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Models of Computation

regular

CF

decidable

Turing  
recognizable • Regular: finite state machine 

• CF: + stack 
• Turing machine: + infinite tape 
• Decidable (recursive): yes/no 
• Recognizable (r.e.): yes



Decidability

• We will use Church-Turing thesis 

• What that means is we’ll describe and think about 
algorithms just like you did in algorithms class 

• Because using TMs is really tedious and painful 

• Because we “know” that TMs ≡ pseudo code



Decidability
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• D is a DFA that accepts w 
• N is an NFA that accepts w 
• D is a DFA that accepts a non-empty language 
• A, B are DFAs and L(A) = L(B) 
• C is a CFL that accepts w 
• C is a CFL that accepts a non-empty language 
• But, A, B are CFLs and L(A) = L(B) not decidable 
• When the model of comp increases in power 
• Your ability to analyze it decreases



Undecidability
• Limits of what can be done with a computer 
• Of broad intellectual, philosophical interest 

• Can humans solve problems TMs can’t? 
• Turing test: can machines behave like humans? 
• Can machines have consciousness?
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Counting Infinities
• f: A → B is injective or one-to-one if it a≠b ⇒ f(a) ≠f(b) 

• f: A → B is surjective or onto if it  ∪a∊A {f(a)} = B 

• f is bijective or a correspondence if it is both injective and surjective 

• If f: A → B is bijective then each element of A maps to a unique element of B and conversely 

• Given A,B if ∃ a bijection f: A → B then |A| = |B|: they have the same size 

• This makes intuitive sense for finite sets, but has non-intuitive consequences for infinite sets 

• |{a, b, c, d}| = |{1, 21, 3, 2}| = |{d, a, f, b, d, a}| = 4 

• |ℕ| =? |ℕ \ {0, 1, 2}|  

• |ℕ| = |{n ∊ ℕ: n is even}| = |ℤ| = |ℚ| = ω 

• If |A| ≤ ω it is countable. ω is the first infinite ordinal number. 

ℕ                  

ℕ \ {0, 1, 2}  

ℤ                

: 0, 1,  2, 3,  4, … 
: 3, 4,  5, 6,  7, … 
: 0, 1, -1, 2, -2, …



Theorem: |ℚ| = ω

https://divisbyzero.files.wordpress.com/2013/04/screen-shot-2013-04-16-at-9-23-14-pm.png

Have to enumerate the rationals. Here’s how:

Theorem: A countable union of countable sets is countable!

Note: no  
duplicates



Theorem: |ℝ| > ω
• ℝ is uncountable: infinite and no bijection between ℝ and  ω 

• Clearly |ℝ| ≥ ω. We show |ℝ| ≠ ω. 

• The proof is by contradiction. 

• Suppose that there is a bijection, say: 

• We derive a contradiction by showing that it can’t include every 
real number 

• Select ri to differ from digit i of f(i) 

• Don’t use 0, 9 (because 0.9999… = 1.0000…) 

• We showed |ℝ| > ω and that |A| > ω for A is any non-empty 
interval of reals 

• This technique is called diagonalization and is due to Cantor 
(1873)

http://tispaquin.blogspot.com/2010/02/what-is-universe-expanding-into.html



Existence of the Undecidable
• There exist languages that are not Turing-recognizable (R.E.) 

• So they are also not Turing-decidable (R.) either 

• And it turns out that most languages are not Turing-recognizable! 

• Observe: If |Σ| ≤ ω then the set of all strings, Σ*, is countable   

• Observe: The set of all TMs is countable (each is described by a finite string of 
symbols over a finite alphabet) 

• Observe: B = {0,1}ω is uncountable (binary representation of reals in [0..1]) 

• Observe: There is a bijection between ℒ, the set of languages, and B. Use the 
characteristic function: given L∊ℒ , f(L)=<s1∊L, s2∊L, s3∊L, …> 

• So, |ℒ| > ω and most languages are not  Turing-recognizable



ATM is R.E.
• ATM = {<M,w>: M is a TM that accepts w} 

• Theorem: ATM  is R.E. (Turing recognizable) 

• Proof: Consider TM U: On input <M, w> it runs M 
on w.  If M halts and accepts  w, accept.  If M halts 
and rejects w, reject. 

• Note: U is a universal Turing machine



ATM is Undecidable
• Theorem: ATM  is Undecidable. (ATM = {<M,w>: M is a TM that accepts w}) 

• Proof: Suppose there exists a TM H that decides ATM.  Then, for any input <M,w>, H 
accepts if M accepts w and rejects otherwise. 

• Consider a TM D that takes an input <M>, the description of M, and takes the following 
steps. 

• Run H on <M,<M>> 

• If H accepts, reject 

• If H rejects, accept 

• Since H is a decider, D is also a decider.   

• Consider D's output on <D>.  If D accepts, then this implies that according to H, D 
rejects <D>.  If D rejects, then this implies that according to H, D accepts <D>.  But this 
is a contradiction.



Diagonalization?
• Another way to see this is that we have essentially proved that the 

language {<M> : M accepts <M>} is undecidable.  How did we do 
this? 

• Number the machines M1, M2, ....  Suppose the above language is 
decidable by a TM E.   

• Define D to be a machine that on input <M>, accepts if E rejects 
<M>, and rejects if E accepts <M>.   

• This is precisely flipping the diagonal entries of the matrix in which 
the columns list the machines M1, M2, ..., and the rows list the 
inputs <M1>, <M2>, ....   

• If D is on this list, then we obtain a contradiction.



L and ¬L are RE then L is R.
• ¬L is the complement of L: Σ* \ L 

• Theorem: If L and ¬L are Turing-recognizable, then L is decidable. 

• Proof: Let M1 and M2 be TMs that recognize L and ¬L.  Given a 
string w, exactly one of the following happens 

• M1 accepts w or M2 accepts w  

• TM M for deciding L simulates M1 and M2 in parallel, running one 
step of each on w.  

• Within a finite number of steps, one of them will halt and accept.   

• If M1 accepts, then M accepts.  If M2 accepts, then M rejects.



¬ATM is not RE
• Corollary: ¬ATM is unrecognizable (not RE) 

• What is ¬ATM? 

• {<M, w>: M is not a TM or M does not accept w} 

• Proof: ATM is not decidable, so by previous theorem 
either ATM or ¬ATM is not RE, but ATM is RE, so ¬ATM 
is not. 



Halting Problem
• HALTTM = {<M, w>: M halts on w} 

• Theorem: HALTTM is undecidable. 

• Proof: We show that if HALTTM is decidable, then so is ATM.   

• Preview of reduction: We reduce from ATM to HALTTM  (ATM ≤ HALTTM).   

• Suppose H is the decider for HALTTM.  Then the decider A for ATM is as follows.  On 
input <M, w>, A calls H on input <M, w>.  If H accepts, then A runs M on w and 
accepts if M accepts w, rejecting otherwise.  If H rejects, then A rejects. 

• Consider <M,w> in ATM.  Since M accepts w, M halts on w.  So H accepts <M, w>.  
Since M accepts and halts on w, A's call of M on w terminates in an accept state. 

• Consider <M,w> not in ATM.  There are two cases.  The first is when M halts on w and 
rejects w.  So H accepts <M, w>.  A's call of M on w terminates in a reject state.  The 
second case is when M does not halt on w.  So H rejects <M, w>, and so does A.


