Mu-Calculus Model-Checking

Panagiotis Manolios

Department of Computer Sciences, University of Texas at Austin, Texas
Email: pete@cs.utezas.edu

Abstract

Temporal logic model-checking has received substantial academic interest
and has enjoyed wide industrial acceptance. Temporal logics are used to
describe the behavior (over time) of systems which continuously interact
with their environment. Model-checking algorithms are used to decide if a
finite-state system satisfies a temporal logic formula. Many temporal log-
ics, e.g., CTL, LTL, and CTL* can be translated into the Mu-Calculus.
In addition, the algorithm that decides the Mu-Calculus is used for sym-
bolic (BDD-based) model-checking, a technique that has greatly extended
the applicability of model-checking. In this case study we define a model-
checker for the Mu-Calculus in ACL2 and show how to translate CTL into
the Mu-Calculus.

In the process of defining the Mu-Calculus, we develop (ACL2) books
on set theory, fixpoint theory, and relation theory. The development of
these books is given as a sequence of exercises. These exercises make use
of varied ACL2 features; therefore, the first few sections may be of interest
to readers who want more practice in proving theorems in ACL2.

Introduction

Machine-checked proofs are increasingly being used to cope with the com-
plexity of current hardware and software designs: such designs are too
complicated to be checked by hand and machine-checked proofs are a reli-
able way to ensure correctness. Reactive systems are systems with nonter-
minating or concurrent behavior. Such systems are especially difficult to
design and verify. Temporal logic was proposed as a formalism for speci-
fying the correctness of reactive systems in [87]. Algorithms that decide if

94 Mu-Calculus Model-Checking

a finite-state system satisfies its specification are known as model-checking
algorithms [20, 27, 89]. Model-checking has been successfully applied to au-
tomatically verify many reactive systems and is now being used by hardware
companies as part of their verification process. In this chapter, we develop
a model-checker for the propositional Mu-Calculus [64, 30, 32, 31, 29, 85]—
a calculus that subsumes the temporal logics CTL, LTL, and CTL*—in
ACL2.

This chapter is intended as a bridge between the companion book,
Computer-Aided Reasoning: An Approach [58], and the other case studies.
There are several self-contained sections in which the reader is presented
with exercises whose solutions lead to books on set theory, fixpoint theory,
and relation theory. We expect that the exercises in these sections are at
the right level of difficulty for readers who have read the companion book.
These exercises make use of diverse, less elementary features of ACL2 such
as congruence-based reasoning, refinements, packages, the use of macros,
guard verification, encapsulation, mutual recursion, and functional instan-
tiation. We also discuss compositional reasoning; specifically we show how
to reason about efficient implementations of functions by using rewrite rules
that transform the efficient functions into other functions that are easier to
reason about. Therefore, we expect—at least the first part of—this chapter
to be of general interest.

If you are not interested in developing the required set theoretic results,
but are interested in formalizing the Mu-Calculus in ACL2, then, instead
of solving the exercises on your own, download the appropriate books from
the supporting material for this chapter.

This chapter is organized as follows: the next three sections develop
the set theory, fixpoint theory, and relation theory discussed above. In the
three sections after that, we present the notion of a model, the syntax and
semantics of the Mu-Calculus, and proofs that the fixpoint operators of the
Mu-Calculus actually compute fixpoints. A section on the temporal logic
CTL and its relation to the Mu-Calculus follows. We conclude with some
directions for further exploration.

Conventions on Exercises

Whenever we introduce a function or ask you to define one, admit it and
add and verify guards; this is an implicit exercise. Many exercises consist
solely of a term or an event; interpret this as a command to prove that
the term is a theorem or to admit the event. The supporting material
includes a macro that you may find useful for dealing with guards. The file
solutions/defung-intro.txt describes the macro and contains exercises.

Manolios 95

7.1 Set Theory

In this section, we develop some set theory. We represent sets as lists and
define an equivalence relation on lists that corresponds to set equality. It
turns out that we do not have to develop a “general” theory of sets; a
theory of flat sets, i.e., sets whose elements are compared by equal, will
do. For example, in our theory of sets, > (1 2) is set equal to > (2 1), but
> ((1 2)) is not set equal to > ((2 1)).

