theorem 5.

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 15
Fig. 12. Example of FOS periodic sampling. FOS S (left) and aT (S) with period T = 2 (right).

6.1. Periodic sampling of transition systems

As in Section 5, a period is any T ∈ N>0, and periodic sampling starts at position 0. Let X be a finite set of variables.
Then the domain of system behaviors is U(X), and we let the view domain be the same: i.e., D(X) = U(X). Given T ,
the periodic sampling abstraction function from U(X) to D(X) w.r.t. period T , denoted by αT , is defined by the mapping
αT : U(X) →D(X) such that for every behavior σ = s0s1 · · · ∈ U(X), αT (σ) = s′

0s′
1 · · · ∈D(X) where s′

i = si·T for every i ≥ 0.
As is standard, we lift the notion of periodic sampling abstraction function to (semantic) transition systems, i.e., sets of
behaviors. For a transition system S ⊆ U(X), we define αT (S) = {αT (σ) | σ ∈ S}. Since αT (S) ⊆D(X), αT (S) is a view over
D(X). Similarly to the previous section, we refer to periodic sampling abstraction functions simply by periodic sampling.

The inverse periodic sampling is defined again as is standard for inverse functions (cf. Section 4.1), namely: α−1
T (V) =

{σ ∈ U(X) | αT (σ) ∈ V} or equivalently α−1
T (V) = ⋃{S ⊆ U(X) | αT (S) = V}. When V contains a single behavior σ , we

write α−1
T (σ) instead of α−1

T ({σ }). It can easily be seen that if σ = s0s1 · · · ∈ V ⊆ D(X), then α−1
T (σ) = {σ ′ | σ ′ = s′

0s′
1 · · · ∈

U(X) s.t. s′
i·T = si, for all i ≥ 0}.

6.2. Periodic sampling of symbolic transition systems

The above definitions are semantical and apply to sets of behaviors. To be able to deal with systems algorithmically, we
must work with syntactic descriptions, i.e., symbolic transition systems such as FOSs and nFOSs. Then, questions arise as
to what extent are these formalisms closed under forward and inverse periodic samplings. In this subsection we show that
both FOSs and nFOSs are closed under forward periodic sampling. Specifically, we will show that given a symbolic transition
system S , we can construct another symbolic transition system which we will denote αT (S), such that �αT (S)� = αT (� S �).
We assume T ≥ 2 (if T = 1 then αT (S) is identical to S). Moreover, if S is a FOS then αT (S) is also a FOS, and if S is an
nFOS then αT (S) is also an nFOS.

Consider an nFOS S = (X, Z , θ, φ) and periodic sampling αT : U(X ∪ Z) → D(X ∪ Z), with D(X ∪ Z) = U(X ∪ Z). The
periodic sampling of S through αT , denoted by αT (S), is the nFOS S ′ = (X, Z , θ, φ′) such that φ′ contains all pairs of states
(s, s′) such that S has a run from s to s′ of length exactly T . Formally:

φ′(s, s′) = ∃s1, s2, . . . , sT −1 : φ(s, s1) ∧ φ(s1, s2) ∧ · · · ∧ φ(sT −1, s′).
Note that, even though the above formula for φ′ contains quantifiers over s1, s2, . . . , sT −1, they can be eliminated easily
because all variables are boolean. Therefore, the final formula for φ′ is a boolean expression as required.

The theorem that follows states that the semantics of the periodic sampling of S is equal to the periodic sampling of the
semantics of S .

Theorem 11. �αT (S)� = αT (� S �).

Proof. Consider an arbitrary behavior σ = s0s1s2 · · · ∈ � S �. Applying the periodic sampling αT to σ we obtain the behav-
ior αT (σ) = s0sT s2T · · · ∈ αT (� S �). Since θ(s0), and by construction of αT (S), φ′(si·T , s(i+1)·T) for every i ≥ 0, we get that
αT (σ) ∈ �αT (S)�. Hence, αT (� S �) = {αT (σ) | σ ∈ � S �} ⊆ �αT (S)�. Conversely, let σ ′ = s′

0s′
1s′

2 · · · ∈ �αT (S)�. By definition
of αT (S), it holds that θ(s′

0). Moreover, for σ ′ we have that φ′(s′
i, s

′
i+1), thus there exists a run in S from s′

i to s′
i+1 of

length exactly T for every i ≥ 0. Then, we obtain the behavior σ = s0s1s2 · · · ∈ � S � where si·T = s′
i for every i ≥ 0. Hence,

αT (σ) = σ ′ ∈ αT (� S �) and �αT (S)� ⊆ αT (� S �) which completes our proof. �
Note that if S is a FOS, i.e., Z = ∅, then according to its definition αT (S) is also a FOS. Consequently, Theorem 11 shows

that not just nFOSs, but also FOSs, are closed under forward periodic sampling.

Example 6. Consider the FOS S shown to the left of Fig. 12. Applying periodic sampling on S with period T = 2 we obtain
the FOS aT (S) shown to the right of the figure.

Theorem 12. Given an nFOS S = (X, Z , θ, φ) the problem of constructing aT (S) is in EXPSPACE.

Proof. Let aT (S) = (X, Z , θ, φ′), where φ′ is defined according to the description before Theorem 11. We need to determine
the complexity of constructing φ′ . In particular this involves the complexity of eliminating the existential quantifiers in φ′

16 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Fig. 13. A FOS whose inverse with respect to period T = 2 is not a FOS.

since the transition relation of an nFOS is by definition a boolean expression (thus not including quantifiers). We assume
that the quantifiers in φ′ are eliminated by enumerating all satisfying assignments, from which we then derive a formula
for the transition relation not involving any quantifiers. Each assignment (including the quantified variables) consists of
(T +1) · (|X | +|Z |) variables, because φ′ contains T −1 quantified intermediate states. Checking whether a given assignment
satisfies the formula can be determined in polynomial time in φ′ ’s length, which is exponential in the representation of T ,
and linear in the length of φ. Thus all assignments can be evaluated in EXPSPACE. Constructing the quantifier-free formula
from the satisfying assignments is in O (22·(|X |+|Z |)). Thus both determining the satisfying assignments and constructing the
quantifier-free formula from them can be performed in EXPSPACE, and so we conclude that the problem of constructing
aT (S) is in EXPSPACE. �

Recall that views described by symbolic transition systems are checked for consistency w.r.t. their observable behav-
iors. Observable behaviors are obtained by projection to observable variables. Therefore, we need to be able to combine a
periodic sampling abstraction function with projection to observable variables. The following result shows that the above
construction behaves correctly under such a combination.

