
Automatic Verification of Safety and Liveness for XScale-Like Processor
Models Using WEB-Refinements

Panagiotis Manolios
College of Computing

Georgia Institute of Technology
manolios@cc.gatech.edu

Sudarshan K. Srinivasan
School of Electrical & Computer Engineering

Georgia Institute of Technology
darshan@ece.gatech.edu
l
Abstract (CLU), which is a decidable logic. We use the too
-

d
ch

ur
n
r
d

t-
],
es

m
e

y
ad-
are
-
-
e
nt
m
t-
-
in
in
r.
a
nd-
o

e
e
In
-

ch
d
the
nt
ty

e-
T

We show how to automatically verify that a complex
XScale-like pipelined machine model is a WEB-refine-
ment of an instruction set architecture model, which
implies that the machines satisfy the same safety and
liveness properties. Automation is achieved by reducing
the WEB-refinement proof obligation to a formula in the
logic of Counter arithmetic with Lambda expressions
and Uninterpreted functions (CLU). We use UCLID to
transform the resulting CLU formula into a CNF for-
mula, which is then checked with a SAT solver. We
define several XScale-like models with out of order
completion, including models with precise exceptions,
branch prediction, and interrupts. We use two types of
refinement maps. In one, flushing is used to map pipe-
lined machine states to instruction set architecture
states; in the other, we use the commitment approach,
which is the dual of flushing, since partially completed
instructions are invalidated. We present experimental
results for all the machines modeled, including verifica-
tion times. For our application, we found that the SAT
solver Siege provides superior performance over Chaff
and that the amount of time spent proving liveness when
using the commitment approach is less than 1% of the
overall verification time, whereas when flushing is
employed, the liveness proof accounts for about 10% of
the verification time.

1. Introduction
We show how to automatically and efficiently verify

safety and liveness properties of complex XScale-like
pipelined machine models. Verification entails con-
structing a WEB-refinement proof, which implies that,
relative to a refinement map, a pipelined machine has
exactly the same infinite executions as the machine
defined by the instruction set architecture, up to stutter-
ing. A consequence is that the pipelined machine satis-
fies exactly the same CTL*\X properties satisfied by the
instruction set architecture. For the types of machines
we study, we can reduce the WEB-refinement proof to a
statement expressible in the logic of Counter arithmetic
with Lambda expressions and Uninterpreted functions

UCLID to transform the CLU formula into a CNF for-
mula, which we then check with a SAT solver. We pro
vide experimental results for eight XScale-like
pipelined machine models of varying complexity an
including features such as precise exceptions, bran
prediction, and interrupts. Our results show that o
approach is computationally efficient, as verificatio
times for WEB-refinement proofs are only 4.3% longe
than the verification times for the standard Burch an
Dill type proofs.

The use of WEB-refinement for proving the correc
ness of pipelined machines was introduced in [12
where some simple three stage pipelined machin
were verified using the ACL2 theorem proving syste
[9,10]. The paper also showed that the variant of th
Burch and Dill notion of correctness [3] used b
Sawada [19,20] can be satisfied by machines that de
lock and an argument was given that such anomalies
not possible if WEB-refinement is used. Our main con
tribution is to show how one can prove WEB-refine
ment theorems automatically and efficiently, which w
accomplish by defining rank functions and refineme
maps automatically. The WEB-refinement theore
contains quantifiers and involves exhibiting the exis
ence of certain ‘‘rank’’ functions and we achieve auto
mation in two steps. First, we strengthen the theorem
a way that leads to a simplified statement, expressible
the CLU logic, that holds for the examples we conside
Second, we show how to define the rank function in
general way that does not require any deep understa
ing of the pipelined machine and in fact is simpler t
define than flushing.

The paper is organized as follows. In section 2, w
provide an overview of refinement based on WEBs, th
theory upon which our correctness proofs depend.
section 3, we explain how we model XScale-like pro
cessors and in section 4, we outline how we verify su
models. In section 5, we report verification times an
statistics for 8 processor models, some based on
flushing approach and some on the commitme
approach. We compare the time taken to prove safe
alone with the time taken to prove both safety and liv
ness and we compare the running times of the SA
1



s
m
ed
e-
e
ed

o
ne

ed
nt
g,
d
he
s

t
e

re
e

n

e
en
h),

e
is-
ch.
er

el
s

ri-
h

e
c-
e
of
re
-

s
te
solvers Siege [18] and Chaff [16] on our problems.
Everything required to reproduce our results,e.g.,
machine models, correctness statements, CNF formu-
las, etc., will be available on our Web pages. Related
work is described in section 6, while conclusions and an
outline of future work appear in section 7.

