Lecture 18

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 18

Schedule

> 11/29: Temporal Logic & Model Checking
» 12/2: Projects, Exam 2 (Take home)
» 12/6: Projects

Slides by Pete Manolios for CS4820

Model Checking

® Does a finite state program satisfy a temporal property?

® Search an implicit graph for errors
@ Explicit state model checking
@ Start with initial states
® Choose an unexplored state and check it
® If error report; else generate successors & repeat

® lnitrally: ¢ =0; m =10 finite program D
® ition relation: ¢ :=c+2 mod m || ¢ := ¢c+6 mo

®Property: G(c < m-1) >properfy implicit graph

Slides by Pete Manolios for CS4820

Model Checking

® Does a finite state program satisfy a temporal property?

® Search an implicit graph for errors
@ Explicit state model checking
@ Start with initial states
® Choose an unexplored state and check it
® If error report; else generate successors & repeat

® lnitrally: ¢ =0; m =10 finite program D
® ition relation: ¢ :=c+2 mod m || ¢ := ¢c+6 mo

®Property: G(c < m-1) >properfy implicit graph

Slides by Pete Manolios for CS4820

Model Checking: Concurrency

Initially n = 0 (global, shared variable)
Processes P, 1 <i=m
initially reg, counter = 0, O (local variables)
while counter < 100 {

reg :=n

reg++

n :=reg

counter ++ }

® What values can n have after all processes terminate?
® G(terminate = 100=n<100m) holds? No

® G(terminate = 2<n<100m)

Slides by Pete Manolios for CS4820

Model Checking

Model: program and graph (can be exponentially bigger)
Checking: temporal logic formula (more later)
Nondeterministic: e.g., multiple transitions from O
Explicit state: explicitly represent states

On the fly: only reachable states computed; quit on error
Counterexample: report a path from initial to error state
Probabilistic: use of hashing to store visited states
Optimizations: symmetry & partial order reductions
Abstraction: used to tame complexity

Automata: can represent temporal logic and models
Symbolic: represent states symbolically (BDDs, SAT)
Infinite State: programs are typically infinite state

Slides by Pete Manolios for CS4820

lransition Systems

Transition System (TS) M = (S, -» , L) where

@ Sis a set of states

® -» cSxSis the transition relation (left-total)

® L is the labeling function: shows what is observable

A path (trace) o is a sequence of states s.t. 0i ~* Oj+1

A fullpath is an infinite path (w-trace)

The suffix (i, gi+1, ...) of 0 is denoted o

So € S is the set of initial states (L identifies initial states)
L:S— ©(AP)is common, for AP a set of atomic prop vars
Transition systems = Kripke structures = labeled graphs
Sometimes transitions are also labeled

Slides by Pete Manolios for CS4820

Iransition System Example

® Transition System (TS) M = (S, -+, L) where
® Sis a set of states

® -» cSxSis the transition relation (left-total)
¥ L is the labeling function: shows what is observable

S$={0,2,4,6,8}

-+ ={0, 2),(0, 6),(2, 4),(2, 8), (4, 6), (4, 0), ...}

L = identity = {(0, 0), (2, 2), (4, 4), (6, 6), (8, 8)}

L =div3? = {{(0, true), (2, false), {4, false), (6, true), (8, false)}

& ®& # @

Slides by Pete Manolios for CS4820

L1TL Syntax & Intuition

® The syntax of LTL formulas:
® e, where e is an expression

® fA gand -f where f, g are formulas
® Xf fU g, where f, g are formulas

e
M= QOO0 =0

e e.qg., div3d?; [e] =0, 3, 6, 9, 12, ...} (the predicate denoted by e)

0= O—O—O—0—0O0—Q %

Slides by Pete Manolios for CS4820

LTL X Intuition

® The syntax of LTL formulas:
® e, where e is an expression

® fA gand -f where f, g are formulas
® Xf fU g, where f, g are formulas

e
M= QOO0 =0

Xf e.g., X>5

0= @—Q

Slides by Pete Manolios for CS4820

«

L TL U Intuition

The syntax of LTL formulas:
¥ e, where e is an expression

f A g and —f, where f, g are formulas
X f, fU g, where f, g are formulas

fA—g fA~g

V5 oo e GG

U6 0= O—O—O—O—0O -

Slides by Pete Manolios for CS4820

XA\

L 1L Semantics

® The syntax of LTL formulas:
® e, where e is an expression

® fA gand -f where f, g are formulas
® Xf fU g, where f, g are formulas

® The semantics of LTL formulas wrt M, o
¥ M,okEe iff L(oo) € [e]
M,oefAg If Mjoefand M,0Eg
M, o = f iffitis not the casethat M, o= f
MoeEXFiffMolef
M,o=fUgiffdist M,oi=gandVj<i M, ol=f
= fiff V fullpaths o starting from an initial state: M, o = f

< o & o @

Slides by Pete Manolios for CS4820

L.TL F Intuition

® F g means eventually g
® Formally, F g is an abbreviation for true U g

Fg 0=‘—’"'—".—*6—‘."'

o O—O—O—0—0 - %
o= O—D—O—0—Q - vV
o= @—O—O—0—Q vV

Slides by Pete Manolios for CS4820

LTL G Intuition

® G fmeans always f

® Formally, G fis an abbreviation for =(F —f)

Gf

e.qg.,
G <6

Q
I

Slides by Pete Manolios for CS4820

a
cYe
3
<
!
)

< %

L.1'L Fairness

® Express infinitely often (e.g., Pi executes infinitely often)
® Express eventually always

G(F g) F‘__,_,g.___,,g__,_,g’
F(G) Fgfz_,_?f.__:._,__j.

