Lecture 18

Pete Manolios Northeastern

Schedule

▶ 11/29: Temporal Logic & Model Checking

▶ 12/2: Projects, Exam 2 (Take home)

▶ 12/6: Projects

Model Checking

- Does a finite state program satisfy a temporal property?
- Search an implicit graph for errors
- Explicit state model checking
 - Start with initial states
 - Choose an unexplored state and check it
 - If error report; else generate successors & repeat
- Initially: c = 0; m = 10 finite program
- Transition relation: c := c+2 mod m || c := c+6 mod m
- Property: G(c < m-1) property implicit graph

Model Checking

- Does a finite state program satisfy a temporal property?
- Search an implicit graph for errors
- Explicit state model checking
 - Start with initial states
 - Choose an unexplored state and check it
 - If error report; else generate successors & repeat
- Initially: c = 0; m = 10 finite program
- Transition relation: c := c+2 mod m || c := c+6 mod m
- Property: G(c < m-1) property implicit graph

Model Checking: Concurrency

```
Initially n = 0 (global, shared variable)

Processes P_i, 1 \le i \le m

initially reg, counter = 0, 0 (local variables)

while counter < 100 {

reg := n

reg++

n := reg

counter ++ }
```

- What values can n have after all processes terminate?
- G(terminate \Rightarrow 100 \leq n \leq 100m) holds? No
- G(terminate $\Rightarrow 2 \le n \le 100m$)

Model Checking

- Model: program and graph (can be exponentially bigger)
- Checking: temporal logic formula (more later)
- Nondeterministic: e.g., multiple transitions from 0
- Explicit state: explicitly represent states
- On the fly: only reachable states computed; quit on error
- Counterexample: report a path from initial to error state
- Probabilistic: use of hashing to store visited states
- Optimizations: symmetry & partial order reductions
- Abstraction: used to tame complexity
- Automata: can represent temporal logic and models
- Symbolic: represent states symbolically (BDDs, SAT)
- Infinite State: programs are typically infinite state

Transition Systems

- Transition System (TS) $M = \langle S, \rightarrow, L \rangle$ where
 - S is a set of states

 - L is the labeling function: shows what is observable
- A path (trace) σ is a sequence of states s.t. σ_i → σ_{i+1}
- A fullpath is an infinite path (ω -trace)
- The suffix $\langle \sigma_i, \sigma_{i+1}, ... \rangle$ of σ is denoted σ^i
- $S_0 \subseteq S$ is the set of initial states (L identifies initial states)
- $L: S \to \wp(AP)$ is common, for AP a set of atomic prop vars
- Transition systems = Kripke structures = labeled graphs
- Sometimes transitions are also labeled

Transition System Example

- Transition System (TS) $M = \langle S, \rightarrow, L \rangle$ where
 - S is a set of states

 - L is the labeling function: shows what is observable

- $S = \{ 0, 2, 4, 6, 8 \}$
- $= \{\langle 0, 2 \rangle, \langle 0, 6 \rangle, \langle 2, 4 \rangle, \langle 2, 8 \rangle, \langle 4, 6 \rangle, \langle 4, 0 \rangle, \ldots \}$
- $L = identity = \{(0, 0), (2, 2), (4, 4), (6, 6), (8, 8)\}$
- $L = \text{div}3? = \{\langle 0, true \rangle, \langle 2, false \rangle, \langle 4, false \rangle, \langle 6, true \rangle, \langle 8, false \rangle\}$

LTL Syntax & Intuition

- The syntax of LTL formulas:
 - e, where e is an expression
 - $f \wedge g$ and $\neg f$, where f, g are formulas
 - X f, f U g, where f, g are formulas

 $e \ e.g.$, div3?; $[e] = \{0, 3, 6, 9, 12, ...\}$ (the predicate denoted by e)