We develop some of the set theory in the package SETS (see defpkg) and
the rest in the package FAST-SETS, in subsections labeled by the package
names. When using packages, we define constants that contain all of the
symbols to be imported into the package. We start by guessing which
symbols will be useful. For example, we import len because we need it to
define the cardinality of a set and we import the symbols x and x-equiv;
otherwise, when using defcong, x-equiv prints as ACL2: :x-equiv, which
strains the eye. As we develop the book, we notice that we forgot a few
symbols and add them.!

7.1.1 SETS

Here is how we define the package SETS.

(defconst *export-symbols*
(union-eq *acl2-exports*
(union-eq
’(len ... *export-symbolsk)
common-lisp-symbols-from-main-lisp-package)))

(defconst *sets-symbols* (union-eq *export-symbols* ...))

(defpkg "SETS" *sets-symbolsx)

We use the simplest definitions that we can think of so that it is easy
to prove theorems. Later, we define functions that are more efficient and
prove the rewrite rules that allow us to rewrite the efficient functions into
the simpler ones. In this way, once rewritten, all the theorem proving is
about the simple functions, but the execution uses the efficient versions.

The definitions of in (set membership), =< (subset), and == (set equal-
ity) follow.

(defun in (a X)
(cond ((endp X) nil)
((equal a (car X)) t)
(t (in a (cdr X)))))

!Due to some technical issues (see package-reincarnation-import-restrictions),
this unfortunately means that we have to start a new ACL2 session.

96 Mu-Calculus Model-Checking

(defun =< (X Y)
(cond ((endp X) t)
(t (and (in (car X) Y)
(=< (cdr X) Y)))))

(defun == (X Y)
(and (=< X Y)
(=< Y X)))

Notice that == is an equivalence relation: it is reflexive, symmetric, and
transitive. The macro defequiv can be used to show that a relation is
an equivalence relation. Use :transi to print out the translation of the
defequiv form in the exercise below before you do it.

Exercise 7.1 (defequiv ==

We make heavy use of congruence-based reasoning and will therefore dis-
cuss the topic briefly. For a full explanation consult the companion book
[68] and the documentation on equivalence, defequiv, and congruence.
Congruence-based reasoning can be seen as an extension of the substitu-
tion of equals for equals, where arbitrary equivalence relations can be used
instead of equality. We motivate the need for congruence-based reasoning
with an example using the equivalence relation ==.

Consider the function set-union which computes the union of two sets.
This function is defined below and is equivalent to append. We might want
to prove

(implies (== X Z)
(equal (set-union X Y) (set-union Z Y)))

so that ACL2 can replace z by z in (set-union z y), if it can establish
(== z 2). Letting z be (1 1) and 2z be (1), it is easy to see that this is
not a theorem. However, the following is a theorem.

(implies (== X Z)
== (set-union X Y) (set-union Z Y)))

If stored as a congruence rule (see congruence and rule-classes), ACL2
can use this theorem to substitute z for (a set equal) z in (set-union
z y), in a context where it is enough to preserve ==. More generally, a
theorem of the form:

(implies (eql X Z)
(eq2 (foo ... X ...)
(foo ... Z ...)))

where eql and eq2 are known equivalence relations can be made a con-
gruence rule. Such a rule allows us to replace z by z in (foo ... z ...)
if x and z are eql-equal and we are in a context where it is enough to

Manolios 97

preserve eq2. This should make it clear why congruence-based reasoning is
a generalization of the substitution of equals for equals.

The macro defcong can be used to prove congruence rules. Use :transi
to print out the translation of the defcong forms in the exercise below
before you do it.

Exercise 7.2

~

. (defcong == equal (in a X) 2)
2. (defcong == equal (=< X Y) 1)
3. (defcong == equal (=< X Y) 2)
4. (defcong == == (cons a X) 2)

We now give the definition of set-union.
(defun set-union (X Y)
(if (endp X)
Y
(cons (car X) (set—union (cdr X) Y))))

Exercise 7.3

~

. (equal (in a (set-union X Y)) (or (in a X) (in a Y)))
(=< X (set-union Y X))

(== (set-union X Y) (set-union Y X))

(equal (== (set-union X Y) Y) (=< X Y))

(defcong == == (set-union X Y) 1)

S S o

(equal (=< (set-union Y Z) X) (and (=< Y X) (=< Z X)))
The definition of intersect, a function which computes the intersection
of two sets, follows.

