
Lecture 18

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 18

Slides by Pete Manolios for CS4820

Schedule
11/29: Temporal Logic & Model Checking

12/2: Projects, Exam 2 (Take home)

12/6: Projects

Model Checking
Does a finite state program satisfy a temporal property?

Search an implicit graph for errors

Explicit state model checking

Start with initial states

Choose an unexplored state and check it

 If error report; else generate successors & repeat

Slides by Pete Manolios for CS4820

Initially: c = 0; m = 10

Transition relation: c := c+2 mod m || c := c+6 mod m

Property: G(c < m-1)

0 2 4 6 8

finite program

property implicit graph

Holds?

Model Checking
Does a finite state program satisfy a temporal property?

Search an implicit graph for errors

Explicit state model checking

Start with initial states

Choose an unexplored state and check it

 If error report; else generate successors & repeat

Slides by Pete Manolios for CS4820

Initially: c = 0; m = 10

Transition relation: c := c+2 mod m || c := c+6 mod m

Property: G(c < m-1)

0 2 4 6 8

finite program

property implicit graph

Yes!

Model Checking: Concurrency

Slides by Pete Manolios for CS4820

Initially n = 0 (global, shared variable)

Processes Pi, 1 ≤ i ≤ m

initially reg, counter = 0, 0 (local variables)

while counter < 100 {

 reg := n

 reg++

 n := reg

 counter ++ }

What values can n have after all processes terminate?

G(terminate ⇒ 100≤n≤100m) holds?

G(terminate ⇒ 2≤n≤100m)

No

Model Checking

Slides by Pete Manolios for CS4820

Model: program and graph (can be exponentially bigger)

Checking: temporal logic formula (more later)

Nondeterministic: e.g., multiple transitions from 0

Explicit state: explicitly represent states

On the fly: only reachable states computed; quit on error

Counterexample: report a path from initial to error state

Probabilistic: use of hashing to store visited states

Optimizations: symmetry & partial order reductions

Abstraction: used to tame complexity

Automata: can represent temporal logic and models

Symbolic: represent states symbolically (BDDs, SAT)

Infinite State: programs are typically infinite state

Slides by Pete Manolios for CS4820

Transition System (TS) M = 〈S, ⇢ , L〉 where

S is a set of states

⇢ ⊆S×S is the transition relation (left-total)

L is the labeling function: shows what is observable

A path (trace) σ is a sequence of states s.t. σi ⇢ σi+1

A fullpath is an infinite path (ω-trace)

The suffix 〈σi, σi+1, ...〉 of σ is denoted σi

S0 ⊆ S is the set of initial states (L identifies initial states)

L : S ➝ ℘(AP) is common, for AP a set of atomic prop vars

Transition systems = Kripke structures = labeled graphs

Sometimes transitions are also labeled

Transition Systems

Slides by Pete Manolios for CS4820

Transition System (TS) M =〈S, ⇢ , L〉where

S is a set of states

⇢ ⊆S×S is the transition relation (left-total)

L is the labeling function: shows what is observable

Transition System Example

S = { 0, 2, 4, 6, 8 }

⇢ = {〈0, 2〉, 〈0, 6〉, 〈2, 4〉, 〈2, 8〉, 〈4, 6〉, 〈4, 0〉, ...}

L = identity = {〈0, 0〉, 〈2, 2〉, 〈4, 4〉, 〈6, 6〉, 〈8, 8〉}

L = div3? = {〈0, true〉, 〈2, false〉, 〈4, false〉, 〈6, true〉, 〈8, false〉}

0 2 4 6 8

Slides by Pete Manolios for CS4820

The syntax of LTL formulas:

e, where e is an expression

f ∧ g and ¬f, where f, g are formulas

X f, f U g, where f, g are formulas

LTL Syntax & Intuition

0 2 4 6 8M =

e e.g., div3?; ⟦e⟧ = {0, 3, 6, 9, 12, ...} (the predicate denoted by e)