2. Refinement
In this section, we give a brief overview of refine-

ment based on WEBs (Well-Founded Equivalence
Bisimulations), the theory underlying our pipelined
machine proofs. See[12,13] for a complete description.

The point of a correctness proof is to establish a
meaningful relationship between ISA, a machine mod-
eled at the instruction set architecture level and MA, a
machine modeled at the microarchitecture level, a low
level description which includes the pipeline. We
accomplish this by first defining arefinement map, r, a
function from MA states to ISA states; think ofr as
showing us how to view an MA state as an ISA state.
We then prove that MA is a WEB-refinement of
ISA which implies that for every pair of statesw, s such
that w is an MA state ands = r(w), for every infinite
pathσ starting ats, there is a “matching” infinite pathδ
starting atw, and conversely. Thatσ and δ “match”
implies that applyingr to the states inδ results in a
sequence that can be obtained fromσ by repeating, but
only finitely often, some ofσ’s states, as MA may
require several steps before matching a single step of
ISA. We note that if MA is a refinement of ISA, then
the two machines satisfy the same formulas expressible
in the temporal logic CTL*\ X, over the state compo-
nents visible at the instruction set architecture level.
CTL*\ X is a very expressive temporal logic, allowing
one to express both safety and liveness properties. For
example, after we prove a WEB-refinement, we can
deduce that the MA machine cannot deadlock, whereas
this does not necessarily follow from the usual Burch
and Dill correctness proof, even when certain “live-
ness” theorems are proved [12].

The main component of the refinement proof for our
examples consists of showing that there exists a func-
tion rank mapping states of MA into the natural num-
bers, such that for every MA statew, if we let s ber(w),
u be the successor ofs, andv be the successor ofw, then
either r(v) = u or we have bothr(v) = s and rank(v) <
rank(w). The second disjunct corresponds to the case
where stepping fromw to v does not affect the ISA visi-
ble components; that such “stuttering” cannot continue
forever is assured by showingrank(v) < rank(w), as the
range ofrank is well founded.

The theoretical work on WEB-refinements [13] i
quite general and the main component of the theore
we prove is a stronger statement than what is requir
to prove WEB-refinement in a general setting; noneth
less, it is a statement that holds for the examples w
consider. There is a good reason that we strengthen
the WEB-refinement proof obligation: this allows us t
obtain a statement expressible in CLU, after we defi
rank. The definition ofrank depends on the definition
of the refinement mapr.

We use two types of refinement maps. One is bas
on flushing. The other, based on the commitme
approach, can be thought of as the dual of flushin
since partially completed instructions are invalidate
instead of completed. For the flushing approach, t
rank of a state is essentially the number of clock cycle
required to fetch a new instruction which will make i
through the pipeline (to match a step of th
ISA machine). For the commitment approach, therank
of a state is the number of clock cycles required to reti
an instruction (to match a step of the ISA machine). W
provide a general method for definingrank for both
types of refinement maps. A more detailed descriptio
appears in the following sections.

3. Modeling of XScale-Like Processors
Figure 1 shows the high-level organization of th

XScale-like processor model. The model is a sev
stage pipeline whose stages are IF1, IF2 (2-cycle fetc
ID (instruction decode), EX (execute), MEM1, MEM2
(2-cycle memory access), and WB (write back). Fiv
abstract instruction types are modeled including reg
ter-register, register-immediate, load, store, and bran
The branch and store instructions complete out of ord
with respect to the ALU instructions. This base mod
is extended with branch prediction, ALU exception
and interrupts.

The branch predictor is abstracted with a state va
able,BPStatethat holds the current state of the branc
predictor, and 2 UFs and a UP includingNextBPState,
PredictTargetand PredictDirection that only take the
BPStateas input.NextBPState, PredictDirection, and
PredictTargetproduce as output the next state of th
branch predictor, an arbitrary prediction on the dire
tion, and an arbitrary prediction on the target of th
branch, respectively. The actual direction and target
the branch are determined in EX. Mispredictions a
corrected in MEM1. What is verified is the logic to cor
rect mispredictions.