Corollary 1. �αT (S)�o = αT (� S �o).

Proof. Consider a behavior σ o = so
0so

1so
2 · · · ∈ � S �o . Then, there exists a behavior σ = s0s1s2 · · · ∈ � S � such that hX (σ) = σ o .

Applying the periodic sampling αT to σ we obtain the behavior σ ′ = αT (σ) = s0sT s2T · · · ∈ αT (� S �). Then, hX (σ ′) =
so

0so
T so

2T · · · , and hence hX (σ ′) = αT (σ o). Therefore, by σ o ∈ � S �o , hX (σ ′) ∈ αT (� S �o). Since θ(s0), and by construction
of αT (S), φ′(si·T , s(i+1)·T) for every i ≥ 0, we get that σ ′ ∈ �αT (S)�. Therefore, hX (σ ′) ∈ �αT (S)�o , and hence αT (σ o) ∈
�αT (S)�o . Conversely, let σ o′ = so′

0 so′
1 so′

2 · · · ∈ �αT (S)�o . Then, there exists a behavior σ ′ = s′
0s′

1s′
2 · · · ∈ �αT (S)� such that

hX (σ ′) = σ o′ . Since θ(s′
0) and φ′(s′

i, s
′
i+1) for every i ≥ 0, and by definition of αT (S), we can construct the behavior

σ = s0s1s2 · · · ∈ � S � where si·T = s′
i for every i ≥ 0. Then, there exists a behavior σ o = hX (σ) = so

0so
1so

2 · · · ∈ � S �o where
so

i·T = so′
i for every i ≥ 0, which implies that αT (σ o) = σ o′ ∈ αT (� S �o). �

Remark 4. Note that if S is a FOS, i.e., Z = ∅, then by definition we get that �αT (S)� = αT (� S �) iff �αT (S)�o = αT (� S �o).

Remark 5. The result of Corollary 1 shows that we can combine two different kinds of abstraction functions for deriving a
view for a system. This is in line with Theorem 5 that imposes no restriction on the type of the abstraction functions for
generating a view.

6.3. Inverse periodic sampling of symbolic transition systems

Computing the inverse periodic sampling on FOSs and nFOSs is less straightforward than computing forward periodic
sampling. In fact, as we show next, FOSs are not closed under inverse periodic sampling, although nFOSs are. Intuitively,
the reason why FOSs are not closed under inverse periodic sampling is that in general the inverse system may need extra
variables to count how many positions remain until a sampled state is reached. Such extra variables cannot be added in
a FOS, because every variable in FOS is observable, and adding extra variables means that the observable behaviors also
change. On the other hand, adding extra variables is not a problem in nFOSs, as long as these extra variables are added as
unobservable ones.

6.3.1. FOSs are not closed under inverse periodic sampling

Theorem 13. Given a FOS S = (X, θ, φ) and inverse periodic sampling α−1
T : D(X) → U(X), with D(X) = U(X), there does not

always exist a FOS S ′ = (X, θ ′, φ′) such that � S ′� = α−1
T (� S �).

Proof. Consider the FOS S = ({x, y}, θ, φ) where both x and y are boolean variables, θ = x ∧ y and φ = (x ∧ y → ¬x′ ∧ y′) ∧
(¬x ∧ y → x′ ∧ ¬y′) ∧ (x ∧ ¬y → x′ ∧ y′) as shown in Fig. 13.

Suppose that we want to compute the inverse set of behaviors, α−1
T (� S �), with respect to inverse periodic sampling

with period T = 2. Suppose there exists a FOS S ′ = (X ′, θ ′, φ′) such that � S ′� = α−1(� S �). First, note that X ′ must be equal
T

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 17
Fig. 14. Form of behavior σ of α−1
T (� S �), where S is the FOS of Fig. 13.

to {x, y}, otherwise, the states of S ′ (and therefore also the behaviors in � S ′�) are incomparable with those of S . Because
X ′ = {x, y}, S ′ can have at most 4 reachable states, since both x and y are boolean variables. Moreover, θ ′ should coincide
with θ . Indeed, our periodic samplings start always at position 0, and α−1

T (� S �) contains by definition all those behaviors
over U(X) which are at state (1, 1) at position 0. Therefore, S ′ should generate only behaviors whose initial state is (1, 1)

in order to coincide semantically with α−1
T (� S �). Hence, θ ′ equals θ . Then, α−1

T (� S �) contains all infinite behaviors of the
form shown in Fig. 14, where the ‘?’ can be replaced by arbitrary states over {x, y}.

We claim that S ′ cannot generate all behaviors of the form shown in Fig. 14. Indeed, α−1
T (� S �) contains all behaviors of

the form (1, 1)v · · · where v can be any of the four states (1, 1), (0, 1), (1, 0) or (0, 0). From Fig. 14, the state v of α−1
T (� S �)

corresponds to the top-most ‘?’. From Fig. 14, there must be a transition in S ′ from state (1, 1) to v . Assume that v = (1, 1).
Then, (1, 1) has a self-loop transition, which means that S ′ can also generate behaviors of the form (1, 1), (1, 1), (1, 1), . . . ,
which are not in α−1

T (� S �). Thus, it should be the case that v �= (1, 1). But this contradicts the requirement that S ′ be
able to generate also behaviors which are at state (1, 1) at position i = 1. If S ′ does not generate such behaviors then it is
missing certain behaviors that belong in α−1

T (� S �). Therefore, � S ′� cannot be semantically equal to α−1
T (� S �). �

6.3.2. nFOSs are closed under inverse periodic sampling
As can be seen from the proof of Theorem 13, FOSs are not closed under inverse periodic sampling because the variables

of FOSs in general cannot represent all the distinct states in between the sampled states. Hence it is not possible to generate
all the behaviors of the inverse semantic system. The problem is that we cannot add extra variables in a FOS, because there
every variable has to be observable. However, this is not a problem in nFOSs, where we can add unobservable variables.
Adding extra unobservable variables is the main idea behind the inverse periodic sampling construction for nFOSs, which
demonstrates that nFOSs are closed under inverse periodic sampling. Note that, due to the presence of extra variables in
the inverse periodic sampling system for a given nFOS, closure is obtained w.r.t. to the corresponding observable behaviors.
Before we provide the formal construction, we discuss informally the idea behind the construction and illustrate how it
works on the example of Fig. 13.

