# Lecture 9 

Pete Manolios Northeastern

## Normal Forms

- Minimizing DNF has many applications
- this is used to analyze the reliability of safety-critical systems
- CNF is the input format of modern SAT solvers
- this is the so-called DIMACS format
- modern SAT solvers can solve industrial problems with 1M variables
- There are many other "normal" forms for Boolean formulae
- decision trees: widely used in machine learning
- BDDs: very powerful representation used in verification, AI, program analysis, ...


## Set Theory Connections

- Set Theory forms the foundations of mathematics
- Set Theory provides foundations of ACL2s:
- the universe, $U$, is a set
- recognizers, predicates, etc. in ACL2s are defined in terms of sets
- atoms in a propositional skeleton are predicates (subsets of $U$ )
- It turns out that there are interesting connections between propositional logic and set theory
- Here is an example
${ }^{\bullet} p \wedge(p \vee q) \equiv p$ is valid (in propositional logic) iff
${ }^{-} P \cap(P \cup Q)=P$ is valid (in set theory)
- there are obvious similarities in the two formulas above
- Let's explore the connections a little bit


## Set Theory Connections

- Boolean Algebra of (non-empty) X: a non-empty subset of the $2^{\mathrm{x}}$ closed under union, intersection and complementation (with respect to $X$ )
- Let $U$ be the ACL2s universe
- Then $B=\{\varnothing, U\}$ is the smallest Boolean algebra of $U$
- The largest Boolean algebra of $U$ is $2^{U}$
- $B$ is isomorphic to propositional logic: $\varnothing$ for $F$ and $U$ for $T$
- $\vee, \wedge, \neg$ correspond, respectively, to the (set theoretic) $\cup, \cap, \neg$
- In a Boolean algebra, atoms correspond to unary predicates, e.g., in $2^{U}$ :
- for clarity's sake, we use upper case vars to indicate atoms in $2^{U}$
${ }^{-}$let $P$ be $\{\mathrm{x} \in U$ : (integerp x$\left.)\right\}$
${ }^{-1}$ let $Q$ be $\{\mathrm{x} \in U:($ neg-rationalp x$)\}$
${ }^{\bullet}$ so $P \wedge Q$ (in 2U) means $P \cap Q=\{\mathrm{x} \in U:($ negp x$)\}$
${ }^{1}$ A Boolean algebra formula is valid if $=U$, e.g.: $P \vee \neg P$ (in 2Ч) means $P \cup \neg P=U$
- In general, a formula in $2^{U}$ corresponds to the subset of $U$ for which it holds


## Set Theory Connections

- Boolean Algebra of (non-empty) X: a non-empty subset of the $2^{\mathrm{x}}$ closed under union, intersection and complementation (with respect to $X$ )
- $\vee, \wedge, \neg$ correspond, respectively, to the (set theoretic) $\cup, \cap, \neg$
- In general, a formula in $2^{U}$ corresponds to the subset of $U$ for which it holds
${ }^{\text {}}$ Can extend Boolean algebra with $\Rightarrow, \equiv$, etc, using the propositional equalities:
- $P \Rightarrow Q$ is $\neg P \vee Q: S=\{x \in U:$ (implies $(P x)(Q x))\}$
${ }^{\bullet} P \equiv Q$ is $(P \Rightarrow Q) \wedge(Q \Rightarrow P): W=\{x \in U:$ (iff $\left.(P x)(Q x))\right\}$
- The equalities of propositional logic \& Boolean algebra are the same!
- Propositional logic validity: $p \vee \neg p$
- Boolean algebra: $P \vee \neg P$ (in 2Ч) is valid since $=U$
- Check the rest of the equalities in the notes
- The result is useful when analyzing propositional logic formulas, e.g.:
${ }^{\bullet} p \wedge(p \vee q) \equiv p \quad$ is valid iff
${ }^{\text {D }} P \cap(P \cup Q)=P$ is valid (because $P \equiv Q$ is valid iff $P=Q$ holds)


Which regions are in $S$ ? 2,3,4

Regions for $Q \Rightarrow P$ ?
2,1,4
Which regions are in $W$ ?
2,4
(intersection of above)