(defun intersect (X Y)
(cond ((endp X) nil)
((in (car X) Y)
(cons (car X) (intersect (cdr X) Y)))
(t (intersect (cdr X) Y))))

Exercise 7.4
1. (equal (in a (intersect X Y)) (and (in a X) (in a Y)))

2. (== (intersect X Y) (intersect Y X))

98 Mu-Calculus Model-Checking

3. (implies (=< X Y) (== (intersect X Y) X))

4. (implies (or (=< Y X) (=< Z X))
(=< (intersect Y Z) X))

The definition of minus, a function which computes the set difference
of two sets, follows.

(defun minus (X Y)
(cond ((endp X) nil)
((in (car X) Y)
(minus (cdr X) Y))
(t (cons (car X) (minus (cdr X) Y)))))

Exercise 7.5
1. (implies (=< X Y) (equal (minus X Y) nil))

2. (implies (=< X Y) (=< (minus X Z) Y))

The functions set-complement, remove-dups, cardinality, and s<
(strict subset) are defined below.

(defun set-complement (X U) (minus U X))

(defun remove-dups (X)
(cond ((endp X) nil)
((in (car X) (cdr X))
(remove-dups (cdr X)))
(t (cons (car X)
(remove-dups (cdr X))))))

(defun cardinality (X) (len (remove-dups X)))

(defun s< (X Y) (and (=< X Y) (not (=< Y X))))

Exercise 7.6 Define perm, a function of two arguments that returns t
if its arguments are permutations and nil otherwise. Prove (defequiv

perm) and (defrefinement perm ==). (Perm is defined in the companion
book [58].)

Exercise 7.7
(implies (s< X Y)
(< (len (remove-dups X)) (len (remove-dups Y))))

Manolios 99

7.1.2 FAST-SETS

Although the definitions of the basic set operations defined above are good
for reasoning about sets, some are not appropriate for execution. For exam-
ple, set-union is not tail-recursive?, hence, even if compiled, we can easily
get stack overflows. In this section, we define functions that are more appro-
priate for execution and prove rewrite rules that transform the new, efficient
versions to the old, simpler versions in the appropriate context (specifically,
when it is enough to preserve ==). This approach is compositional, i.e., it
allows us to decompose proof obligations of a system into proof obligations
of the components of the system. Compositional reasoning is routinely used
by ACL2 experts and is essential to the success of large verification efforts.

The functions we define below have the same names as their analogues,
but are in the package FAST-SETS. FAST-SETS imports symbols from SETS,
e.g., == (we expect this to be clear from the context, but one can consult the
supporting material for the package definition, if required). The definition
of set-union, in the package FAST-SETS, follows.

(defun set-union (X Y)
(cond ((endp X) Y)
((in (car X) Y)
(set-union (cdr X) Y))
(t (set-union (cdr X) (cons (car X) Y)))))

Exercise 7.8 (== (set-union X Y) (sets::set-union X Y))

Recall that the above rule allows ACL2 to replace occurrences of set-
-union by sets::set-union in a context where it is enough to preserve

The definition of intersect follows. Note that its auxiliary function is
tail recursive.

(defun intersect-aux (X Y Z)
(cond ((endp X) Z)
((in (car X) Y)
(intersect-aux (cdr X) Y (cons (car X) Z)))
(t (intersect-aux (cdr X) Y Z))))

(defun intersect (X Y) (intersect-aux X Y nil))

Exercise 7.9 (== (intersect X Y) (sets::intersect X Y))

Exercise 7.10 Define minus, a tail-recursive version of sets::minus,
and prove (== (minus X Y) (sets::minus X Y)).

2See the companion book [58] for a discussion of tail recursion and for example proofs.

100 Mu-Calculus Model-Checking

Alternate definitions of remove-dups and cardinality are given below.

(defun remove-dups (X) (set-union X nil))

(defun cardinality (X) (len (remove-dups X)))

Exercise 7.11 (equal (cardinality X) (sets::cardinality X))

7.2 Fixpoint Theory

In this section, we develop a book in the package SETS on the theory of
fixpoints. We do this in a very general setting, by using encapsulation to
reason about a constrained function, f, of one argument. Later, we show
that certain functions compute fixpoints by using functional instantiation.
An advantage of this approach is that we can ignore irrelevant issues, e.g.,
in a later section we show that certain functions compute fixpoints; these
functions have many arguments, but £ has only one.