Example 7. Consider again the FOS S = ({x, y}, θ, φ}) of Fig. 13, which can also be viewed as the nFOS ({x, y}, ∅, θ, φ}) with
an empty set of unobservable variables. The inverse periodic sampling of S with period T = 2 is the nFOS shown in Fig. 15.
s represents the state vector, that is, values for all observable and non-observable variables. In this case, there are only two
observable variables x, y, so s = (0, 1) says that x = 0 and y = 1. The inverse system contains one extra variable c that
counts the number of states remaining until a sampled state is reached. c is used to add to the inverse system the proper
number of “layers” with states in between each pair of sampled states in the given system. Hence, c is always 0 for the
sampled states, and the values of c range in 0, · · · , T − 1. In Fig. 15, the value of c is always 1 for every non-sampled state
because T = 2. Hence, we always add one layer of states in between each pair of sampled states. The states in these layers
correspond to the candidates for the symbol ‘?’ in Fig. 14.

The inverse system also contains duplicates of the observable and unobservable variables of the original nFOS denoted
by ŝ. These variables are necessary to define the extra distinct states in each layer, that cannot be obtained by the existing
variables of the system. Moreover, these states should also memorize the correct next sampled state. For instance, according
to Fig. 14, there should be a transition from (0, 1) to the second ? and from the latter to (1, 0). Then, it should be the case
that the inverse system contains a transition from (0, 1) to each of the 4 possible states (0, 0), (0, 1), (1, 0) and (1, 1), and
from each of these states a transition back to state (1, 0). Hence (0, 0), (0, 1), (1, 0) and (1, 1) are augmented with ŝ = (1, 0)

to memorize the next sampled state to be reached; also this differentiates the states of the second layer from those in the
first layer, which would not be possible without adding the duplicates.

As stated earlier, α−1
T (S) should be able to generate all observable behaviors of the form shown in Fig. 14, where ‘?’

denotes any arbitrary state over X . Indeed, this is what the system of Fig. 15 does. In each state shown in the figure, we list

18 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Fig. 15. nFOS α−1
T (S) where S is the FOS of Fig. 13 and T = 2.

the values of s, c, and ŝ. The − stands for an arbitrary value, so that, for instance, (s = (1, 1), c = 0, −) represents four states,
namely, (s = (1, 1), c = 0, ̂s = (0, 0)), (s = (1, 1), c = 0, ̂s = (0, 1)), (s = (1, 1), c = 0, ̂s = (1, 0)), (s = (1, 1), c = 0, ̂s = (1, 1)).
All these four states are possible initial states. A transition into one such state with − represents multiple transitions to
each possible instance of that state. The state in bold at the bottom is the same as the one at the top, indicating that the
system loops eventually back to one of its initial states.

Next we present the formal construction. Let S = (X, Z , θ, φ) be an nFOS and let T be a period. Let X̂ = {x̂ | x ∈ X} and
Ẑ = {ẑ | z ∈ Z} be sets of copies (duplicates) of the sets of variables X and Z , respectively. We use the notation s = (v)v∈X∪Z

to denote the vector of all variables in X ∪ Z . For example, if X = {x, y} and Z = {z}, then s = (x, y, z). We will also use
s′ , ŝ, and ŝ′ for the corresponding vectors of primed, hatted, and hatted-primed variables. For example, if s = (x, y, z), then
s′ = (x′, y′, z′), ŝ = (x̂, ŷ, ̂z), and ŝ′ = (x̂′, ŷ′, ̂z′).

We will define a new nFOS α−1
T (S), called the inverse periodic sampling of S through T , and we will prove that �α−1

T (S)�o =
α−1

T (� S �o), that is, the observable behaviors of α−1
T (S) correspond to the inverse of the observable behaviors of S . In the

sequel we assume T ≥ 2; if T = 1 then we can simply take α−1
T (S) = S . We define α−1

T (S) = (X, Z ∪ W , θ ′, φ′), where

• W = {c} ∪ X̂ ∪ Ẑ where c is a modulo-T counter (for simplicity we will treat c as an integer variable, with the under-
standing that it can be encoded using log T boolean variables)

and:

θ ′ = θ ∧ c = 0 (3)

φ′ = (
c = 0 ∧ c′ = 1 ∧ ∃s′ : φ ∧ ŝ′ = s′) (4)

∨ (
0 < c < T − 1 ∧ c′ = c + 1 ∧ ŝ′ = ŝ

)
(5)

∨ (
c = T − 1 ∧ c′ = 0 ∧ s′ = ŝ

)
(6)

The intuition is as follows. An initial state of α−1
T (S) is an initial state of S augmented by the modulo-T counter c

initialized to 0. Notice that the duplicate variables ŝ of α−1
T (S) can take any arbitrary value initially. The definition of the

transition relation φ′ of α−1
T (S) is broken into three disjoint cases, depending on the value of the counter c.

• The first case is when c = 0. In that case, if S has a transition (s, s′), then α−1
T (S) has a transition from (s, c = 0, _)

to (_, c = 1, ̂s), where ŝ memorizes s′ and where the _ variables can take arbitrary values. The idea is that we need to
remember for the next T − 1 transitions the destination state s′ in which we need to arrive after T transitions, when

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 19
the next sampling point occurs. In-between, the observable variables s can take any value, since these values will be
sampled away.

• The second case is when 0 < c < T − 1. In that case, the duplicate variables ŝ remain constant during the transition,
while the observable variables s can take any value (and are thus unconstrained in φ′).

• The third case is when c = T − 1. In that case, we need to copy the memorized destination state from ŝ to s, and reset
the counter to 0.

The construction of α−1
T (S) is similar to the construction of inverse periodic sampling of Büchi automata given in Sec-

tion 5.3, where a modulo-T counter is also used. The difference is that in the case of Büchi automata the sampling is done
on the letters annotating the transitions, instead of on the states, and for this reason, that construction does not require
the use of duplicate state variables for memorization of the target state (which is memorized directly at the first step from
c = 0 to c = 1).