## BDDs and Decision Trees

- $A$ BDD on $x_{1}, \ldots, x_{n}$ is a $\operatorname{DAG~} G=(V, E)$ where
- exactly 1 vertex has indegree 0 (the root)
- all vertices have outdegree 0 (leaves) or 2 (inner nodes)
- the inner nodes are labeled from $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- the leaves are labeled from $\{0,1\}$
- one of the edges from an inner node is labeled by 0 ; the other by 1
- The BDD G=(V, E) represents a Boolean function, say f
- for any assignment $A$ in $B n, f(A)$ is computed recursively from root
- if we reach a leaf, return the label
- for inner nodes, say labeled with $x_{i}$, take the edge labeled by $A\left(x_{i}\right)$

- A decision tree is a BDD whose graph is a tree
- A BDD is an OBDD if there is a permutation on $p=\{1,2, \ldots, n\}$ s.t. for all edges ( $u$, v) in $E$, where $u, v$ are labeled by $x_{i}, x_{j}$, we have that $p_{i}<p_{j}$
- An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are distinct

Images from Wikipedia

## BDDs and Decision Trees



Decision Tree for $f$


ROBDD for $f$

How do we generate DNF from a decision tree? ROBDD?

Images from Wikipedia

## BDDs

- Decision trees are widely used, e.g., in machine learning (ID3, C4.5, ...)
- BDDs are widely used (BDD usually means ROBDD)
- Popularized by Bryant
- Very efficient algorithms for constructing, manipulating BDDs
- Used in verification, synthesis, fault trees, security, AI, model checking, static analysis, ...
- Bryant's paper was the most cited research paper (at some point)
- Many BDD packages available
- Once a variable ordering is selected, BDDs are canonical!
- Construct decision tree using Shannon expansion and merge isomorphic nodes, remove nodes who children are equal until you reach a fixpoint
- To see, this note that BDDs are essentially DFA that recognize strings in $\{0,1\}$ n and such automata can be minimized (note nodes with equal children remain)
- So, checking equality is just pointer equality (with appropriate data structures)
- Can be used for model checking: represent set of reachable states \& transition system with BDDs
- Bryant, Clarke, Emerson \& McMillan got 1998 Paris Kanellakis Award for symbolic model checking


## BDD Break

- Made the safety-analysis repo public; see link from slides
- Find someone you haven't spoken to yet
- Come up with an example formula over 4 variables where variable order matters wrt BDD size


## Variable Ordering for BDDs

Variable ordering matters: find the best ordering is hard.

0


Bad Ordering


Good Ordering

What function is this?
Images from Wikipedia

## Projects \& Presentations

- Talk with me regarding projects
- Set up 1/2-1 hour slots to go over project ideas
- Some ideas (groups 1-2)
- Better induction proofs
- Refinement: veríication
- Distributed system verification: perimeter monitoring example, etc
- CyC: ontology engineering (Doug Lenat)
- AI \& FM: Reasoning about programs
- Reproduce interesting result
- Survey paper on some FM topic
- Harrison's book in ACL2s


## Algorithms for SAT

- Modern SAT solvers accept input in CNF
- Dimacs format:
- 1-3450
- 2-4 70
- ...
- Davis \& Putnam Procedure (DP)
- Dates back to the 50's
- Based on resolution
- Helps to explain learning


## DP SAT Algorithm

- Davis Putnam (1960)
- Input: CNF formula
- Output: SAT/UNSAT
- Idea: apply three rules until
- Derive the empty clause: UNSAT (identity of $\vee$ is false)
${ }^{-}$No clauses remain: SAT (identity of $\wedge$ is true)
- Three "rules"
- Pure literal rule (affirmative-negative rule)
- Unit resolution rule (unit propagation, BCP, 1-literal rule)
- Resolution (Called consensus, also used for logic minimization)


## Pure Literal Rule

${ }^{\bullet}$ Given $F$, a set of clauses, and literal $\ell$ such

- $\ell$ appears in $F$
- $\neg \ell$ does not appear in $F$
- remove all clauses containing $\ell$
- Equisatisfiable because we can make $\ell$ true
- Notice that this always simplifies $F$
- Modern SAT solvers tend to not use the rule (efficiency)


## Boolean Constraint Propagation

Unit resolution rule:

| $\mathrm{C}, \neg \ell \quad l$ |
| :--- |
| C |

- BCP: given a set of clauses including $\{\ell\}$
- remove all other clauses containing $\ell$ (subsumption)
- remove all occurrences of $\neg \ell$ in clauses (unit resolution)
- repeat until a fixpoint is reached