We say that z is a fizpoint of f iff f(z) = z. If f is a monotonic function
on the powerset of a set, then by the following version of the Tarski-Knaster
theorem [105], it has a least and greatest fixpoint, denoted by uf and vf,
respectively.

Theorem 7.1 Let f : 2° — 25 such thata Cb = f(a) C f(b).
Then

1. uf N{b:6C S A f(b) Cb} = Usconf*(0), and
2. vf = U{bbgs A bgf(b)} = ﬂaEOnfa(S):

where 2° is the powerset of S, f* is the a-fold composition (iteration) of
f, and On is the class of ordinals.

We say that z is a pre-fizpoint of f iff z C f(z); = is a post-fizpoint
iff f(z) C z. The Tarski-Knaster theorem tells us that ujf is below all
post-fixpoints and that v f is above all pre-fixpoints.

We can replace On by the set of ordinals of cardinality at most |S|;
since we are only interested in finite sets, this gives us an algorithm for
computing least and greatest fixpoints. Notice that by the monotonicity of
fra<p = f20)C fBO) A f5(S) C f*(S). Therefore, we can
compute uf by applying f to () until we reach a fixpoint; similarly, we can
compute vf by applying f to S until we reach a fixpoint.

We start by constraining functions £ and S so that £ is monotonic and
when f is applied to a subset of S, it returns a subset of S. Since functions
defined in ACL2 are total, we cannot say that f is a function whose domain
is the powerset of S. We could add hypotheses stating that all arguments to
f are of the right type to the theorems that constrain f, but this generality

Manolios 101

is not needed and will make it slightly more cumbersome to prove theorems
about f£. The issue of what to do when a function is applied outside its
intended domain is one that comes up quite a bit in ACL2. The definitions
of the constrained functions follow.

(encapsulate
(£ X) t)

(s O %))
(local (defun f(X) (declare (ignore X)) nil))
(local (defun S() nil))
(defthm f-is-monotonic

(implies (=< X Y)

(=< (£ X) (£ V))))

(defthm S-is-top

(=< (f X) (set-union X (S))))).

We now define applyf, a function that applies £ a given number of
times.

(defun applyf (X n)
(if (zp n)
X
(if (== X (£ X))
X
(applyf (£ X) (1- n)))))

From the Tarski-Knaster theorem, we expect that 1fpf and gfpf, de-
fined below, are the least and greatest fixpoints, respectively.

(defabbrev 1fpf () (applyf nil (cardinality (S))))

(defabbrev gfpf () (applyf (S) (cardinality (S))))

Now all that is left is to prove the Tarski-Knaster theorem, which is
given as the following two exercises.

Exercise 7.12 Prove that 1fpf is the least fixpoint:
1. (== (£ (1fpf)) (lfpf))
2. (implies (=< (£ X) X) (=< (1fpf) X))
Exercise 7.13 Prove that gfpf is the greatest fixpoint:
1. (== (£ (gfpf)) (gfpf))

2. (implies (and (=< X (S)) (=< X (£ X)))
(=< X (gfpf)))

102 Mu-Calculus Model-Checking

7.3 Relation Theory

In this section we develop a book, in the package RELATIONS, on the theory
of relations. We represent relations as alists which map an element to the
set of elements it is related to. A recognizer for relations is the following.

(defun relationp (r)
(cond ((atom r) (eq r nil))
(t (and (consp (car r))
(true-listp (cdar r))
(relationp (cdr r))))))

The definition of image, a tail-recursive function that computes the
image of a set under a relation, follows.

(defun value-of (x alist) (cdr (assoc-equal x alist)))

(defun image-aux (X r tmp)
(if (endp X)
tmp
(image-aux (cdr X) r
(set-union (value-of (car X) r) tmp))))
(defun image (X r) (image-aux X r nil))

Exercise 7.14 Define range, a function that determines the range of a
relation.

Exercise 7.15 Define inverse so that it is tail recursive and computes
the inverse of a relation.

The following function checks if the range of its first argument (a rela-
tion) is a subset of its second argument.