In the sequel we prove the closure of nFOSs under inverse periodic sampling. Firstly, we state an auxiliary lemma which
shows that the hiding function and the periodic sampling commute when applied to the behaviors of symbolic transition
systems.

Lemma 7. Given an nFOS system S = (X, Z , θ, φ) and periodic sampling αT , it holds that h�(αT (� S �)) = αT (h�(� S �)) where � is
either X or Z .

Proof. We only prove that hX (αT (� S �)) = αT (hX (� S �)). The proof of hZ (αT (� S �)) = αT (hZ (� S �)) is similar. We first prove
that hX (αT (� S �)) ⊆ αT (hX (� S �)). Let σ = s0s1s2 · · · ∈ hX (αT (� S �)). There exists some behavior σ ′ = s′

0s′
1s′

2 · · · ∈ αT (� S �)

such that hX (σ ′) = σ i.e., hX (s′
i) = si for i ≥ 0. Moreover, σ ′ ∈ αT (� S �), hence there exists some σ ′′ = s′′

0s′′
1s′′

2 · · · ∈ � S �
such that αT (σ ′′) = σ ′ , i.e., s′′

i·T = s′
i for i ≥ 0. Consider the behavior σ ′′ ∈ � S �. Then, hX (σ ′′) = hX (s′′

0)hX (s′′
1)hX (s′′

2) · · · ∈
hX (� S �), where by construction hX (s′′

i·T) = hX (s′
i) = si for i ≥ 0. Moreover, αT (hX (σ ′′)) ∈ αT (hX (� S �)), and αT (hX (σ ′′)) =

αT (hX (s′′
0)hX (s′′

1)hX (s′′
2) · · ·) = hX (s′′

0)hX (s′′
T)hX (s′′

2T) · · · = s0s1s2 · · · . Hence αT (hX (σ ′′)) = σ , and σ ∈ αT (hX (� S �)). Similarly,
it can be proved that αT (hX (� S �)) ⊆ hX (αT (� S �)). �
Theorem 14. Given an nFOS system S = (X, Z , θ, φ) and inverse periodic sampling α−1

T : D(X ∪ Z) → U(X ∪ Z) with D(X ∪ Z) =
U(X ∪ Z), it holds that: �α−1

T (S)�o = α−1
T (� S �o).

Proof. Let σ o = so
0so

1so
2 · · · ∈ α−1

T (� S �o). Then, there exists a behavior σ o′ = so′
0 so′

1 so′
2 · · · ∈ � S �o such that σ o′ = αT (σ o),

i.e., so
i·T = so′

i for every i ≥ 0. Moreover, there exists a behavior σ ′ = s′
0s′

1s′
2 · · · ∈ � S � such that hX (σ ′) = σ o′ . We consider

the behavior σ = s0s1s2 · · · ∈ U(X ∪ Z) such that hX (σ) = σ o and si·T = s′
i for every i ≥ 0. We extend σ over the set

W = {c} ∪ X̂ ∪ Ẑ and we construct the behavior σ w = sw
0 sw

1 sw
2 · · · ∈ U(X ∪ Z ∪ W), satisfying the following conditions:

1. hc(sw
k) = 0 for k = i · T with i ≥ 0;

2. hX̂∪ Ẑ (sw
k) = s(i+1)·T = s′

i+1 and hc(sw
k) = k − i · T for i · T < k < (i + 1) · T with i ≥ 0.

By construction of σ w , hX∪Z (sw
i·T) = si·T = s′

i for i ≥ 0. Then, by 1 for i = 0 and by the condition θ(hX∪Z (sw
0)), we get

that θ ′(sw
0). Also, by 1, 2, and hX∪Z (σ w) = σ , we get that φ′(sw

k , sw
k+1) for every k ≥ 0. Therefore, σ w ∈ �α−1

T (S)�. Moreover,
hX (σ) = σ o , and by construction of σ w , hX (σ w) = hX (σ) which implies that hX (σ w) = σ o . Hence, by σ w ∈ �α−1

T (S)�, we
get that hX (σ w) = σ o ∈ �α−1

T (S)�o .
Conversely, let σ o = so

0so
1so

2 · · · ∈ �α−1
T (S)�o . Then, there exists a behavior σ = s0s1s2 · · · ∈ �α−1

T (S)� such that hX (σ) = σ o .
Applying periodic sampling αT on σ we get the behavior αT (σ) = s0sT s2T · · · , where by definition of α−1

T (S), θ ′(s0), and
hence θ(s0) and c = 0; and for every i ≥ 0, φ′(si, si+1), and hence φ(si·T , s(i+1)·T) and c = 0. Therefore, σ ′ = hX∪Z (αT (σ)) ∈
� S �, and hence hX (σ ′) ∈ � S �o . By applying Lemma 7 for the case � S � is singleton, hX (σ ′) = hX (αT (σ)) = αT (hX (σ)), and
since hX (σ) = σ o , we get that hX (σ ′) = αT (σ o). Moreover, by hX (σ ′) ∈ � S �o , αT (σ o) = so

0so
T so

2T · · · ∈ � S �o , which implies
that σ o ∈ α−1

T (� S �o). �
Theorem 15. Given an nFOS S = (X, Z , θ, φ) the problem of constructing a−1

T (S) is in O (T · (log T + |X | + |Z |) + |φ| + |θ |).

Proof. Let n = |X | + |Z | and a−1
T (S) = (X, Z ∪ W , θ ′, φ′) be defined as in the procedure before Lemma 7. For the complexity

analysis we assume that the modulo-T counter c is represented by log T boolean variables. Then, the number of variables,
defining the states in a−1

T (S) is 2n +| log T |. From Equation (3), the size of θ is |θ ′| = O (|θ | + log T). Next we calculate the size
of φ′ according to its syntactic construction in the Equations (4)–(6). The part of φ′ defined in (4) has size O (log T + |φ|),
since the quantifier elimination of “∃s′ : φ ∧ ŝ = s′” can be obtained by simply replacing s′ by ŝ in φ. Then, each of the
T − 2 parts of the disjunction defined in (5) has size O (n + log T). Similarly, the part of φ′ in (6) has size O (n + log T).