ALU exceptions are modeled with a UP that take
the same inputs as the ALU, and outputs a predica
2



-
-

A

he

A
ts

d

k
d
ry
he

e

indicating if an exception is raised. ALU exceptions are
dealt with in MEM1. In case of an ALU exception, all
previous instructions are squashed, the program counter
is updated with the address corresponding to the ALU
exception handler routine, and the PC of the excepting
instruction is stored in the Exception Program Counter
(EPC). A return-from-exception instruction is also
implemented that restores the PC with the EPC.

Interrupts are modeled with an arbitrary interrupt
stateINPState, a UFNextINPStatethat takes INPState
as input and produces the next interrupt state, and UP
IsInterrupt that also takesINPStateas input and pro-
duces a predicate which indicates if an interrupt is
raised. Interrupts are detected in the MEM1 stage and
squash all previous instructions including the instruc-
tion that caused the interrupt. We use temporal abstrac-
tion to model the behavior of interrupts. The only trace
left by an interrupt is that it has modified the data mem-
ory. The PC is set to the program counter corresponding
to the first instruction that was squashed by the inter-
rupt, the data memory is modified using a UF that takes
the previous data memory state as input, and the regis-
ter file is not modified.

4. Verification of XScale-Like Processor
Models

We prove the core theorem on the various XScale-
like processor models with out of order completion,
branch prediction, ALU exceptions, and interrupts. We
use two different approaches, including the commit-
ment approach and flushing, to define the refinement
map. The core theorem is defined below.

s = r ( w)  ∧
u = ISA-step( s)  ∧
v = MA-step( w) ∧
u ≠ r ( v) ∧

⇒
s = r ( v) ∧  rank( v) < rank( w)

In the theorem shown aboves andu are ISA states,
andw andv are MA states; ISA-step is a function corre
sponding to stepping the ISA machine once and MA
step is a function corresponding to stepping the M
machine once;r is the refinement map that maps MA
states to ISA states; and rank is the rank function. T
theorem says that ifs is the refinement ofw, u is
obtained by steppings, v is obtained by steppingw, and
u is not the refinement ofv, thens is the refinement ofv
and the rank ofv is less than the rank ofw. The proof
obligation relatings andv is the safety component, and
the proof obligation that rank(v) < rank(w) is the live-
ness component.

4.1 Commitment Approach
The commitment approach relates ISA and M

states by retaining the programmer visible componen
of the committed part of the MA states. A committe
MA state is obtained by invalidating all the partially
executed instructions in the pipeline, and rolling bac
the MA state to correspond with the last committe
instruction. The MA states are rolled back using histo
variables that store the MA states corresponding to t
last n MA steps, wheren is the number of steps an
instruction takes to be committed after it updates th
3

Figure 1. Pipeline organization of processor model.

 IF1 ID EXIF2

PC ID2-Cycle Instruction Fetch ALU

 MEM1 MEM2

2-Cycle Memory Access

WB

RF

RF Write
     Port



th
is

t-
e
ly
a

he
le

y
d
e

s.
nd
nt
F

nt
uc-
i-
ith
ed

of
or
ss
so
n
a-
nd
d
n.

to
m
e

the
ia-

on
e

r
e
t
of

s,
ge
MA state. The histories of the PC, data memory, and
interrupt state are stored for the last 6, 2, and 2 steps,
respectively. Only the current state of the register file is
required as, when the instruction writes back to the reg-
ister file, it is considered committed. In order to use the
commitment approach, it is required that we compare
ISA states only with “good” MA states, where an MA
state is “good” iff it is reachable from a committed
state. To check that an MA state,w, is “good”, the com-
mitted state,c, corresponding tow is determined. State
w is “good” if it can be reached fromc in 0 to 6 steps. In
this approach, the rank of an MA state is the number of
MA-steps required to commit a new instruction. The
rank is determined by checking the first valid latch that
is closest to the register file. An MA state with a valid
latch closer to the register file is assigned a higher rank.

4.2 Flushing Approach
The flushing approach relates MA and ISA states by

flushing an MA state and comparing the resultant pro-
grammer visible components of the MA state with the
ISA state, where by flushing we mean feeding the pipe-
line with bubbles to complete partially executed
instructions without fetching any new instructions. It
turns out that for a single-issue pipelined machine, the
safety proof of the core WEB theorem is similar to the
Burch and Dill approach [3]. In the flushing approach,
the rank of an MA state,w, is the number of steps
required to fetch a new instruction that eventually com-
pletes. The rank can be determined by steppingw, to
obtainv, flushingv, and comparing the result with the
flushed state ofw, to check if it has made any progress.
The number of steps required to make progress is the
rank. The straightforward implementation of this idea
requires 174 symbolic simulations, which UCLID was
not able to handle. We implemented an optimized ver-
sion based on the observation that stepping and flushing
the MA states can be folded together so as to reduce the
number of symbolic simulations. In more detail, we
determine the number of steps required to flush the
pipeline (by flushing it) and we set a counter to this
value. The MA state is simulated for this number of
steps and the rank of the MA state is the number of
steps required for the latch closest to the register file to
become valid.