(defun rel-range-subset (r X)
(cond ((endp 1) t)
(t (and (=< (cdar r) X)
(rel-range-subset (cdr r) X)))))

Exercise 7.16
1. (implies (rel-range-subset r X) (=< (image Y r) X))

2. (implies (and (rel-range-subset r X) (=< X Y))

(rel-range-subset r Y))

Manolios 103

7.4 Models

In this section we introduce the notion of a model. A model, sometimes
called a Kripke structure or a transition system, is a four-tuple consisting
of a set of states, a transition relation, a set of atomic propositions, and a
labeling relation. The transition relation relates a pair of states if the second
state can be reached from the first in a single step. The atomic propositions
can be thought of as Boolean variables that are either true or false at a state.
The labeling relation relates states to the atomic propositions true at those
states. A program can be thought of as a model: there is a state for every
combination of legal assignments to the program’s variables—which can be
recovered from the labeling of the state—and the transition relation relates
a pair of states if, in one step, the program can transition from the first
state to the second. There are some technical details to consider, e.g.,
a program can have variables of varying types, but atomic propositions
are Boolean, hence, program variables are represented by a set of atomic
propositions (this set can be infinite if the domain of the variable is infinite).
We restrict our attention to finite models because we want to check them
algorithmically.

We define the notion of a model in ACL2. The functions defined in this
section, as well as the next two sections, are in the package MODEL-CHECK.
An ACL2 model is a seven-tuple because it is useful to precompute the
inverse relations of the transition relation and the labeling relation as well
as the cardinality of the set of states. The inverse transition relation relates
a pair of states if, in one step, the first state can be reached from the second.
The inverse labeling relation relates atomic propositions to the states at
which they hold. A function that creates a model is defined below.

(defun make-model (s r ap 1)
(list s r ap 1 (inverse r) (inverse 1) (cardinality s)))

Exercise 7.17 Define modelp, a recognizer for models. Define the acces-
sor functions: states, relation, atomic-props, s-labeling, inverse-
-relation, a-labeling, and size to access the: states, transition rela-
tion, atomic propositions, (state) labeling relation, inverse transition rela-
tion, (atomic proposition) labeling relation, and cardinality of the states,
respectively.

7.5 Mu-Calculus Syntax

We are now ready to look at the Mu-Calculus. Informally, a formula of
the Mu-Calculus is either an atomic proposition, a variable, a Boolean
combination of formulae, EXf, where f is a formula, or uY f or vY f, where
fis aformula and Y is a variable (as we will see when we discuss semantics,

104 Mu-Calculus Model-Checking

(defun mu-symbolp (s)
(and (symbolp s)
(not (in s ’(+ & MU NU true false)))))

(defun basic-mu-calc-formulap (f ap v)
(cond ((symbolp f)
(or (in f ’ (true false))
(and (mu-symbolp f)
(or (in f ap) (in £ v)))))
((equal (len f) 2)
(and (in (first f) ’(~ EX))
(basic-mu-calc-formulap (second f) ap v)))
((equal (len f) 3)
(let ((first (first f))
(second (second f))
(third (third £)))

(or (and (in second ’(& +))
(basic-mu-calc-formulap first ap v)
(basic-mu-calc-formulap third ap v))

(and (or (in first ’(MU NU)))
(mu-symbolp second)
(not (in second ap))
(basic-mu-calc-formulap
third ap (cons second v))))))))

Figure 7.1: The Syntax of the Mu-Calculus

f and Y define the function whose fixpoint is computed). Usually there is
a further restriction that f be monotone in Y; we do not require this. We
will return to the issue of monotonicity in the next section.

In Figure 7.1, we define the syntax of the Mu-Calculus (ap and v cor-
respond to the set of atomic propositions and the set of variables, respec-
tively). Mu-symbolp is used because we do not want to decide the meaning
of formulae such as ’ (mu + £).

Exercise 7.18 Define translate-f, a function that allows us to write
formulae in an extended language, by translating its input into the Mu-
Calculus. The extended syntax contains AX (° (AX £) is an abbreviation
for ’(~ (EX (~ £)))) and the infiz operators | (which abbreviates +), =>
and -> (both denote implication), and =, <=>, and <=> (all of which denote
equality).

Exercise 7.19 (Mu-calc-sentencep f ap) recognizes sentences (formu-
lae with no free variables) in the extended syntaz; define it.

