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Induction & Deduction
Aristotle made the distinction between deduction and induction. He described induction as an 
“argument from the particular to the universal” and as the mechanism by which we discover the 
indemonstrable first principles of the sciences. 


Induction is the process of generalizing from our known and limited experience, and framing wider 
rules for the future than we have been able to test fully.

Jacob Bronowski


Inductive reasoning is, of course, good guessing, not sound reasoning, but the finest results in 
science have been obtained in this way. Calling the guess a “working hypothesis,” its 
consequences are tested by experiment in every conceivable way.

Joseph William Mellor


Science, in its ultimate ideal, consists of a set of propositions arranged in a hierarchy, the lowest 
level of the hierarchy being concerned with particular facts, and the highest with some general 
law, governing everything in the universe. The various levels in the hierarchy have a two-fold 
logical connection, travelling one up, one down; the upward connection proceeds by induction, 
the downward by deduction.

Bertrand Russell
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Mathematical Induction
Mathematical Induction is a deductive form of reasoning: anything we 
derive using mathematical induction must be true.


It is sometimes thought of as being almost magical.


If we have no idea why a statement is true, we can still prove it by 
induction.

Gian-Carlo Rota
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Induction Examples
Induction on Natural Numbers   








P(0)
[n > 0 ∧ P(n − 1) ⇒ P(n)]

[P(n)]

Induction integers 








≥ k

P(k)
[n > k ∧ P(n − 1) ⇒ P(n)]

[P(n)]

0 1 2 3
…

k k + 1
…k + 2

k + 3
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Induction Examples
Induction on Integers (Generalize Nats)











P(0)
[n > 0 ∧ P(n − 1) ⇒ P(n)]
[n < 0 ∧ P(n + 1) ⇒ P(n)]

[P(n)]

Works for Rationals?   











P(0)
[n > 0 ∧ P(n − 1) ⇒ P(n)]
[n < 0 ∧ P(n + 1) ⇒ P(n)]

[P(n)]

Induction on Rationals  











[0 ≤ n < 1 ⇒ P(n)]
[n ≥ 1 ∧ P(n − 1) ⇒ P(n)]
[n < 0 ∧ P(n + 1) ⇒ P(n)]

[P(n)]

0 1 2 3-1-2-3

0 1 2 3-1-2-3
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Strong Induction
Induction on Natural Numbers   



[⟨∀k < n :: P(k)⟩ ⇒ P(n)]

[P(n)]

Induction on Integers








⟨∀n ≥ 0 :: ⟨∀k : 0 ≤ k < n : P(k)⟩ ⇒ P(n)⟩

⟨∀n < 0 :: ⟨∀k > n :: P(k)⟩ ⇒ P(n)⟩

[P(n)]

Well-Founded Induction:  is well founded iff  is terminating

(there are no infinite -decreasing sequences;  is a relation on )





⟨W, ≺ ⟩ ≺
≺ ≺ W

⟨∀y ∈ W :: ⟨∀x ∈ W : x ≺ y : P(x)⟩ ⇒ P(y)⟩

⟨∀y ∈ W :: P(y)⟩
Exercise: Show that all the induction principles from this lecture are

special cases of well-founded induction.


Most powerful kind of induction?
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ACL2s Induction Schemes
(definec nat-ind (n :nat) :nat
  (if (zp n)
      0
    (nat-ind (1- n))))

Induction on natural numbers

(definec tlp (l :all) :bool 
  (if (consp l)
      (tlp (rest l))
    (equal l () )))

Induction on true lists

(definec tree-ind (x :all) :all 
  (if (atom x) 
      x
    (list (tree-ind (car x))
          (tree-ind (cdr x)))))
Induction on trees

Key Idea:

We already prove termination for functions

So, the relations they give rise to are well-
founded!

So, we can induct using schemes derived 
from function definitions

What is decreasing?

The measure.
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ACL2s Induction Schemes

(definec saeval (e :saexpr a :assignment) :rat-err
  (match e
    (:rational ...)
    (:var ...)
    (:usaexpr
     (('- x) ...)
     ...)
    ...))
Definition Induction

(defdata
  (saexpr (or rational 
              var
              usaexpr  
              bsaexpr))
  (usaexpr ...)
  (bsaexpr ...))

Defdata Induction













P((rationalp e))
P((varp e))
P((usaexprp e))
P((bsaexprp e))

[P(e)]



















P((rationalp e))
P((varp e))
P((usaexprp e), e = ('- x))
P((usaexprp e), e = ...)
P((bsaexprp e), e = ...)
. . .