4.3 CLU Logic
The CLU logic consists of Uninterpreted Functions

(UFs) and Predicates (UPs), restricted lambda expres-
sions, ordering, and successor and predecessor func-
tions. Combinational logic is abstracted with UFs/UPs.

The output of a UF is a term variable and a UP is a tru
variable. The only property satisfied by UFs and UPs
functional consistencywhen the inputs of two differ-
ent instances of a UF are equal, it implies that the ou
puts are equal. The successor function is used to defin
the rank functions for the MA states. We could easi
do without the successor function since the rank of
state is always less than the number of latches in t
pipeline. This means that our approach is applicab
even with tools that only support the logic of equalit
with uninterpreted functions and memories, but we fin
that defining rank explicitly is clearer and performanc
is essentially the same.

5. Results
In this section, we review our experimental result

We start with two base processor models, CXS a
FXS: the prefix C indicates the use of the commitme
approach for defining the refinement map and prefix
indicates the use of flushing for defining the refineme
map. Both models can execute 6 basic abstract instr
tion types including register-register, register-immed
ate, branch, load, store, and return-from-exception w
out of order completion. The base models are extend
to implement:

1) branch prediction, designated by “-BP”;
2) ALU exceptions, designated by “-EX”; and
3) interrupts, designated by “-INP”.
Table 1 presents the results. We report the number

CNF variables and clauses and the verification time f
both the safety proofs and the safety and livene
proofs. For the safety and liveness proofs, we al
report the size of the CNF files and the verificatio
times taken by both Siege and Chaff. The total verific
tion time reported includes the time taken by Siege a
UCLID, thus the time taken by UCLID can be obtaine
by subtracting the Siege column from the Total colum
Siege uses a random number generator, which leads
large variations in the execution times obtained fro
multiple runs of the same input, thus, in order to mak
reasonable comparisons, every Siege entry is really
average over 10 runs and we report the standard dev
tions for the runs. The experiments were conducted
an Intel XEON 2.20GHz processor with an L1 cach
size of 512KB.

As is clear from Table 1, Siege provides superio
performance when compared to Chaff. If we divide th
total running time of Chaff with Siege, we see tha
Siege provides a speedup of about 17 and in the case
CXS the speedup is 226. The overall cost of livenes
computed by subtracting the sum of the Safety Sie
4



Table 1. Statistics for boolean correctness formula and formal verification time.

Processor

Safety Safety and Liveness

CNF
Vars

CNF
Clauses

 Verification
Time [sec] CNF

Var
CNF

Clauses

CNF
Size
[KB]

Verification Time [sec]

Siege Total Siege Chaff Stdev Total

CXS 12,930 38,215 35 38 12,495 36,925 664 29 6,552 3.4 32

CXS-BP 24,640 72,859 284 289 23,913 70,693 1,336 300 7,861 48.7 305

CXS-BP-EX 24,651  72,841 244 249 24,149 71,350 1,344 233 4,099 50.2 238

CXS-BP-EX-INP 24,669  72,880 255 261 24,478 72,322 1,368 263 3,483 34.1 269

FXS 28,505  36,925 140 154 53,441 159,010 3,096 160 796 24.4 175

FXS-BP 33,964 100,624 170 185 71,184 211,723 4,136 187 586 50.4 203

FXS-BP-EX 35,827 106,114 179 195 74,591 221,812 4,344 163 759 17.6 180

FXS-BP-EX-INP 38,711 11,4742 128 147 81,121 241,345 4,736 170 1,427 32.3 189

m-

or
.
a
e
hat
-
l

l

n
d
]
e-

is
in
r

d
er
d

s

column from the sum of the Safety and Liveness Siege
column and dividing by the latter is 4.6%; notice that
for the commitment approach it is 0.75%, whereas it is
9.3% for the flushing approach. Finally, we note that
there are cases in which the verification time for safety
and liveness is less than that of liveness; in fact, the ver-
ification time for liveness alone seems to be about the
same as the verification time for safety,e.g., when prov-
ing liveness for CXS, Siege takes 37 seconds (this is the
average of ten runs).