Manolios 105

7.6 Mu-Calculus Semantics

The semantics of a Mu-Calculus formula is given with respect to a model
and a valuation assigning a subset of the states to variables. The semantics
of an atomic proposition is the set of states that satisfy the proposition.
The semantics of a variable is its value under the valuation. Conjunctions,
disjunctions, and negations correspond to intersections, unions, and com-
plements, respectively. EXf is true at a state if the state has some successor
that satisfies f. Finally, u’s and v’s correspond to least and greatest fix-
points, respectively. Note that the semantics of a sentence (a formula with
no free variables) does not depend on the initial valuation. The formal def-
inition is given in Figure 7.2; some auxiliary functions and abbreviations
used in the figure follow.

(defabbrev semantics-EX (m f val)
(image (mu-semantics m (second f) val)
(inverse-relation m)))

(defabbrev semantics-NOT (m f val)
(set-complement (mu-semantics m (second f) val)
(states m)))

(defabbrev semantics-AND (m f val)
(intersect (mu-semantics m (first f) val)
(mu-semantics m (third f) val)))

(defabbrev semantics-0OR (m f val)
(set-union (mu-semantics m (first f) val)
(mu-semantics m (third f) val)))

(defabbrev semantics-fix (m f val s)
(compute-fix-point
m (third f) (put-assoc-equal (second f) s val)
(second f) (size m)))

(defabbrev semantics-MU (m f val)
(semantics-fix m f val nil))

(defabbrev semantics-NU (m f val)
(semantics-fix m f val (states m)))

Now, we are ready to define the main function:

(defun semantics (m f)
(if (mu-calc-sentencep f (atomic-props m))
(mu-semantics m (translate-f f) nil)
"not a valid mu-calculus formula"))

106 Mu-Calculus Model-Checking

(mutual-recursion

(defun mu-semantics (m f val)
(cond ((eq f ’true) (states m))

((eq £ ’false) nil)

((mu-symbolp f)

(cond ((in f (atomic-props m))
(value-of f (a-labeling m)))
(t (value-of f val))))

((equal (len f) 2)

(cond ((equal (first f) ’EX)
(semantics-EX m f val))
((equal (first f) ’~)
(semantics-NOT m f val))))

((equal (len f) 3)

(cond ((equal (second f) ’&)
(semantics-AND m f val))
((equal (second f) ’+)
(semantics-0R m f val))
((equal (first f) ’MU)
(semantics-MU m f val))
((equal (first f) ’NU)
(semantics-NUm f val))))))

(defun compute-fix-point (m f val y n)
(if (zp n)
(value-of y val)
(let ((x (value-of y val))
(new-x (mu-semantics m f val)))
(if (== x new-x)
X
(compute-fix-point
m f (put-assoc-equal y new-x val) y (- n 1))))))
; note that the valuation is updated

Figure 7.2: The Semantics of the Mu-Calculus

Manolios 107

Semantics returns the set of states in m satisfying f, if £ is a valid Mu-
Calculus formula, otherwise, it returns an error string.

How would you write a Mu-Calculus formula that holds exactly in those
states where it is possible to reach a p-state (i.e., a state labeled by the
atomic proposition p)? The idea is to start with p-states, then add states
that can reach a p-state in one step, two steps, and so on. When you are
adding states, this corresponds to a least fixpoint computation. A solution
is uY(p V EXY); it may help to think about “unrolling” the fixpoint.

How would you write a Mu-Calculus formula that holds exactly in those
states where every reachable state is a p-state? The idea is to start with
p-states, then remove states that can reach a non p-state in one step, two
steps, and so on. When you are removing states, this corresponds to a
greatest fixpoint computation. A solution is vY(p A —EX-Y); as before
it may help to think about unrolling the fixpoint. Similar exercises follow
so that you can gain some experience with the Mu-Calculus.

Exercise 7.20 For each case below, define a Mu-Calculus formula that
holds exactly in states that satisfy the description. A path is a sequence
of states such that adjacent states are related by the transition relation. A
fullpath is a mazimal path, i.e., a path that cannot be extended.

1. There is a fullpath whose every state is a p-state.
2. Along every fullpath, it is possible to reach a p-state.

3. There is a fullpath with an infinite number of p-states.

The model-checking algorithm we presented is global, meaning that it
returns the set of states satisfying a Mu-Calculus formula. Another ap-
proach is to use a local model-checking algorithm. The difference is that
the local algorithm is also given as input a state and checks whether that
particular state satisfies the formula; in some cases this can be done without
exploring the entire structure, as is required with the global approach.