20 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Hence, we get that the size of φ′ is in O (T · (log T + n) + |φ|), and the overall time complexity of constructing a−1
T (S) is in

O (T · (log T + n) + |φ| + |θ |). �
6.4. Checking consistency of symbolic transition system views w.r.t. periodic sampling

Next we apply the previous results to show how we can check view consistency in a multi-periodic sampling setting
where the views are symbolic transition systems (FOSs or nFOSs). Let X be a finite set of variables and let U = D1 = D2 =
· · · = Dn = U(X), for some n ≥ 1. Consider n views represented as nFOSs Si = (X, Zi, θi, φi), for i = 1, . . . , n, where Zi are
disjoint. Note that Si may be a FOS as a special case, if Zi = ∅. Also note that Di = U(X), which means that unobservable
variables are not included in the semantics of the views. In other words, semantically view Si is the set � Si �o ⊆ U(X). Let
T1, . . . , Tn be n periods. We consider several variants of the view consistency problem, depending on whether we seek a
witness system which is semantic, nFOS, or FOS.

Problem 3. Check whether S1, . . . , Sn are consistent, i.e., check whether there exists S ⊆ U(X) such that αTi (S) = � Si �o for
every 1 ≤ i ≤ n.

Problem 4. Check whether S1, . . . , Sn are consistent with an nFOS witness, i.e., check whether there exists an nFOS S =
(X, Z , θ, φ), for some Z ⊇ Z1 ∪ · · · ∪ Zn , such that αTi (� S �o) = � Si �o for every 1 ≤ i ≤ n.

Problem 5. Check whether S1, . . . , Sn are consistent with a FOS witness, i.e., check whether there exists a FOS S = (X, θ, φ),
such that αTi (� S �) = � Si �o for every 1 ≤ i ≤ n.

Observe that the three problems are different: Problem 3 asks for a semantic witness system, not necessarily repre-
sentable as a symbolic transition system, while Problems 4 and 5 ask for a symbolic transition witness system with or
without internal variables respectively. Clearly, a solution to Problem 5 is also a solution to Problem 4, and a solution to
Problem 4 is also a solution to Problem 3. As shown below (and also shown in [27]) Problems 4 and 5 are not equivalent,
that is, existence of an nFOS witness does not always imply existence of a FOS witness. As for Problems 3 and 4, it was left
as an open question in [27] whether existence of a solution to Problem 3 also implies existence of a solution to Problem 4.
We next provide a positive answer to this question:

Theorem 16. There is a solution to Problem 3 if and only if there is a solution to Problem 4.

Proof. The if part is trivial. For the only if part, suppose Problem 3 has a solution, i.e., S1, . . . , Sn are consistent. Then, by
Theorem 5, the transition system S# = α−1

T1
(� S1 �o) ∩ · · · ∩ α−1

Tn
(� Sn �o) is a witness to their consistency. By Theorem 14,

α−1
Ti

(� Si �o) = �α−1
Ti

(Si)�o , for i = 1, . . . , n, hence S# = �α−1
T1

(S1)�o ∩ · · · ∩ �α−1
Tn

(Sn)�o . By Lemma 5 (which can be easily
extended to n instead of just 2 systems), there exists an nFOS system S# such that � S# �o = S# = �α−1

T1
(S1)�o ∩ · · · ∩

�α−1
Tn

(Sn)�o , and S# is a solution to Problem 4. �
Next we show why existence of a solution to Problem 4 does not generally imply existence of a solution to Problem 5.

Indeed, consider the case of having a single view described by an nFOS, say S1. Moreover, suppose that S1 cannot be
represented as a FOS (as mentioned in Section 3.2, there are such cases). Assume that the period is T1 = 1. Then, S1 is a
witness system to its own consistency, since αT1 (S1) = S1, but clearly there is no FOS witness system, since we assumed
that S1 cannot be represented by a FOS. This example shows that in general existence of an nFOS witness does not imply
existence of a FOS witness. This holds even when all views are FOS, as shown by Example 8 which follows.

Example 8. Consider a single view described by the FOS S = ({x, y}, θ, φ}) of Fig. 13, and let the period be T = 2. Then, a
witness system to the “lonely” consistency of S is the nFOS system shown in Fig. 15, i.e., the system α−1

T (S) describing its
inverse periodic sampling w.r.t. to period T = 2. According to Theorem 13, there exists no FOS capturing α−1

T (S), and hence
there is no FOS witness system to the consistency of S with itself.

Theorem 17. Problems 3, 4, and 5 are decidable.

Proof. Problem 5 is trivially decidable, as there is a finite number of candidate FOS witness systems (since the number of
state variables is finite and their domains are also finite). Thus, we can simply enumerate all possible FOS over the given set
of variables X and check whether one of them is a valid witness w.r.t. the given views and periods. This brute-force method
is not practical. Finding more efficient ways to solve Problem 5 is an open question.

Next we consider the decidability of Problems 3 and 4. There are several ways to prove this result, each resulting in a
different method for checking view consistency. Therefore we provide several alternative proofs.

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 21
Fig. 16. nFOS S1 and S2.

First, we can show that Problem 3 is decidable; then Theorem 16 implies that Problem 4 is also decidable. Consider
the set of nFOS views Si = (X, Zi, θi, φi) where Zi are disjoint, for 1 ≤ i ≤ n. By Theorem 3, we can construct for every
nFOS Si , the NBA A Si , such that � Si �o = L(A Si), for i ≥ 1. We let L(A Si) = L Si for i ≥ 1. Then, checking whether there
exists a semantic witness system to the consistency of S1, . . . , Sn , i.e., whether there exists system S ⊆ U(X) such that
αTi (S) = � Si �o , reduces to checking whether there exists an ω-regular language over �, L ⊆ �ω , such that αTi (L) = L Si

for i ≥ 1. However, the latter problem is an instance of Problem 1, which by Part 2 of Theorem 10, is decidable. Therefore,
Problem 3 is decidable. Notice that using this method, in case of a positive answer to consistency, we can also obtain a
witness system represented as a Büchi automaton (cf. the proof of Theorem 10).