LTL X Intuition

- The syntax of LTL formulas:
 - e, where e is an expression
 - $f \wedge g$ and $\neg f$, where f, g are formulas
 - X f, f U g, where f, g are formulas

$$X f \qquad e.g., X > 5$$

$$\sigma = 0 \qquad 2 \qquad 4 \qquad 6 \qquad 8 \qquad 0$$

$$\sigma = 0 \qquad 2 \qquad 4 \qquad 6 \qquad 8 \qquad 0$$

$$\sigma = 2 \qquad 8 \qquad 4 \qquad 6 \qquad 8 \qquad 0$$

LTL U Intuition

- The syntax of LTL formulas:
 - e, where e is an expression
 - $f \wedge g$ and $\neg f$, where f, g are formulas
 - X f, f U g, where f, g are formulas

$$f \cup g \qquad \sigma = \overbrace{\hspace{1cm}}^{f \wedge \neg g} \qquad f \wedge \neg g \qquad g$$

$$e.g.,$$

$$<5 \cup >6 \qquad \sigma = 0 \qquad 2 \qquad 4 \qquad 6 \qquad 8 \qquad \cdots$$

$$\sigma = 2 \qquad 8 \qquad 4 \qquad 6 \qquad 8 \qquad \cdots$$

$$\sigma = 8 \qquad 0 \qquad 6 \qquad 2 \qquad 4 \qquad \cdots$$

$$\sigma = 0 \qquad 2 \qquad 4 \qquad 0 \qquad 2 \qquad \cdots$$

LTL Semantics

- The syntax of LTL formulas:
 - e, where e is an expression
 - $f \wedge g$ and $\neg f$, where f, g are formulas
 - X f, f U g, where f, g are formulas
- The semantics of LTL formulas wrt M, σ
 - $M, \sigma \models e \text{ iff } L(\sigma_0) \in \llbracket e \rrbracket$
 - $M, \sigma \models f \land g \text{ iff } M, \sigma \models f \text{ and } M, \sigma \models g$
 - $M, \sigma \models \neg f$ iff it is not the case that $M, \sigma \models f$
 - $M, \sigma \models \mathbf{X} f \text{ iff } M, \sigma^1 \models f$
 - $M, \sigma \models f \cup g \text{ iff } \exists i \text{ s.t. } M, \sigma^i \models g \text{ and } \forall j < i, M, \sigma^j \models f$
- $M \models f$ iff \forall fullpaths σ starting from an initial state: $M, \sigma \models f$

LTL F Intuition

- F g means eventually g
- Formally, F g is an abbreviation for true U g

LTL G Intuition

- G f means always f
- Formally, **G** f is an abbreviation for $\neg(\mathbf{F} \neg f)$

LTL Fairness

- Express infinitely often (e.g., P_i executes infinitely often)
- Express eventually always

$$\mathbf{G}(\mathbf{F}\,g) \qquad \qquad \mathbf{F}\,g \qquad \qquad \mathbf{g} \qquad \mathbf{F}\,g \qquad \qquad \mathbf{g} \qquad \qquad \mathbf{G}$$

- Does G (F g) \Rightarrow F (G f)?
- Does $F(G f) \Rightarrow G(F g)$? Yes

Model Checking LTL

- Model M is given implicitly as a program
 - this is the Kripke structure/ graph/ transition system
 - can be concurrent, nondeterministic, reactive
 - gives rise to the set M of fullpaths (traces) from S_0
- Property is given as an LTL formula f
 - usually the conjunction of formulae
 - can include fairness constraints
 - gives rise to the set P of fullpaths satisfying f
- Model checking means
 - checking $M \models f$ (as defined before)
 - equivalent to checking whether $M \subseteq P$

Safety and Liveness

- Lamport classified properties as:
 - Safety: nothing bad ever happens
 - Liveness: something good eventually happens
 - Neither: neither of the above
- Safety properties: can always be falsified with a finite trace
- Liveness properties: can never be falsified with a finite trace

$$G f \qquad \sigma = \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

$$F g \qquad \sigma = \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

G $f \wedge F g$ is neither a safety nor a liveness property. Why?