The model-checking algorithm we presented is extensional, meaning that
it represents both the model and the sets of states it computes explicitly.
If any of these structures gets too big—since a model is exponential in the
size of the program text, state explosion is common—resource constraints
will make the problem practically unsolvable. Symbolic model-checking
[74, 16, 86] is a technique that has greatly extended the applicability of
model-checking. The idea is to use compact representations of the model
and of sets of states. This is done by using BDDs? (binary decision dia-
grams), which on many examples have been shown to represent states and

3BDDs can be thought of as deterministic finite state automata (see any book covering
Automata Theory, e.g., [50]). A Boolean function, f, of n variables can be thought of
as a set of n-length strings over the alphabet {0,1}. We start by ordering the variables;
in this way an n-length string over {0,1} corresponds to an assignment of values to the

108 Mu-Calculus Model-Checking

models very compactly [14]. Symbolic model-checking algorithms, even
for temporal logics such as CTL whose expressive power compared with
the Mu-Calculus is quite limited, are based on the algorithm we presented
(except that BDDs are used to represent sets of states and models).

Now that we have written down the semantics of the Mu-Calculus in
ACL2, we can decide to stop and declare success, because we have an
executable model-checker. In many cases this is an appropriate response,
because deciding if you wrote what you meant is not a formal question.
However, in our case, we expect that MU formulae are least fixpoints (if
the formulae are monotonic in the variable of the MU and certain “type”
conditions hold), and similarly NU formulae are greatest fixpoints. We will
check this. We start by defining what it means to be a fixpoint.

(defun fixpointp (m f val x s)
== (mu-semantics m f (put-assoc-equal x s val)) s))

(defun post-fixpointp (m f val x s)
(=< (mu-semantics m f (put-assoc-equal x s val)) s))

(defun pre-fixpointp (m f val x s)
(=< s (mu-semantics m f (put-assoc-equal x s val))))

Read the rest of the exercises in this section before trying to solve any
of them.

Exercise 7.21 Use encapsulation to constrain the functions sem-mon-f,
good-model, good-val, and good-var so that sem-mon-f is monotone in
good-var, good-model is a “reasonable” model, good-val is a “reason-
able” valuation, and good-var is a “reasonable” variable.

We prove the fixpoint theorems by functionally instantiating the main
theorems in the supporting book fixpoints. (See lemma-instance; an
example of functional instantiation can be found in the companion book
[58].)

Exercise 7.22 Prove that MU formulae are least fizpoints and that NU for-
mulae are greatest fizpoints. As a hint, we include the statement of one of
the four required theorems.

variables. We can represent f by an automaton whose language is the set of strings that
make f true. We can now use the results of automata theory, e.g., deterministic automata
can be minimized in O(nlogn) time (the reason why nondeterministic automata are
not used is that minimizing them is a PSPACE-complete problem), hence, we have a
canonical representation of Boolean functions. Automata that correspond to Boolean
functions have a simpler structure than general automata (e.g., they do not have cycles);
BDDs are a data structure that takes advantage of this structure. Sets of states as
well as transition relations can be thought of as Boolean functions, so they too can be
represented using BDDs. Finally, note that the order of the variables can make a big
(exponential) difference in the size of the BDD corresponding to a Boolean function.

Manolios 109

(defmu semmu-is-a-fixpoint
(fixpointp (good-model) (sem-mon-f) (good-val) (good-var)
(mu-semantics
(good-model)
(1ist ’mu (good-var) (sem-mon-f))
(good-val)))
sets::1fix-is-a-fixpoint)

Exercise 7.23 The hint in the previous example is a macro call. This
saves us from having to type the appropriate functional instantiation several
times. Define the macro. Our solution is of the following form.