Alternatively, we can also show directly that Problem 4 is decidable. Consider the nFOS systems α−1
Ti

(Si), for each nFOS
view Si for i = 1, . . . , n, respectively. By Lemma 5 (which can be easily extended to n instead of just 2 systems) there exists
an nFOS S# such that � S# �o = �α−1

T1
(S1)�o ∩ · · · ∩ �α−1

Tn
(Sn)�o for i = 1, . . . , n. By Theorem 5, S1, . . . , Sn are consistent iff for

all i = 1, . . . , n, αTi (� S# �o) = � Si �o . By Corollary 1, we have αTi (� S# �o) = �αTi (S#)�o , for i = 1, . . . , n. Therefore, S1, . . . , Sn

are consistent iff for all i = 1, . . . , n, �αTi (S#)�o = � Si �o . The latter equality is an equivalence problem for nFOSs, which
by Theorem 4 is decidable. Using this method, in case of a positive answer to consistency, we obtain a witness system
represented directly as an nFOS. �
Theorem 18.

1. Problem 3 can be decided in 3 − EXPSPACE.
2. Problem 4 can be decided in 3 − EXPSPACE.
3. Problem 5 can be decided in 2 − EXPSPACE.

Proof. Part 2: By the last part of the proof of Theorem 17, we get that solving Problem 4 is equivalent to checking whether
�αTi (S#)�o = � Si �o . By definition of S# in (1), and by Theorem 15, we get that the construction of S# is in EXPSPACE. Then,
by Theorem 12, the periodic sampling αTi (S#) is computed in EXPSPACE, and thus in 2 − EXPSPACE in terms of the inputs of
Problem 4. Finally, checking �αTi (S#)�o = � Si �o is, by Theorem 4, in EXPSPACE, and hence solving Problem 4 can be decided
in 3 − EXPSPACE.

Part 1: By Theorem 16, we get that Problem 3 is equivalent to Problem 4, which by part 1 of the current proof can be
solved in 3 − EXPSPACE. Hence, Problem 3 is also in 3 − EXPSPACE.

Part 3: The domain of variables X is finite. Let n = |X |. The construction of each possible FOS witness system S requires
at most 2n states with at most 22·n transitions. By Theorem 12, computing αTi (� S �) is in 2 − EXPTIME, for 1, . . . , n. Then,
checking whether αTi (� S �) = � Si �o is an instance of the nFOSs equivalence problem w.r.t. their observable behaviors, which
by Theorem 4 is in EXPSPACE. Therefore, solving Problem 5 is in 2 − EXPSPACE. �
6.5. Example: checking consistency of two FOS views

Consider the two FOS views S1 = (X = {x1, x2}, θ1, φ1) and S2 = (X = {x1, x2}, θ2, φ2) of Fig. 16. S1 and S2 can also
be viewed as the nFOSs (X = {x1, x2}, Z1 = ∅, θ1, φ1) and (X = {x1, x2}, Z2 = ∅, θ2, φ2), respectively. We remark that S1 is
identical to the system shown in Fig. 13 and is repeated here for convenience.

Let T1 = 2 and T2 = 3. We prove that S1 and S2 are inconsistent. For this, we construct the canonical witness system
candidate S# = a−1

T1
(S1) ⊗ a−1

T2
(S2). Then, it suffices to prove that there exists an i = 1, 2 such that �aTi (S#)�o �= � Si �o .

We first compute according to the method described in Section 6.3.2 the inverse nFOSs a−1
T1

(S1) and a−1
T2

(S2), shown
respectively in Figs. 17 and 18. We remark that a−1

T1
(S1) is identical to the nFOS of Fig. 15 except that the annotations ŝ

have been removed in order to simplify the figure. In both Figs. 17 and 18, nodes in bold correspond to duplicated states
where the system loops back to. We have duplicated those states in order to make the transitions easier to follow.

We then follow the construction of Lemma 5 to compute S# = a−1
T1

(S1) ⊗ a−1
T2

(S2), shown in Fig. 19.

Finally, we compute according to the method described in Section 6.2 the periodic sampling of S# w.r.t. T1 = 2 and
T2 = 3, obtaining aT1 (S#) and aT2 (S#) shown respectively in Figs. 20 and 21. We observe that all the observable behaviors
of aT1 (S#) coincide with � S1 �o = ((1, 1)(0, 1)(1, 0))ω . However, this is not the case for aT2 (S#) and � S2 �o . For instance,

22 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
Fig. 17. nFOS α−1
T1

(S1) where S1 is the nFOS of Fig. 16 and T1 = 2.

Fig. 18. nFOS α−1
T2

(S2) where S2 is the nFOS of Fig. 16 and T2 = 3.

consider the behavior (1, 1)ω ∈ � S2 �o . Because aT2 (S#) does not loop in the initial state, it cannot generate the observable
behavior (1, 1)ω . Therefore, we conclude that the views S1 and S2 are inconsistent.

7. Conclusions and future work

In the presence of large and complex systems, multi-view modeling has become a predominant design principle. In order
to understand and describe the versatile aspects of a system under development, multi-view modeling methods use several
views that serve as partial models of the system. Then, a crucial issue in multi-view modeling, is ensuring consistency
among the views, as these are developed by designers coming from various disciplines and using heterogeneous formalisms,

M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24 23
Fig. 19. nFOS S# = α−1
T1

(S1) ⊗ α−1
T2

(S2).

Fig. 20. nFOS αT1 (S#) for T1 = 2.

Fig. 21. nFOS αT2 (S#) for T2 = 3.

languages, and tools. In this work we studied the view consistency problem within the formal framework of [33,32], but
for a different type of abstraction functions than those investigated previously. In particular, we studied view consistency
w.r.t. periodic sampling abstractions. We considered two different settings for modeling views, ω-regular languages (Büchi
automata) and symbolic transition systems, and provided complete solutions to the view consistency problems arising in
these settings. In the process we answered several of the questions left open in the earlier version of this work [27]. We
also introduced an important new result (Theorem 5) which complements the abstract framework of [33,32]. The result
is a generic necessary and sufficient condition for view consistency which can be used to derive algorithms for multiple
instantiations of the abstract framework, e.g., those considered in this paper in particular.

Several problems remain open, and there are several directions for future work. Specific to the results in this paper is
the open question of finding a more efficient method to solve Problem 5, than the brute-force method proposed here. Other
future research directions include considering abstraction functions other than periodic samplings, including non-periodic
and event-triggered samplings. Another direction is to consider other types of models, including non-purely-discrete models,
such as timed or hybrid automata, as well as heterogeneous instantiations of the multi-view modeling framework, e.g.,
where some views are discrete, some continuous, some hybrid, and so on. In addition to these theoretical directions, ongoing
work includes an implementation of the current framework and experimentation with case studies.