All machine models, correctness statements, CNF
formulas, and in general everything required to repro-
duce our results will be available on our Web pages.

6. Related Work
We now review previous work on pipelined machine

verification. A very early approach by Srivas and Bick
was based on the use of skewed abstraction functions
[23]. Burch and Dill showed how to automatically com-
pute the abstraction function using flushing [3]. There
are approaches based on model-checking,e.g., in [14],
McMillan uses compositional model-checking in con-
junction with symmetry reductions. Theorem proving
approaches are also popular,e.g., in [19,20], Sawada
uses an intermediate abstraction called MAETT to ver-
ify some safety and liveness properties of complex
pipelined machines. Another approach by Hosabettu et

al. uses the PVS theorem prover and the notion of co
pletion functions [5]. Symbolic Trajectory Evaluation
(STE) is used by Patankar et al. to verify a process
that is a hybrid between ARM7 and StrongARM [17]
SVC is used check the correct flow of instructions in
pipelined DLX model [15]. Abstract State Machines ar
used to prove the correctness of refinement steps t
transform a non-pipelined ARM processor into a pipe
lined implementation [6]. An XScale processor mode
is verified using a variation of the Burch and Dil
approach in [22].

This paper directly depends on previous work o
decision procedures for boolean logic with equality an
uninterpreted function symbols [1]. The results in [1
were further extended in [2], where a decision proc
dure for the logic of Counter arithmetic with Lambda
expressions and Uninterpreted functions (CLU)
given. The decision procedure is implemented
UCLID, which has been used to verify out-of-orde
microprocessors [21].

7. Conclusions and Future Work
We show how to automatically verify safety and

liveness properties of complex XScale-like pipeline
machine models with a slight performance penalty ov
verifying safety properties alone. This is accomplishe
by proving a WEB-refinement theorem, which implie
5



n

-
r

l
,

.

e

n

-
,

-

of
7
s

,

-

L

e

ic

-
d

that the pipelined machine satisfies exactly the same
CTL*\X properties satisfied by the instruction set archi-
tecture. We show how to automate the verification of
the WEB-refinement theorem, which contains quantifi-
ers and involves exhibiting the existence of certain
‘‘rank’’ functions. The automation is achieved in two
steps. First, we strengthen the theorem in a way that
leads to a simplified statement that holds for the exam-
ples we consider. Second, we show how to define the
rank function in a general way that does not require any
deep understanding of the pipelined machine; in fact, it
much simpler to define the rank function than it is to
define how the machine is flushed. As a result, we are
left with a formula in the logic of Counter arithmetic
with Lambda expressions and Uninterpreted functions
and can use UCLID to obtain a CNF formula, which we
then check with a SAT solver. To summarize, our main
contribution is to show how WEB-refinements can be
used as the basis for automatic verification of pipelined
machines, resulting in both safety and liveness verifica-
tion, with only a slight increase in verification times.

For future work, we are planning to explore how one
can connect UCLID (any decision procedure for CLU
will do) with the theorem proving system ACL2 [9,10].
This will allow us to use ACL2 for efficient simulation
and advanced debugging. In addition, we plan to
explore methods for verifying larger instructions sets
more efficiently than is currently possible with either
approach alone.

References
[1] R.E. Bryant, S. German, and M.N. Velev, “Exploiting

Positive Equality in a Logic of Equality with Uninter-
preted Functions,”Computer-Aided Verification (CAV
’99), N. Halbwachs and D. Peled, eds.,LNCS1633,
Springer-Verlag, July 1999, pp. 470-482.

[2] R.E. Bryant, S.K. Lahiri, and S.Seshia. Modeling and
verifying systems using a logic of counter arithmetic
with lambda expressions and uninterpreted functions.
In E. Brinksma and K. Larsen, editors,Computer-
Aided Verification--CAV 2002}, volume 2404 of
LNCS, pages 78-92. Springer-Verlag, 2002.

[3] J.R. Burch, and D.L. Dill, “Automated Verification of
Pipelined Microprocessor Control,”Computer-Aided
Verification (CAV‘94), D.L. Dill, ed., LNCS 818,
Springer-Verlag, June 1994, pp. 68–80.

[4] L.Clark, E.Hoffman, J.Miller, M.Biyani, Y.Liao,
S.Strazdus, M.Morrow, K.Velarde, and M.Yarch, “An
embedded 32-bit microprocessor core for low-power
and high-performance applications,IEEE Journal of
Solid-State Circuits,  pp. 1599-1608, 2001.

