
Lecture 5

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 5

Slides by Pete Manolios for CS4820

Induction & Deduction
Aristotle made the distinction between deduction and induction. He described induction as an
“argument from the particular to the universal” and as the mechanism by which we discover the
indemonstrable first principles of the sciences.

Induction is the process of generalizing from our known and limited experience, and framing wider
rules for the future than we have been able to test fully.

Jacob Bronowski

Inductive reasoning is, of course, good guessing, not sound reasoning, but the finest results in
science have been obtained in this way. Calling the guess a “working hypothesis,” its
consequences are tested by experiment in every conceivable way.

Joseph William Mellor

Science, in its ultimate ideal, consists of a set of propositions arranged in a hierarchy, the lowest
level of the hierarchy being concerned with particular facts, and the highest with some general
law, governing everything in the universe. The various levels in the hierarchy have a two-fold
logical connection, travelling one up, one down; the upward connection proceeds by induction,
the downward by deduction.

Bertrand Russell

Slides by Pete Manolios for CS4820

Mathematical Induction
Mathematical Induction is a deductive form of reasoning: anything we
derive using mathematical induction must be true.

It is sometimes thought of as being almost magical.

If we have no idea why a statement is true, we can still prove it by
induction.

Gian-Carlo Rota

Slides by Pete Manolios for CS4820

Induction Examples
Induction on Natural Numbers

P(0)
[n > 0 ∧ P(n − 1) ⇒ P(n)]

[P(n)]

Induction integers

≥ k

P(k)
[n > k ∧ P(n − 1) ⇒ P(n)]

[P(n)]

0 1 2 3
…

k k + 1
…k + 2

k + 3

Slides by Pete Manolios for CS4820

Induction Examples
Induction on Integers (Generalize Nats)

P(0)
[n > 0 ∧ P(n − 1) ⇒ P(n)]
[n < 0 ∧ P(n + 1) ⇒ P(n)]

[P(n)]

Works for Rationals?

P(0)
[n > 0 ∧ P(n − 1) ⇒ P(n)]
[n < 0 ∧ P(n + 1) ⇒ P(n)]

[P(n)]

Induction on Rationals

[0 ≤ n < 1 ⇒ P(n)]
[n ≥ 1 ∧ P(n − 1) ⇒ P(n)]
[n < 0 ∧ P(n + 1) ⇒ P(n)]

[P(n)]

0 1 2 3-1-2-3

0 1 2 3-1-2-3

Slides by Pete Manolios for CS4820

Strong Induction
Induction on Natural Numbers

[⟨∀k < n :: P(k)⟩ ⇒ P(n)]

[P(n)]

Induction on Integers

⟨∀n ≥ 0 :: ⟨∀k : 0 ≤ k < n : P(k)⟩ ⇒ P(n)⟩

⟨∀n < 0 :: ⟨∀k > n :: P(k)⟩ ⇒ P(n)⟩

[P(n)]

Well-Founded Induction: is well founded iff is terminating

(there are no infinite -decreasing sequences; is a relation on)

⟨W, ≺ ⟩ ≺
≺ ≺ W

⟨∀y ∈ W :: ⟨∀x ∈ W : x ≺ y : P(x)⟩ ⇒ P(y)⟩

⟨∀y ∈ W :: P(y)⟩
Exercise: Show that all the induction principles from this lecture are

special cases of well-founded induction.

Most powerful kind of induction?

Slides by Pete Manolios for CS4820

ACL2s Induction Schemes
(definec nat-ind (n :nat) :nat
 (if (zp n)
 0
 (nat-ind (1- n))))

Induction on natural numbers

(definec tlp (l :all) :bool
 (if (consp l)
 (tlp (rest l))
 (equal l ())))

Induction on true lists

(definec tree-ind (x :all) :all
 (if (atom x)
 x
 (list (tree-ind (car x))
 (tree-ind (cdr x)))))
Induction on trees

Key Idea:

We already prove termination for functions

So, the relations they give rise to are well-
founded!

So, we can induct using schemes derived
from function definitions

What is decreasing?

The measure.

Slides by Pete Manolios for CS4820

ACL2s Induction Schemes

(definec saeval (e :saexpr a :assignment) :rat-err
 (match e
 (:rational ...)
 (:var ...)
 (:usaexpr
 (('- x) ...)
 ...)
 ...))
Definition Induction

(defdata
 (saexpr (or rational
 var
 usaexpr
 bsaexpr))
 (usaexpr ...)
 (bsaexpr ...))

Defdata Induction

P((rationalp e))
P((varp e))
P((usaexprp e))
P((bsaexprp e))

[P(e)]

P((rationalp e))
P((varp e))
P((usaexprp e), e = ('- x))
P((usaexprp e), e = ...)
P((bsaexprp e), e = ...)
. . .