References

[1] V. Amaral, C. Hardebolle, H. Vangheluwe, L. Lengyel, P. Bunus, Recent advances in multi-paradigm modeling, Electron. Commun. EASST 50 (2011) 1–10.
[2] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, C. Sofronis, Multiple viewpoint contract-based specification and design, in: FMCO,

Springer, 2008, pp. 200–225.
[3] A. Bhave, B.H. Krogh, D. Garlan, B.R. Schmerl, View consistency in architectures for cyber-physical systems, in: ICCPS, IEEE, 2011, pp. 151–160.
[4] X. Blanc, I. Mounier, A. Mougenot, T. Mens, Detecting model inconsistency through operation-based model construction, in: ICSE, ACM, 2008,

pp. 511–520.
[5] D. Broman, E.A. Lee, S. Tripakis, M. Törngren, Viewpoints, formalisms, languages, and tools for cyber-physical systems, in: 6th Intl. Workshop on

Multi-Paradigm Modeling (MPM’12), 2012.

http://refhub.elsevier.com/S0167-6423(18)30261-2/bib416D6172616C3230313152414Ds1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib5061737365726F6E65464D434F3037s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib5061737365726F6E65464D434F3037s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F69636370732F42686176654B47533131s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F696373652F426C616E634D4D4D3038s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F696373652F426C616E634D4D4D3038s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib42726F6D616E4D504D3132s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib42726F6D616E4D504D3132s1

24 M. Pittou et al. / Science of Computer Programming 167 (2018) 1–24
[6] M. Broy, Software and system modeling: structured multi-view modeling, specification, design and implementation, in: Conquering Complexity,
Springer, 2012, pp. 309–372.

[7] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, P. Niebert, From Simulink to SCADE/Lustre to TTA: a layered approach for distributed embedded
applications, in: Proceedings of the 2003 ACM SIGPLAN Conf. on Languages, Compilers, and Tools for Embedded Systems (LCTES’03), ACM, June 2003,
pp. 153–162.

[8] L. de Alfaro, T.A. Henzinger, Interface theories for component-based design, in: EMSOFT, in: LNCS, vol. 2211, Springer, 2001, pp. 148–165.
[9] R.M. Dijkman, Consistency in Multi-Viewpoint Architectural Design, PhD thesis, University of Twente, 2006.

[10] S. Easterbrook, M. Chechik, A framework for multi-valued reasoning over inconsistent viewpoints, in: ICSE, IEEE, 2001, pp. 411–420.
[11] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, B. Nuseibeh, Inconsistency handling in multiperspective specifications, IEEE TSE 20 (8) (1994) 569–578.
[12] S. Getir, L. Grunske, C.K. Bernasko, V. Käfer, T. Sanwald, M. Tichy, Cowolf – a generic framework for multi-view co-evolution and evaluation of models,

in: ICMT, in: LNCS, vol. 9152, Springer, 2015, pp. 34–40.
[13] T.A. Henzinger, D. Nickovic, Independent implementability of viewpoints, in: Monterey Workshop, in: LNCS, vol. 7539, Springer, 2012, pp. 380–395.
[14] G.J. Holzmann, The model checker SPIN, IEEE Trans. Softw. Eng. 23 (5) (1997) 279–295.
[15] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1990.
[16] ISO/IEC/IEEE 42010:2011, Systems and software engineering – architecture description, the latest edition of the original IEEE Std 1471:2000, Recom-

mended Practice for Architectural Description of Software-intensive Systems, IEEE and ISO, 2011.
[17] D. Jackson, Structuring Z Specifications with Views, Technical Report CMU-CS-94-126, CMU, 1994.
[18] E.K. Jackson, T. Levendovszky, D. Balasubramanian, Automatically reasoning about metamodeling, Softw. Syst. Model. 14 (1) (2015) 271–285.
[19] E.K. Jackson, J. Sztipanovits, Formalizing the structural semantics of domain-specific modeling languages, Softw. Syst. Model. 8 (4) (2009) 451–478.
[20] J. Kienzle, W.A. Abed, J. Klein, Aspect-oriented multi-view modeling, in: Aspect-Oriented Software Development, ACM, 2009, pp. 87–98.
[21] H. Lewis, C. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, 1997.
[22] F.J. Lucas, F. Molina, J.A.T. Álvarez, A systematic review of UML model consistency management, Inf. Softw. Technol. 51 (12) (2009) 1631–1645.
[23] S. Maoz, J.O. Ringert, B. Rumpe, Semantically configurable consistency analysis for class and object diagrams, CoRR, arXiv:1409 .2313, 2014.
[24] S. Maoz, J.O. Ringert, B. Rumpe, Verifying component and connector models against crosscutting structural views, in: ICSE, ACM, 2014, pp. 95–105.
[25] K.L. McMillan, Symbolic Model Checking, Kluwer, 1993.
[26] M. Persson, M. Törngren, A. Qamar, J. Westman, M. Biehl, S. Tripakis, H. Vangheluwe, J. Denil, A characterization of integrated multi-view modeling in

the context of embedded and cyber-physical systems, in: EMSOFT, IEEE, 2013, pp. 1–10.
[27] M. Pittou, S. Tripakis, Checking multi-view consistency of discrete systems with respect to periodic sampling abstractions, in: FACS, in: LNCS, vol. 10231,

2016, pp. 73–91.
[28] M. Pittou, S. Tripakis, Multi-view consistency for infinitary regular languages, in: SAMOS, IEEE, 2016, pp. 148–155.
[29] A. Rajhans, B.H. Krogh, Heterogeneous verification of cyber-physical systems using behavior relations, in: HSCC, ACM, 2012, pp. 35–44.
[30] A. Rajhans, B.H. Krogh, Compositional heterogeneous abstraction, in: HSCC, ACM, 2013, pp. 253–262.
[31] H. Rasch, H. Wehrheim, Checking consistency in UML diagrams: classes and state machines, in: Formal Methods for Open Object-Based Distributed

