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Models of Computation

/  Turing .
recognizable *

Regular: finite state machine
CF: + stack
Turing machine: + infinite tape

” decidable

Decidable (recursive): yes/no

Recognizable (r.e.): yes



Decidabillity

We will use Church-Turing thesis

What that means is we'll describe and think about
algorithms just like you did in algorithms class

Because using TMs is really tedious and paintul

Because we "know” that TMs = pseudo code



Decidabillity

D is a DFA that accepts w
N is an NFA that accepts w

4 Turmg ‘
recogmzable

D is a DFA that accepts a non-empty language
A, B are DFAs and L(A) = L(B)
C is a CFL that accepts w

C is a CFL that accepts a non-empty language
But, A, B are CFLs and L(A) = L(B) not decidable
When the model of comp increases in power

Your ability to analyze it decreases



’ Turmg \
recogmzable \

Limits of what can be done with a computer
o Of broad intellectual, philosophical interest

e Can humans solve problems TMs can’t?

e Turing test: can machines behave like humans? ‘

e Can machines have consciousness?
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Counting Infinities

f: A = B is injective or one-to-one if it a=zb = f(a) #f(b)

f: A = B is surjective or ontoif it u ., {f(a)} = B

fis bijective or a correspondence if it is both injective and surjective

If f: A = B is bijective then each element of A maps to a unique element of B and conversely
Given A,B if 3 a bijection f: A = B then |A| = |B|: they have the same size

This makes intuitive sense for finite sets, but has non-intuitive conseguences for infinite sets

Ha, b, c,d}|=1{1,21,3,2}|={d,a,f,b,d,a}l| =4

N 0,1, 2,3, 4, ...
N| =? [N\ {0, 1, 2 .

[N =7 [N i N\(0.1.2) :3.4, 586, 7, ..
IN[=[ineN:niseven}|=|Z| = Q] = w Z :0,1,-1,2,-2, ...

If |A| < w itis countable. w is the first infinite ordinal number.



Theorem: |Q| = w

Have to enumerate the rationals. Here’s how:

1) 1)
-0 B0 50
./ ./
Note: no (2 (2] 2
. 1 5 6
duplicates e / —
3 3 3
1 2 5 6
4 4 4
1 153 6
(5) 5 5 5 5
1 2 3 4 5 6

https://divisbyzero.files.wordpress.com/2013/04/screen-shot-2013-04-16-at-9-23-14-pm.png

Theorem: A countable union of countable sets is countable!




Theorem: [R| > w

R is uncountable: infinite and no bijection between R and w
Clearly |R| = w. We show [R| = w.
The proof is by contradiction.

Suppose that there is a bijection, say:

We derive a contradiction by showing that it can’t include every
real number

Select r; to differ from digit i of (i)

Don’t use 0, 9 (because 0.9999... = 1.0000...)

We showed |R| > w and that |A| > w for A is any non-empty
interval of reals

This technique is called diagonalization and is due to Cantor
(1873)

O UL W N = 2

wen :

131331131

I

reals in (0,1)
.835987...
.250000...
.559423...
.500000...
.728532...
.845312...

N1, s ... Ty

http://tispaguin.blogspot.com/2010/02/what-is-universe-expanding-into.html




Existence of the Undecidable

There exist languages that are not Turing-recognizable (R.E.)

So they are also not Turing-decidable (R.) either

And it turns out that most languages are not Turing-recognizable!
Observe: If [2| < w then the set of all strings, 2*, is countable

Observe: The set of all TMs is countable (each is described by a finite string of
symbols over a finite alphabet)

Observe: B = {0,1}" is uncountable (binary representation of reals in [0..1])

Observe: There is a bijection between &, the set of languages, and B. Use the
characteristic function: given Le%Z, f(L)=<sqel, Syel, S3el, ...>

So, |4 > w and most languages are not Turing-recognizable



Atm IS R.E.

Amv = {<M,w>: M is a TM that accepts w}
Theorem: Atv is R.E. (Turing recognizable)

Proof: Consider TM U: On input <M, w> it runs M
on w. If M halts and accepts w, accept. It M halts

and rejects w, reject.

Note: U is a universal Turing machine



Atv IS Undecidable

Theorem: Aq, is Undecidable. (A = {<M,w>: M is a TM that accepts w})

Proof: Suppose there exists a TM H that decides Ay,. Then, for any input <M,w>, H
accepts if M accepts w and rejects otherwise.

Consider a TM D that takes an input <M>, the description of M, and takes the following
steps.

e Run Hon <M, <M>>
» |f H accepts, reject
 |f H rejects, accept
Since H is a decider, D is also a decider.
Consider D's output on <D>. If D accepts, then this implies that according to H, D

rejects <D>. If D rejects, then this implies that according to H, D accepts <D>. But this
is a contradiction.



Diagonalization®

Another way to see this is that we have essentially proved that the

language {<M> : M accepts <M>} is undecidable. How did we do
this?

Number the machines M, M,, .... Suppose the above language is
decidable by a TM E.

Define D to be a machine that on input <M>, accepts if E rejects
<M>, and rejects if E accepts <M>.

This is precisely flipping the diagonal entries of the matrix in which
the columns list the machines M+, Mo, ..., and the rows list the
inputs <Mi>, <Mo>, ...

If D is on this list, then we obtain a contradiction.



. and =L are RE then L i1s R.

AL is the complement of L: 2*\ L
Theorem: If L and =L are Turing-recognizable, then L is decidable.

Proof: Let My and M, be TMs that recognize L and =L. Given a
string w, exactly one of the following happens

« M; accepts w or M, accepts w

TM M for deciding L simulates My and M, in parallel, running one
step of each on w.

Within a finite number of steps, one of them will halt and accept.

It My accepts, then M accepts. It M, accepts, then M rejects.



-ATtm IS Not RE

Corollary: =Atwm is unrecognizable (not RE)

What is =Amm?

{<M, w>: M is nota TM or M does not accept w}
Proof: Atmis not decidable, so by previous theorem

either Atmor =Atmis not RE, but Atmis RE, so =Atm
IS NOt.



Halting Problem

HALT, = {<M, w>: M halts on w}

Theorem: HALT+), is undecidable.

Proof: We show that if HALT+,, is decidable, then so is Aq,.

Preview of reduction: We reduce from Aqyto HALT1y (Apy < HALT ).

Suppose H is the decider for HALT,. Then the decider A for A, is as follows. On
input <M, w>, A calls H on input <M, w>. If H accepts, then A runs M on w and

accepts if M accepts w, rejecting otherwise. If H rejects, then A rejects.

Consider <M,w> in Apy. Since M accepts w, M halts on w. So H accepts <M, w>.
Since M accepts and halts on w, A's call of M on w terminates in an accept state.

Consider <M,w> not in Ap,. There are two cases. The first is when M halts on w and
rejects w. So H accepts <M, w>. A's call of M on w terminates in a reject state. The
second case is when M does not halt on w. So H rejects <M, w>, and so does A.