Safety

- Transformational systems
 - type/stack/memory safety
 - no reachable structures are deallocated
 - partial correctness
- Reactive systems
 - only one process is in its critical section at any point in time
 - transactions appear to be atomic
 - messages are authenticated
 - requests are processed within k steps

Liveness

- Transformational systems
 - termination
 - unreachable structures are deallocated eventually
- Reactive systems
 - requests are eventually processed
 - weak fairness (eventually always enabled ⇒ taken)
 - strong fairness (infinitely often enabled ⇒ taken)

Safety and Liveness

- Specification: partial/total correctness, fairness, etc.
- Different proof methods employed
 - safety: proofs by induction
 - liveness: construction of well-founded relations
- For some problems, safety is decidable but not liveness
- Model checking safety is easier
- Security: enforceable security properties = safety properties
- Topological & lattice-theoretic characterizations
- Decomposition theorem
 - every property is the conjunction of a safety and liveness prop
 - extremal: strongest safety and weakest liveness

Temporal Logic: CTL*

- The syntax of CTL* formulas:
 - e, where e is an expression
 - $f \wedge g$ and $\neg f$, where f, g are formulas

X f, f U g, E f, where f, g are formulas

A Intuition CTL*

- A g means for all paths, g
- Formally, **A** g is an abbreviation for $\neg \mathbf{E} \neg g$

Temporal Logic: CTL*

- The syntax of CTL* formulas:
 - e, where e is an expression
 - $f \wedge g$ and $\neg f$, where f, g are formulas
 - X f, f U g, E f, where f, g are formulas
- The semantics of CTL* formulas wrt M, σ
 - \sim M, $\sigma \models e$ iff $L(\sigma_0)$ [e]
 - $M, \sigma \models f \land g \text{ iff } M, \sigma \models f \text{ and } M, \sigma \models g$
 - $M, \sigma \models \neg f$ iff it is not the case that $M, \sigma \models f$
 - $M, \sigma \models \mathbf{X} f \text{ iff } M, \sigma^1 \models f$
 - $M, \sigma \models f \cup g \text{ iff } \exists i \text{ s.t. } M, \sigma^i \models g \text{ and } \forall j < i, M, \sigma^j \models f$
 - M, $\sigma \models \mathbf{E} f$ iff $\exists \ \delta = \langle \sigma_0, ... \rangle$ in M s.t. M, $\delta \models f$
- $M \models f$ iff \forall fullpaths σ starting from an initial state: $M, \sigma \models f$

State formulas: formulas depending only on first state Can write $M, s \models f$

Temporal Logic: CTL

- The syntax of CTL* formulas:
 - e, where e is an expression
 - $f \wedge g$ and $\neg f$, where f, g are formulas
 - X f, f U g, E f, where f, g are formulas
- The syntax of CTL formulas: replace third line with:
 - **EX** f, $\mathbf{E}(f \cup g)$, $\mathbf{E} \neg (f \cup g)$, where f, g are formulas
- Note:
 - Path quantifiers are paired with temporal operators
 - Use CTL to represent **AX** f (¬**EX** ¬f)
 - Use CTL can represent $\mathbf{A}(f \cup g)$ $\neg (\mathbf{E} \neg (f \cup g))$
 - CTL can represent EFf, AFf, EGf, AGf

 $E(true \ U \ f), \ A(true \ U \ f), \ E\neg(true \ U \ \neg f), \ A\neg(true \ U \ \neg f)$

Temporal Logic Hierarchy

- CTL* subsumes CTL and LTL
- Find an LTL formula not expressible in CTL
- **A**(**FG** p) ??

Find a CTL formula not expressible in LTL

- **AG**(**EF** p) ??
- Find a CTL* formula not expressible in LTL or CTL

$$A(FG p) \vee AG(EF p)$$

AG(EF p) holds

fullpaths, so $\neg p, \neg p, \neg p, ...$ can provide no evidence
for **EF**p