
Decidability and
Undecidability

2/17/2016
Pete Manolios

Theory of Computation

Models of Computation

regular

CF

decidable

Turing
recognizable • Regular: finite state machine

• CF: + stack
• Turing machine: + infinite tape
• Decidable (recursive): yes/no
• Recognizable (r.e.): yes

Decidability

• We will use Church-Turing thesis

• What that means is we’ll describe and think about
algorithms just like you did in algorithms class

• Because using TMs is really tedious and painful

• Because we “know” that TMs ≡ pseudo code

Decidability

regular

CF

decidable

Turing
recognizable

• D is a DFA that accepts w
• N is an NFA that accepts w
• D is a DFA that accepts a non-empty language
• A, B are DFAs and L(A) = L(B)
• C is a CFL that accepts w
• C is a CFL that accepts a non-empty language
• But, A, B are CFLs and L(A) = L(B) not decidable
• When the model of comp increases in power
• Your ability to analyze it decreases

Undecidability
• Limits of what can be done with a computer
• Of broad intellectual, philosophical interest

• Can humans solve problems TMs can’t?
• Turing test: can machines behave like humans?
• Can machines have consciousness?

http://imgs.xkcd.com/comics/suspicion.png

regular

CF

decidable

Turing
recognizable

…

Counting Infinities
• f: A → B is injective or one-to-one if it a≠b ⇒ f(a) ≠f(b)

• f: A → B is surjective or onto if it ∪a∊A {f(a)} = B

• f is bijective or a correspondence if it is both injective and surjective

• If f: A → B is bijective then each element of A maps to a unique element of B and conversely

• Given A,B if ∃ a bijection f: A → B then |A| = |B|: they have the same size

• This makes intuitive sense for finite sets, but has non-intuitive consequences for infinite sets

• |{a, b, c, d}| = |{1, 21, 3, 2}| = |{d, a, f, b, d, a}| = 4

• |ℕ| =? |ℕ \ {0, 1, 2}|

• |ℕ| = |{n ∊ ℕ: n is even}| = |ℤ| = |ℚ| = ω

• If |A| ≤ ω it is countable. ω is the first infinite ordinal number.

ℕ

ℕ \ {0, 1, 2}

ℤ

: 0, 1, 2, 3, 4, …
: 3, 4, 5, 6, 7, …
: 0, 1, -1, 2, -2, …

Theorem: |ℚ| = ω

https://divisbyzero.files.wordpress.com/2013/04/screen-shot-2013-04-16-at-9-23-14-pm.png

Have to enumerate the rationals. Here’s how:

Theorem: A countable union of countable sets is countable!

Note: no
duplicates

Theorem: |ℝ| > ω
• ℝ is uncountable: infinite and no bijection between ℝ and ω

• Clearly |ℝ| ≥ ω. We show |ℝ| ≠ ω.

• The proof is by contradiction.

• Suppose that there is a bijection, say:

• We derive a contradiction by showing that it can’t include every
real number

• Select ri to differ from digit i of f(i)

• Don’t use 0, 9 (because 0.9999… = 1.0000…)

• We showed |ℝ| > ω and that |A| > ω for A is any non-empty
interval of reals

• This technique is called diagonalization and is due to Cantor
(1873)

http://tispaquin.blogspot.com/2010/02/what-is-universe-expanding-into.html

Existence of the Undecidable
• There exist languages that are not Turing-recognizable (R.E.)

• So they are also not Turing-decidable (R.) either

• And it turns out that most languages are not Turing-recognizable!

• Observe: If |Σ| ≤ ω then the set of all strings, Σ*, is countable

• Observe: The set of all TMs is countable (each is described by a finite string of
symbols over a finite alphabet)

• Observe: B = {0,1}ω is uncountable (binary representation of reals in [0..1])

• Observe: There is a bijection between ℒ, the set of languages, and B. Use the
characteristic function: given L∊ℒ , f(L)=<s1∊L, s2∊L, s3∊L, …>

• So, |ℒ| > ω and most languages are not Turing-recognizable

ATM is R.E.
• ATM = {<M,w>: M is a TM that accepts w}

• Theorem: ATM is R.E. (Turing recognizable)

• Proof: Consider TM U: On input <M, w> it runs M
on w. If M halts and accepts w, accept. If M halts
and rejects w, reject.

• Note: U is a universal Turing machine

ATM is Undecidable
• Theorem: ATM is Undecidable. (ATM = {<M,w>: M is a TM that accepts w})

• Proof: Suppose there exists a TM H that decides ATM. Then, for any input <M,w>, H
accepts if M accepts w and rejects otherwise.

• Consider a TM D that takes an input <M>, the description of M, and takes the following
steps.

• Run H on <M,<M>>

• If H accepts, reject

• If H rejects, accept

• Since H is a decider, D is also a decider.

• Consider D's output on <D>. If D accepts, then this implies that according to H, D
rejects <D>. If D rejects, then this implies that according to H, D accepts <D>. But this
is a contradiction.

Diagonalization?
• Another way to see this is that we have essentially proved that the

language {<M> : M accepts <M>} is undecidable. How did we do
this?

• Number the machines M1, M2, Suppose the above language is
decidable by a TM E.

• Define D to be a machine that on input <M>, accepts if E rejects
<M>, and rejects if E accepts <M>.

• This is precisely flipping the diagonal entries of the matrix in which
the columns list the machines M1, M2, ..., and the rows list the
inputs <M1>, <M2>,

• If D is on this list, then we obtain a contradiction.

L and ¬L are RE then L is R.
• ¬L is the complement of L: Σ* \ L

• Theorem: If L and ¬L are Turing-recognizable, then L is decidable.

• Proof: Let M1 and M2 be TMs that recognize L and ¬L. Given a
string w, exactly one of the following happens

• M1 accepts w or M2 accepts w

• TM M for deciding L simulates M1 and M2 in parallel, running one
step of each on w.

• Within a finite number of steps, one of them will halt and accept.

• If M1 accepts, then M accepts. If M2 accepts, then M rejects.

¬ATM is not RE
• Corollary: ¬ATM is unrecognizable (not RE)

• What is ¬ATM?

• {<M, w>: M is not a TM or M does not accept w}

• Proof: ATM is not decidable, so by previous theorem
either ATM or ¬ATM is not RE, but ATM is RE, so ¬ATM
is not.

Halting Problem
• HALTTM = {<M, w>: M halts on w}

• Theorem: HALTTM is undecidable.

• Proof: We show that if HALTTM is decidable, then so is ATM.

• Preview of reduction: We reduce from ATM to HALTTM (ATM ≤ HALTTM).

• Suppose H is the decider for HALTTM. Then the decider A for ATM is as follows. On
input <M, w>, A calls H on input <M, w>. If H accepts, then A runs M on w and
accepts if M accepts w, rejecting otherwise. If H rejects, then A rejects.

• Consider <M,w> in ATM. Since M accepts w, M halts on w. So H accepts <M, w>.
Since M accepts and halts on w, A's call of M on w terminates in an accept state.

• Consider <M,w> not in ATM. There are two cases. The first is when M halts on w and
rejects w. So H accepts <M, w>. A's call of M on w terminates in a reject state. The
second case is when M does not halt on w. So H rejects <M, w>, and so does A.