Systems, 6th IFIP WG 6.1 International Conference, FMOODS, 2003, pp. 229–243.
[32] J. Reineke, C. Stergiou, S. Tripakis, Basic problems in multi-view modeling, Softw. Syst. Model. (Dec. 2017) 1–35.
[33] J. Reineke, S. Tripakis, Basic problems in multi-view modeling, in: TACAS, in: LNCS, vol. 8413, Springer, 2014, pp. 217–232.
[34] A.A. Shah, A.A. Kerzhner, D. Schaefer, C.J.J. Paredis, Multi-view modeling to support embedded systems engineering in SysML, in: Graph Transformations

and Model-Driven Engineering, in: LNCS, vol. 5765, Springer, 2010, pp. 580–601.
[35] A.P. Sistla, M.Y. Vardi, P. Wolper, The complementation problem for Büchi automata with applications to temporal logic, Theor. Comput. Sci. 49 (1987)

217–237.
[36] G. Spanoudakis, A. Finkelstein, Reconciling requirements: a method for managing interference, inconsistency and conflict, Ann. Softw. Eng. 3 (1996)

433–457, Special Issue on Software Requirements Engineering.
[37] W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics (B), Elsevier Science

Publishers, 1990, pp. 133–192.
[38] S. Tripakis, Compositionality in the science of system design, Proc. IEEE 104 (5) (May 2016).
[39] R. von Hanxleden, E.A. Lee, C. Motika, H. Fuhrmann, Multi-view modeling and pragmatics in 2020, in: 17th Intl. Monterey Workshop, in: LNCS,

vol. 7539, Springer, 2012.
[40] S. Warshall, A theorem on boolean matrices, J. ACM 9 (1) (1962) 11–12.
[41] X. Zhao, Q. Long, Z. Qiu, Model checking dynamic UML consistency, in: Formal Methods and Software Engineering, in: LNCS, vol. 4260, Springer, 2006,

pp. 440–459.

http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A626F6F6B732F6461676C69622F702F42726F793132s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A626F6F6B732F6461676C69622F702F42726F793132s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib74726970616B69734C435445533033s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib74726970616B69734C435445533033s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib74726970616B69734C435445533033s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F656D736F66742F416C6661726F483031s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44696A6B6D616E3036s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib45617374657262726F6F6B4368656368696B32303031s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib46696E6B656C737465696E3934s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F69636D742F476574697247424B53543135s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F69636D742F476574697247424B53543135s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib48656E696E643134s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A6A6F75726E616C732F7473652F486F6C7A6D616E6E3937s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib486F7063726F667431393930s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib4A61636B736F6E5A7669657773s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A6A6F75726E616C732F736F73796D2F4A61636B736F6E4C423135s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A6A6F75726E616C732F736F73796D2F4A61636B736F6E533039s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F616F73642F4B69656E7A6C65414A3039s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib4C657769735061706164696D697472696F753937s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib4C756361733039s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A6A6F75726E616C732F636F72722F4D616F7A5252313464s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F696373652F4D616F7A52523134s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A626F6F6B732F6461676C69622F30303731383536s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F656D736F66742F50657273736F6E545157425456443133s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F656D736F66742F50657273736F6E545157425456443133s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F66616373322F506974746F75543136s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F66616373322F506974746F75543136s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F73616D6F732F506974746F75543136s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F6879627269642F52616A68616E734B3132s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F6879627269642F52616A68616E734B3133s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F666D6F6F64732F5261736368573033s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F666D6F6F64732F5261736368573033s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib7265696E656B65323031376261736963s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F74616361732F5265696E656B65543134s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F62697274686461792F536861684B53503130s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F62697274686461792F536861684B53503130s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A6A6F75726E616C732F7463732F536973746C6156573837s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A6A6F75726E616C732F7463732F536973746C6156573837s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib5370616E6F7564616B697339367265636F6E63696C696E67726571756972656D656E7473s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib5370616E6F7564616B697339367265636F6E63696C696E67726571756972656D656E7473s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A626F6F6B732F656C2F6C65657577656E39302F54686F6D61733930s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A626F6F6B732F656C2F6C65657577656E39302F54686F6D61733930s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib636F6D706F736974696F6E616C6974795049454545s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F6D6F6E74657265792F48616E786C6564656E4C4D463132s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F6D6F6E74657265792F48616E786C6564656E4C4D463132s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A6A6F75726E616C732F6A61636D2F5761727368616C6C3632s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F696366656D2F5A68616F4C513036s1
http://refhub.elsevier.com/S0167-6423(18)30261-2/bib44424C503A636F6E662F696366656D2F5A68616F4C513036s1

	Checking multi-view consistency of discrete systems with respect to periodic sampling abstractions
	1 Introduction
	2 Related work
	3 Background: automata and transition systems
	3.1 Automata
	3.1.1 Nondeterministic Büchi automata
	3.1.2 Closure properties of NBA under union and intersection
	3.1.3 Nondeterministic Büchi automata with epsilon transitions
	3.1.4 Eliminating epsilon transitions from NBA

	3.2 Symbolic transition systems
	3.2.1 Fully-observable symbolic transition systems
	3.2.2 Non-fully-observable symbolic transition systems
	3.2.3 Closure and non-closure properties of FOSs and nFOSs under union and intersection
	3.2.4 Transformation of nFOSs to Büchi automata
	3.2.5 Equivalence checking of nFOSs

	4 Multi-view modeling
	4.1 Systems, views, and abstraction functions
	4.2 View consistency
	4.3 The canonical witness system candidate and its use in a necessary and sufﬁcient condition for view consistency

	5 Multi-view consistency of Büchi automata w.r.t. periodic sampling
	5.1 Periodic sampling of inﬁnite words and languages
	5.2 Periodic sampling of Büchi automata
	5.3 Inverse periodic sampling of Büchi automata
	5.4 Checking consistency of Büchi automaton views w.r.t. periodic sampling
	5.5 Example: checking consistency of two NBA views

	6 Multi-view consistency of symbolic transition systems w.r.t. periodic sampling
	6.1 Periodic sampling of transition systems
	6.2 Periodic sampling of symbolic transition systems
	6.3 Inverse periodic sampling of symbolic transition systems
	6.3.1 FOSs are not closed under inverse periodic sampling
	6.3.2 nFOSs are closed under inverse periodic sampling

	6.4 Checking consistency of symbolic transition system views w.r.t. periodic sampling
	6.5 Example: checking consistency of two FOS views

	7 Conclusions and future work
	References