® DoesG(Fg) = F(GH? No
® DoesF(Gf) =G (Fg)? Yes

Slides by Pete Manolios for CS4820

Model Checking LTL

® Model M is given implicitly as a program
® this is the Kripke structure/ graph/ transition system
® can be concurrent, nondeterministic, reactive
® gives rise to the set M of fullpaths (traces) from So
® Property is given as an LTL formula f
® usually the conjunction of formulae
® can include fairness constraints
® qgives rise to the set P of fullpaths satisfying f
® Model checking means
® checking M E f (as defined before)

® equivalent to checking whether M ¢ P

Slides by Pete Manolios for CS4820

Satety and Liveness

® Lamport classified properties as:

@ Safety: nothing bad ever happens

® Liveness: something good eventually happens

® Neither: neither of the above
® Safety properties: can always be falsified with a finite trace
® Liveness properties: can never be falsified with a finite trace

A

G f A F gis neither a safety nor a liveness property. Why?

Slides by Pete Manolios for CS4820

Satety

® Transformational systems
® type/stack/memory safety
® no reachable structures are deallocated
® partial correctness
® Reactive systems
® only one process is in its critical section at any point in time
® transactions appear to be atomic
® messages are authenticated
® requests are processed within k steps

Slides by Pete Manolios for CS4820

Liveness

® Transformational systems

® termination

® unreachable structures are deallocated eventually
® Reactive systems

® requests are eventually processed

® weak fairness (eventually always enabled = taken)

® strong fairness (infinitely often enabled = taken)

Slides by Pete Manolios for CS4820

Satety and Liveness

Specification: partial/total correctness, fairness, etc.

Different proof methods employed
® safety: proofs by induction
® liveness: construction of well-founded relations

For some problems, safety is decidable but not liveness
Model checking safety is easier

Security: enforceable security properties = safety properties
Topological & lattice-theoretic characterizations

Decomposition theorem
® every property is the conjunction of a safety and liveness prop
® extremal: strongest safety and weakest liveness

Slides by Pete Manolios for CS4820

Temporal Logic: C'TL*

® The syntax of CTL* formulas:
® e, where e is an expression
® fA gand —f where f, g are formulas
® Xf fUg, Ef where f, g are formulas

Consider EF >6 ¢

ConsiderEG <6 ¢ E RN
Consider EG >2 ¥ Computation tree obtained
Consider EFG >2 by unrolling transition relation

Slides by Pete Manolios for CS4820

A Intuition C'TL*

“® A g means for all paths, g
® Formally, A g is an abbreviation for "E—g

Consider AX >4 ®
Consider AF >4 X
Consider AF =0 v

Consider AXGF =0 %

Slides by Pete Manolios for CS4820

Temporal Logic: C'TL*

® The syntax of CTL* formulas:
® e, where e is an expression

® fA gand —f where f, g are formulas

® Xf,fUg, Ef where f, g are formulas State formulas:

formulas depending

&M oke iff L(oo) [e] > only on first state
® MokefAag iff MjoefandM,0Eg

® M, o= f iffitis not the case that M, o = f

® MoeXfiffM,olef

® MoefUgiffdist. M, olrgandVj<i, M, 0if
E Mo=Efiff18=(00,..)inMst.M,d=f >

® M fiff V fullpaths o starting from an initial state: M, o = f

® The semantics of CTL* formulas wrt M, o

Can write M, s f

Slides by Pete Manolios for CS4820

lemporal Logic: CG'TL

® The syntax of CTL* formulas:
® e, where e is an expression
® fA gand -f where f, g are formulas
® Xf fUg, Ef where f, g are formulas
® The syntax of CTL formulas: replace third line with:
® EXf E(fU g), E7(fU g), where f, g are formulas
® Note:

® Path quantifiers are paired with temporal operators
® Use CTL to represent AX f (~EX)

® Use CTL can represent A(fU g) ~(E~(fU g))
® CTL can represent EFf, AFf, EGf, AGf

E(true U f), A(true U 1), E~(true U —f), A~ (true U)

Slides by Pete Manolios for CS4820

lemporal Logic Hierarchy

CTL* subsumes CTL and LTL
Find an LTL formula not expressible in CTL A(FGp) ??
Find a CTL formula not expressible in LTL AG(EF p) ??

Find a CTL* formula not expressible in LTL or CTL
A(FG p) v AG(EF p)

@ A(FG p) N AG(EF p)
é holds (D holds
P
AF(AG p) ® LTL only considers

@) does not fullpaths, so

* —Ip’ —Ip’ _'p:

CTL can provide no evidence
for EFp

Slides by Pete Manolios for CS4820