(defmacro defmu (name thm fn-inst &rest args)
‘(defthm ,name ,thm

:hints
(("goal"
:use (:functional-instance

,fn-inst
(sets::S (lambda() (states (good-model))))
(sets::f (lambda(y) (mu-semantics ...)))
(sets::applyf
(lambda(y n) (compute-fix-point ...)))
(sets::cardinality cardinality)))

,@args)))

You will notice that reasoning about mutually recursive functions (which
is required for the exercises above) can be tricky, e.g., even admitting the
mutually recursive functions and verifying their guards (as mentioned in
the introduction, this is an implicit exercise for every function we intro-
duce) can be a challenge. Read the documentation for mutual-recursion
and package-reincarnation-import-restrictions. There are several
approaches to dealing with mutually recursive functions in ACL2. One is
to remove the mutual recursion by defining a recursive function that has
an extra argument which is used as a flag to indicate which of the func-
tions in the nest to execute. Another approach is to identify a sufficiently
powerful induction scheme for the functions, add it as an induction rule
(see induction) so that this induction is suggested where appropriate, and
prove theorems by simultaneous induction, i.e., prove theorems that are
about all the functions in the mutual recursion nest. We suggest that you
try both approaches.

7.7 Temporal Logic

Temporal logics can be classified as either linear-time or branching-time
(see [28]). In linear-time logics the semantics of a program is the set of its

110 Mu-Calculus Model-Checking

possible executions, whereas in branching-time, the semantics of a program
is its computation tree; therefore, branching time logics can distinguish
between programs that linear-time logics consider identical. A branching
time logic of interest is CT'L: many model-checkers are written for it because
of algorithmic considerations. We present the syntax and semantics of CTL.
It turns out that CTL, as well as the propositional linear time logic LTL,
and the branching time logic CTL* can be translated to the Mu-Calculus.
The syntax of CTL is defined inductively by the following rules:

1. p, where p is an atomic proposition, and
2. =f,f Vg, where f is a CTL formula, and

3. EXf,E(fUg),E—~(fUg), where f and g are CTL formulae.

Although we presented the syntax of C'TL, it turns out to be just as easy
to present the semantics of what is essentially CTL*. The semantics are
given with respect to a fullpath, i.e., an infinite path through the model.
If z is a fullpath, then by z; we denote the i** element of z and by z?
we denote the suffix (z;,...). Henceforth, we assume that the transition
relation of models is left total, i.e., every state has a successor. Note that
CTL formulae are state formulae, i.e., formulae whose semantics depends
only on the first state of the fullpath. M,z = f means that fullpath z of
model M satisfies formula f.

1. M,z = p iff z¢ is labeled with p;

2. M,z |=~f iff not M,z = f;
MzE=fvgif Mz = for M,z =g;

3. M,z = Ef iff there is a fullpath y = (zo,...) in M s.t. M,y [f;
M,z = Xf iff M,z! = f; and
M,z |= fug iff there exists i € N s.t. M,z = g and for all
j<i, M,27 |= f.

The first two items above correspond to Boolean formulae built out of
atomic propositions. Ef is true at a state if there exists a fullpath from the
state that satisfies f. A fullpath satisfies Xf if in one step (next time), the
fullpath satisfies f. A fullpath satisfies fUg if g holds at some point on the
fullpath and f holds until then.

The following abbreviations are useful:

Af = —E-f, Fg = trueUg, Gf = —-F-f

Af is true at a state if every fullpath from the state satisfies f. A
fullpath satisfies Fg if eventually g holds on the path. A fullpath satisfies
Gf if f holds everywhere on the path.

Manolios 111

Exercise 7.24 Translate the following state formulae into Mu-Calculus
formulae (the penultimate formula is not a CTL formula, but is a CTL*
formula which you can think of as saying “there exists a path such that
infinitely often p”): EFp, AFp, AGp, EGp, EGFp, and EGEFp.

Exercise 7.25 Define a translator that translates CTL formulae (where
the abbreviations above, as well as true and false are allowed) into the Mu-
Calculus.

7.8 Conclusions

We gave a formal introduction to model-checking via the Mu-Calculus, but
only scratched the surface. We conclude by listing some of the many inter-
esting directions one can explore from here. One can define a programming
language so that models can be described in a more convenient way. One
can make the algorithm symbolic, by using BDDs instead of our explicit
representation. One can define the semantics of a temporal logic (e.g.,
CTL") in ACL2 and prove the correctness of the translation from the tem-
poral logic to the Mu-Calculus. One can use monotonicity arguments and
memoization to make the model-checking algorithms faster. Finally, one
can verify that the optimizations suggested above preserve the semantics
of the Mu-Calculus.