[5] R.Hosabettu, M.Srivas, and G.Gopalakrishnan,
“Proof of correctness of a processor with reorder
buffer using the completion functions approach,” In
N.Halbwachs and D.Peled, editors,Computer-Aided-
Verification--CAV ’99, volume 1633 of LNCS.

Springer-Verlag, 1999.
[6] J.K. Huggins, and D.V. Campenhout, "Specificatio

and Verification of Pipelining in the ARM2 RISC
Microprocessor," ACM Transactions on Design Auto
mation of Electronic Systems, Vol. 3, No. 4 (Octobe
1998), pp. 563–580.

[7] W.A. Hunt, Jr. and S.D. Johnson, editors. Forma
Methods in Computer-Aided Design--FMCAD 2000
volume 1954 ofLNCS. Springer-Verlag, 2000.

[8] M.Kaufmann, P.Manolios, and J.S. Moore, editors
“Computer-Aided Reasoning: ACL2 Case Studies,”
Kluwer Academic Publishers, June 2000.

[9] M.Kaufmann, P.Manolios, and J.S. Moore, “Com-
puter-Aided Reasoning: An Approach.” Kluwer Aca-
demic Publishers, July 2000.

[10] M.Kaufmann and J.S. Moore,ACL2 homepage. Se
URL http://www.cs.utexas.edu/users/moore/acl2.

[11] S.K. Lahiri, S.A. Seshia, and R.E. Bryant, “Modeling
and Verification of Out-of-order Microprocessors
using UCLID,” Formal Methods in Computer-Aided
Design (FMCAD’02), LNCS 2517, pp. 142-159,
November 2002.

[12] P.Manolios, “Correctness of pipelined machines,” I
Hunt and Johnson [6], pages 161-178.

[13] P.Manolios,Mechanical Verification of Reactive Sys
tems. PhD thesis, University of Texas at Austin
August 2001.

[14] K.L. McMillan, “Verification of an implementation of
Tomasulo’s algorithm by compositional model check
ing,” In A.J. Hu and M.Y. Vardi, editors,Computer
Aided Verification (CAV’98), volume 1427 ofLNCS,
pp. 110-121. Springer-Verlag, 1998.

[15] P. Mishra, and N. Dutt, “Modeling and Verification of
Pipelined Embedded Processors in the Presence
Hazards and Exceptions,” IFIP WCC 2002 Stream
on Distributed and Parallel Embedded System
(DIPES’02), August 2002.

 [16] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang
and S. Malik, “Chaff: Engineering an Efficient SAT
Solver,” Design Automation Conference (DAC’01),
2001, pp. 530–535.

[17] V.A. Patankar, A. Jain, and R.E. Bryant, “Formal ver
ification of an ARM processor,” Twelfth International
Conference On VLSI Design, 1999, pp.  282–287.

[18] L. Ryan, Siege v4 homepage. See UR
http://www.cs.sfu.ca/~loryan/personal/.

[19] J.Sawada,Formal Verification of an Advanced Pipe-
lined Machine.PhD thesis, University of Texas at
Austin, Dec. 1999. See URL. http://
www.cs.utexas.edu/users/sawada/dissertation/.

[20] J.Sawada,Verification of a simple pipelined machin
model. In Kaufmann et.al. [7], pp. 137--150.

[21] S.A. Seshia, S.K. Lahiri, and R.E. Bryant, “A Hybrid
SAT-Based Decision Procedure for Separation Log
with Uninterpreted Functions,”.Design Automation
Conference (DAC’03), pp. 425-430, June 2003.

[22] S.K. Srinivasan, and M.N. Velev, “Formal Verifica-
tion of an Intel XScale Processor Model with Score
boarding, Specialized Execution Pipelines, an
Imprecise Data-Memory Exceptions,”Formal Meth-
ods and Models for Codesign (MEMOCODE ’03),
June 2003, pp. 65-74.

[23] M.Srivas and M.Bick, “Formal verification of a pipe-
lined microprocessor,”IEEE Software, pp. 52-64,
Sept. 1990.
6


	1. Introduction
	2. Refinement
	3. Modeling of XScale-Like Processors
	4. Verification of XScale-Like Processor Models
	4.1 Commitment Approach
	4.2 Flushing Approach
	4.3 CLU Logic

	5. Results
	6. Related Work
	7. Conclusions and Future Work
	References