[P(e)]

Common themes: 

Induction on data definitions

Induction on functions in conjectures

Custom inductions

Can direct ACL2s to use specific 
induction schemes
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Induction in ACL2s
Given a function definition of the form (definec f (x1 :d1 … xn :dn) :df  :ic ic :oc oc  body)


Expand all macros

Terminal: expression occurrence in body with no if’s in it & which is not a subexpression of the test of any if 

A terminal is maximal if it is not contained in any other terminal

For every terminal, there is a corresponding condition that must hold for execution to reach the terminal


The set of recursive calls of a terminal  contains all calls to f that must be executed in order to execute 

If the set of recursive calls of a terminal is empty, then the terminal is basic; otherwise it is recursive 


Let  be a sequence containing f’s maximal terminals with corresponding conditions 


with recursive calls , where  is (f x1 ... xn)  :  (the ’s are substitutions;  is 

{} if  is basic)

t t

⟨t1, …, tm⟩ ⟨c1, …, cm⟩

⟨r1, …, rm⟩ ri { |σ j
i

1 ≤ j ≤ |ri |} σ j
i ri

ti

(not (or (g x) (or (not (f (1- x))) (f (- x 2))))) 
  = {expand macros}
(not (if (g x) (g x) (if (not (f (- x 1))) (not (f (- x 1))) (f (- x 2)))))

Recursive Calls for Maximal Terminals: {}, {(f (- x 1))}, {{(f (- x 1)), (f (- x 2))} 
                            ((x (- x 1))), ((x (- x 1)), ((x (- x 2))σ1

2 = σ1
3 = σ2

3 =

Maximal Terminals: 
Conditions:
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Induction in ACL2s
Given a function definition of the form (definec f (x1 :d1 … xn :dn) :df  :ic ic :oc oc  body)


Expand all macros

Terminal: expression occurrence in body with no if’s’s in it & which is not a subexpression of the test of any if 

A terminal is maximal if it is not contained in any other terminal

For every terminal, there is a corresponding condition that must hold for execution to reach the terminal


The set of recursive calls of a terminal  contains all calls to f that must be executed in order to execute 

If the set of recursive calls of a terminal is empty, then the terminal is basic; otherwise it is recursive 


Let  be a sequence containing f’s maximal terminals with corresponding conditions 


with recursive calls , where  is (f x1 ... xn)  :  (the ’s are substitutions;  is 

{} if  is basic)


The function f gives rise to an induction scheme that is parameterized by a formula   

To prove , you can instead prove, where  ic (d  x ):


1.   


2. For all  that are basic terminals:   ∧ 


3. For all  that are recursive terminals:   ∧  ∧

t t

⟨t1, …, tm⟩ ⟨c1, …, cm⟩

⟨r1, …, rm⟩ ri { |σ j
i

1 ≤ j ≤ |ri |} σ j
i ri

ti
ϕ

ϕ C = ∧ ⋀
1≤i≤n

i i

¬C ⇒ ϕ
ti C ci ⇒ ϕ

ti C ci ⋀
1≤ j≤|ri|

ϕ |σ j
i

⇒ ϕ
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Professional Method
(definec ap (a :tl b :tl) :tl
  (if (endp a)
       b
     (cons (car a) 
           (ap (cdr a) b))))

(definec rv (x :tl) :tl
  (if (endp x)
       nil
     (ap (rv (cdr x))
         (list (car x)))))

Prove: (rv (rv x)) = x  No quite right, why?

Prove: (tlp x) ⇒ (rv (rv x)) = x Contract completion! 

Professional Method: use abbreviations, discover induction scheme

We’ll induct on (... x). Base case is trivial, so go to induction step
          (R (R x))
= {Def R} (R (A (R (cdr x)) (L (car x))))     
= {L1}    (A (R (L (car x))) (R (R (cdr x))))
= {IH}    (A (R (L (car x))) (cdr x))
= {Def R} (A (L (car x)) (cdr x))
= {Def A} x

Hm, to use IH, need lemma

L1.(R (A x y)) = (A (R y) (R x))

Now I can use IH
Just equational reasoning

What Induction scheme? 
(tlp x) or (rev x): minor differences



Slides by Pete Manolios for CS4820

Professional Method

Prove: (tlp x) ∧ (tlp y) ⇒ (R (A x y)) = (A (R y) (R x))

Professional Method: induct on?

Start with induction step

          (R (A x y))
= {Def A} (R (cons (car x) (A (cdr x) y)))
= {Def R} (A (R (A (cdr x) y)) (L (car x)))
= {IH}    (A (A (R y) (R (cdr x))) (L (car x)))
= {Ass A} (A (R y) (A (R (cdr x)) (L (car x))))
= {Def R} (A (R y) (R x))

What Induction scheme? 
(tlp x) or (rev x): minor differences

Base case?
          (R (A x y))
= {Def A} (R y)

          (A (R y) (R x))
= {Def R} (A (R y) nil)
= {L2!}   (R y)

L2: (A x nil) = x
Needs proof by induction!

x controls both LHS, RHS, so probably x

Ass A: (A (A x y) z) = (A x (A y z))

(definec ap (a :tl b :tl) :tl
  (if (endp a)
       b
     (cons (car a) 
           (ap (cdr a) b))))

(definec rv (x :tl) :tl
  (if (endp x)
       nil
     (ap (rv (cdr x))
         (list (car x)))))
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DEMO
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ACL2 is . . .
A programming language: 

Applicative, functional subset of Lisp

Compilable and executable

Untyped, first-order


A mathematical logic: 
First-order predicate calculus

With equality, induction, recursive definitions


Ordinals up to  (termination & induction)


A mechanical theorem prover: 
Integrated system of ad hoc proof techniques 
Heavy use of term rewriting 
Largely written in ACL2

ϵ0

Next Time



Questions?