0 2 4 6 8 0 ...σ =

...σ =

2 8 4 6 8 ...σ = 0

✔
✖

Slides by Pete Manolios for CS4820

The syntax of LTL formulas:

e, where e is an expression

f ∧ g and ¬f, where f, g are formulas

X f, f U g, where f, g are formulas

LTL X Intuition

M =

X f

0 2 4 6 8 0 ...σ =

...σ =

2 8 4 6 8 ...σ = 0

e.g., X >5

✔
✖

0 2 4 6 8

Slides by Pete Manolios for CS4820

The syntax of LTL formulas:

e, where e is an expression

f ∧ g and ¬f, where f, g are formulas

X f, f U g, where f, g are formulas

LTL U Intuition

f U g

2 8 4 6 8 ...σ =

e.g.,

<5 U >6

✔

0 2 4 6 8 ...σ = ✖

8 0 6 2 4 ...σ = ✔
0 2 4 0 2 ...σ = ✖

...σ =
f ∧ ¬g f ∧ ¬g... g

Slides by Pete Manolios for CS4820

The syntax of LTL formulas:

e, where e is an expression

f ∧ g and ¬f, where f, g are formulas

X f, f U g, where f, g are formulas

The semantics of LTL formulas wrt M, σ

M, σ ⊨ e iff L(σ0) ∈ ⟦e⟧

M, σ ⊨ f ∧ g iff M, σ ⊨ f and M, σ ⊨ g

M, σ ⊨ ¬f iff it is not the case that M, σ ⊨ f

M, σ ⊨ X f iff M, σ1 ⊨ f

M, σ ⊨ f U g iff ∃ i s.t. M, σi ⊨ g and ∀ j < i, M, σj ⊨ f

M ⊨ f iff ∀ fullpaths σ starting from an initial state: M, σ ⊨ f

LTL Semantics

Slides by Pete Manolios for CS4820

LTL F Intuition

F g

2 8 4 6 8 ...σ =

e.g.,

F >6

✔

0 2 4 6 2 ...σ = ✖

8 0 6 2 4 ...σ = ✔

...σ = ... g

F g means eventually g

Formally, F g is an abbreviation for true U g

Slides by Pete Manolios for CS4820

G f means always f

Formally, G f is an abbreviation for ¬(F ¬f)

LTL G Intuition

G f

2 4 0 2 4 ...σ =

e.g.,

G <6

✔

0 2 4 6 8 ...σ = ✖

...σ = ... f fff

Slides by Pete Manolios for CS4820

Express infinitely often (e.g., Pi executes infinitely often)

Express eventually always

LTL Fairness

G(F g) ... g ... g ...

F(G f)

F g F g

... G ff f

Does G (F g) ⇒ F (G f)?

Does F (G f) ⇒ G (F g)?

No

Yes

F(G f)

Model Checking LTL

Slides by Pete Manolios for CS4820

Model M is given implicitly as a program

this is the Kripke structure/ graph/ transition system

can be concurrent, nondeterministic, reactive

gives rise to the set M of fullpaths (traces) from S0

Property is given as an LTL formula f

usually the conjunction of formulae

can include fairness constraints

gives rise to the set P of fullpaths satisfying f

Model checking means

checking M ⊨ f (as defined before)

equivalent to checking whether M ⊆ P

Slides by Pete Manolios for CS4820

Lamport classified properties as:

Safety: nothing bad ever happens

Liveness: something good eventually happens

Neither: neither of the above

Safety properties: can always be falsified with a finite trace

Liveness properties: can never be falsified with a finite trace

Safety and Liveness

G f ...σ = ...
...F g ...σ = ...

G f ∧ F g is neither a safety nor a liveness property. Why?