[P(e)]

Common themes:

Induction on data definitions

Induction on functions in conjectures

Custom inductions

Can direct ACL2s to use specific
induction schemes

Slides by Pete Manolios for CS4820

Induction in ACL2s
Given a function definition of the form (definec f (x1 :d1 … xn :dn) :df :ic ic :oc oc body)

Expand all macros

Terminal: expression occurrence in body with no if’s in it & which is not a subexpression of the test of any if

A terminal is maximal if it is not contained in any other terminal

For every terminal, there is a corresponding condition that must hold for execution to reach the terminal

The set of recursive calls of a terminal contains all calls to f that must be executed in order to execute

If the set of recursive calls of a terminal is empty, then the terminal is basic; otherwise it is recursive

Let be a sequence containing f’s maximal terminals with corresponding conditions

with recursive calls , where is (f x1 ... xn) : (the ’s are substitutions; is

{} if is basic)

t t

⟨t1, …, tm⟩ ⟨c1, …, cm⟩

⟨r1, …, rm⟩ ri { |σ j
i

1 ≤ j ≤ |ri |} σ j
i ri

ti

(not (or (g x) (or (not (f (1- x))) (f (- x 2)))))
 = {expand macros}
(not (if (g x) (g x) (if (not (f (- x 1))) (not (f (- x 1))) (f (- x 2)))))

Recursive Calls for Maximal Terminals: {}, {(f (- x 1))}, {{(f (- x 1)), (f (- x 2))}
 ((x (- x 1))), ((x (- x 1)), ((x (- x 2))σ1

2 = σ1
3 = σ2

3 =

Maximal Terminals:
Conditions:

Slides by Pete Manolios for CS4820

Induction in ACL2s
Given a function definition of the form (definec f (x1 :d1 … xn :dn) :df :ic ic :oc oc body)

Expand all macros

Terminal: expression occurrence in body with no if’s’s in it & which is not a subexpression of the test of any if

A terminal is maximal if it is not contained in any other terminal

For every terminal, there is a corresponding condition that must hold for execution to reach the terminal

The set of recursive calls of a terminal contains all calls to f that must be executed in order to execute

If the set of recursive calls of a terminal is empty, then the terminal is basic; otherwise it is recursive

Let be a sequence containing f’s maximal terminals with corresponding conditions

with recursive calls , where is (f x1 ... xn) : (the ’s are substitutions; is

{} if is basic)

The function f gives rise to an induction scheme that is parameterized by a formula

To prove , you can instead prove, where ic (d x):

1.

2. For all that are basic terminals: ∧

3. For all that are recursive terminals: ∧ ∧

t t

⟨t1, …, tm⟩ ⟨c1, …, cm⟩

⟨r1, …, rm⟩ ri { |σ j
i

1 ≤ j ≤ |ri |} σ j
i ri

ti
ϕ

ϕ C = ∧ ⋀
1≤i≤n

i i

¬C ⇒ ϕ
ti C ci ⇒ ϕ

ti C ci ⋀
1≤ j≤|ri|

ϕ |σ j
i

⇒ ϕ

Slides by Pete Manolios for CS4820

Professional Method
(definec ap (a :tl b :tl) :tl
 (if (endp a)
 b
 (cons (car a)
 (ap (cdr a) b))))

(definec rv (x :tl) :tl
 (if (endp x)
 nil
 (ap (rv (cdr x))
 (list (car x)))))

Prove: (rv (rv x)) = x No quite right, why?

Prove: (tlp x) ⇒ (rv (rv x)) = x Contract completion!

Professional Method: use abbreviations, discover induction scheme

We’ll induct on (... x). Base case is trivial, so go to induction step
 (R (R x))
= {Def R} (R (A (R (cdr x)) (L (car x))))
= {L1} (A (R (L (car x))) (R (R (cdr x))))
= {IH} (A (R (L (car x))) (cdr x))
= {Def R} (A (L (car x)) (cdr x))
= {Def A} x

Hm, to use IH, need lemma

L1.(R (A x y)) = (A (R y) (R x))

Now I can use IH
Just equational reasoning

What Induction scheme?
(tlp x) or (rev x): minor differences

Slides by Pete Manolios for CS4820

Professional Method

Prove: (tlp x) ∧ (tlp y) ⇒ (R (A x y)) = (A (R y) (R x))

Professional Method: induct on?

Start with induction step

 (R (A x y))
= {Def A} (R (cons (car x) (A (cdr x) y)))
= {Def R} (A (R (A (cdr x) y)) (L (car x)))
= {IH} (A (A (R y) (R (cdr x))) (L (car x)))
= {Ass A} (A (R y) (A (R (cdr x)) (L (car x))))
= {Def R} (A (R y) (R x))

What Induction scheme?
(tlp x) or (rev x): minor differences

Base case?
 (R (A x y))
= {Def A} (R y)

 (A (R y) (R x))
= {Def R} (A (R y) nil)
= {L2!} (R y)

L2: (A x nil) = x
Needs proof by induction!

x controls both LHS, RHS, so probably x

Ass A: (A (A x y) z) = (A x (A y z))

(definec ap (a :tl b :tl) :tl
 (if (endp a)
 b
 (cons (car a)
 (ap (cdr a) b))))

(definec rv (x :tl) :tl
 (if (endp x)
 nil
 (ap (rv (cdr x))
 (list (car x)))))

Slides by Pete Manolios for CS4820

DEMO

Slides by Pete Manolios for CS4820

ACL2 is . . .
A programming language:

Applicative, functional subset of Lisp

Compilable and executable

Untyped, first-order

A mathematical logic:
First-order predicate calculus

With equality, induction, recursive definitions

Ordinals up to (termination & induction)

A mechanical theorem prover:
Integrated system of ad hoc proof techniques
Heavy use of term rewriting
Largely written in ACL2

ϵ0

Next Time

Questions?