## Resolution

Resolution rule:
$\frac{\mathrm{C}, \mathrm{v}}{\mathrm{C}, \mathrm{D}} \quad \mathrm{D}, \neg \mathrm{v}\left(\neg \mathrm{v}, \mathrm{v} \notin \mathrm{C}, \mathrm{D} \quad \frac{\mathrm{C}_{\mathrm{i}}, \mathrm{p}}{\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}}} \quad \mathrm{D}_{\mathrm{i}}, \neg \mathrm{p}, ~ \neg \mathrm{p} \notin \mathrm{C}_{\mathrm{i}} \in \mathrm{P}, \mathrm{p} \notin \mathrm{D}_{\mathrm{i}} \in \mathrm{N}\right.$

- Soundness of rule: above line implies below line
- If below line is SAT, so is above line ( $\mathrm{w} /$ side conditions)
- Given literal $p$, set of clauses $S$, let $P$ be the clauses in $S$ that contain $p$ only positively and let $N$ be the clauses that contain $p$ only negatively. Let $E$ be the rest of the clauses. Then $S$ is SAT iff $S^{\prime}$ is SAT, where $S^{\prime}=E$ $U$ the set of all $p$-resolvents of $P$ and $N$.
- Proof: If $A$ is an assignment for $S$, then if $A(p)=$ true, all clauses in $N$, with $\neg p$ removed are satisfied, so each $p$-resolvent is satisfied. Similarly if $A(p)=$ false. If $A$ is an assignment for $S^{\prime}$, then it satisfies all $C i$ or all $D i$ : suppose it doesn't satisfy Ck , then it must satisfy all Di . If it satisfies all Ci, let $A^{\prime}(p)=$ false, else $A^{\prime}(p)=$ true and $A^{\prime}(x)=A(x)$ otherwise.


## Resolution Example

Resolution rule:
$\frac{C, v \quad D, \neg v}{C, D} C, D$ are clauses, $\neg v \notin C$ and $v \notin D$
Given literal $p$, set of clauses $S$, let $P$ be the clauses in $S$ that contain $p$ only positively and let $N$ be the clauses that contain $p$ only negatively. Let $E$ be the rest of the clauses. Then $S$ is SAT iff $S^{\prime}$ is SAT, where $S^{\prime}=E \cup$ the set of all $p$-resolvents of $P$ and $N$.
$\left\{\{\neg p, q, r, s\}, \overline{\{p, \neg q, s\}},\{\neg p, \neg q, r, \neg s\},(p, \neg r, \neg s),\{\neg p, \neg q, \neg r\}, \overline{\{p, q\}},\left\{\begin{array}{l}-\cdots p, \neg-\cdots, s\}\}\end{array}\right.\right.$


## Resolution Example

Resolution rule:
$\frac{C, v \quad D, \neg v}{C, D} C, D$ are clauses, $\neg v \notin C$ and $v \notin D$
Given literal $p$, set of clauses $S$, let $P$ be the clauses in $S$ that contain $p$ only positively and let $N$ be the clauses that contain $p$ only negatively. Let $E$ be the rest of the clauses. Then $S$ is SAT iff $S^{\prime}$ is SAT, where $S^{\prime}=E \cup$ the set of all $p$-resolvents of $P$ and $N$.
$\{\{\neg p, q, r, s\},\{p, \neg q, s\},\{\neg p, \neg q, r, \neg s\},\{p, \neg r, \neg s\},\{\neg p, \neg q, \neg r\},\{p, q\},\{\neg p, \neg q, s\}\}$
Resolve on $q \quad\{\neg p, p, r, s\} \quad$ Notice that clauses that contain a literal and
$\{\{p, \neg r, \neg s\},\{\neg p, r, s\},\{p, s\}\}$ its negation can be thrown away. Why?

Resolve on $r$
$\{\{p, s\}\}$ Sat, resolve on $p$ to get $\}$ or use pure literal rule
How do we generate a satisfying assignment? Next homework

## DP SAT Algorithm

- Input: CNF formula, Output: SAT/UNSAT
- Base case: empty clause: UNSAT
- Base case: no clauses: SAT
- Apply these two rules until fixpoint
- Pure literal rule
- BCP
- Choose var, say $x$, perform all possible resolutions, remove trivial clauses and clauses containing $x$
- Repeat
- Existentially quantify variables, one at a time
- Problem: space blow-up