Slides by Pete Manolios for CS4820

Transformational systems

type/stack/memory safety

no reachable structures are deallocated

partial correctness

Reactive systems

only one process is in its critical section at any point in time

transactions appear to be atomic

messages are authenticated

requests are processed within k steps

Safety

Slides by Pete Manolios for CS4820

Transformational systems

termination

unreachable structures are deallocated eventually

Reactive systems

requests are eventually processed

weak fairness (eventually always enabled ⇒ taken)

strong fairness (infinitely often enabled ⇒ taken)

Liveness

Slides by Pete Manolios for CS4820

Specification: partial/total correctness, fairness, etc.

Different proof methods employed

safety: proofs by induction

liveness: construction of well-founded relations

For some problems, safety is decidable but not liveness

Model checking safety is easier

Security: enforceable security properties = safety properties

Topological & lattice-theoretic characterizations

Decomposition theorem

every property is the conjunction of a safety and liveness prop

extremal: strongest safety and weakest liveness

Safety and Liveness

Slides by Pete Manolios for CS4820

The syntax of CTL* formulas:

e, where e is an expression

f ∧ g and ¬f, where f, g are formulas

X f, f U g, E f, where f, g are formulas

Temporal Logic: CTL*

M =
0

2

4

6

6

288

0 840 40 4...Consider EF >6
Consider EG <6

✔
✔

Consider EG >2 ✖
Consider EFG >2 ✔

Computation tree obtained

by unrolling transition relation

0 2 4 6 8

Slides by Pete Manolios for CS4820

A Intuition CTL*

M =

0

2

4

6

6

288

0 840 40 4...
Consider AX >4
Consider AF >4
Consider AF =0
Consider AXGF =0

A g means for all paths, g

Formally, A g is an abbreviation for ¬E¬g

✔
✖

✖
✖

0 2 4 6 8

Slides by Pete Manolios for CS4820

The syntax of CTL* formulas:

e, where e is an expression

f ∧ g and ¬f, where f, g are formulas

X f, f U g, E f, where f, g are formulas

The semantics of CTL* formulas wrt M, σ

M, σ ⊨ e iff L(σ0) ⟦e⟧

M, σ ⊨ f ∧ g iff M, σ ⊨ f and M, σ ⊨ g

M, σ ⊨ ¬f iff it is not the case that M, σ ⊨ f

M, σ ⊨ X f iff M, σ1 ⊨ f

M, σ ⊨ f U g iff ∃ i s.t. M, σi ⊨ g and ∀ j < i, M, σj ⊨ f

M, σ ⊨ E f iff ∃ δ = 〈σ0, ...〉 in M s.t. M, δ ⊨ f

M ⊨ f iff ∀ fullpaths σ starting from an initial state: M, σ ⊨ f

Temporal Logic: CTL*

State formulas:

formulas depending

only on first state
Can write M, s ⊨ f

Slides by Pete Manolios for CS4820

The syntax of CTL* formulas:

e, where e is an expression

f ∧ g and ¬f, where f, g are formulas

X f, f U g, E f, where f, g are formulas

The syntax of CTL formulas: replace third line with:

EX f, E(f U g), E¬(f U g), where f, g are formulas

Note:

Path quantifiers are paired with temporal operators

Use CTL to represent AX f

Use CTL can represent A(f U g)

CTL can represent EFf, AFf, EGf, AGf

Temporal Logic: CTL

(¬EX ¬f)

¬(E¬(f U g))

E(true U f), A(true U f), E¬(true U ¬f), A¬(true U ¬f)

Slides by Pete Manolios for CS4820

CTL* subsumes CTL and LTL

Find an LTL formula not expressible in CTL

Find a CTL formula not expressible in LTL

Find a CTL* formula not expressible in LTL or CTL

Temporal Logic Hierarchy

CTL*

LTLCTL

p

¬p

 p

A(FG p)

holds

AF(AG p)

does not

AG(EF p)

holds

LTL only considers

fullpaths, so

¬p, ¬p, ¬p, ...

can provide no evidence

for EFp

¬p

p

A(FG p)
AG(EF p)

A(FG p) ∨ AG(EF p)

??
??

