Lecture 15

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 15

Unification Basics

- **Unification Problem**: Given a set of pairs of terms $S = \{(s_1, t_1), ..., (s_n, t_n)\}$ a *unifier* of *S* is a substitution σ such that $s_i | \sigma = t_i | \sigma$ (we'll write $s_i \sigma = t_i \sigma$)
- ▶ **U(S)** is the set of all unifiers of S; notice that if σ is a unifier, so is $\tau \circ \sigma$
- ▶ ≤ is a preorder; let δ be the identify for reflexivity
 - ▶ transitivity: if $\sigma \leq \tau$, $\tau \leq \theta$ then $\tau = \delta \sigma$, $\theta = \gamma \tau = \gamma(\delta \sigma) = (\gamma \delta) \sigma$
 - ▷ $\sigma \sim \tau$ iff $\sigma \leq \tau$, $\tau \leq \sigma$. Notice that if $\sigma = x \leftarrow y$, $\tau = y \leftarrow x$, then $\sigma \sim \tau$
 - ▶ $\sigma ~ \tau$ iff there is a renaming (bijection on Vars) θ s.t. $\sigma = \theta \tau$
- A most general unifier (mgu) is $\sigma \in U(S)$ s.t. for all $\tau \in U(S)$, $\sigma \leq \tau$
 - ▶ What is an mgu for $x=y? x \leftarrow y? y \leftarrow x? x \leftarrow z, y \leftarrow z? x \leftarrow y, z \leftarrow w, w \leftarrow z?$
- A substitution is *idempotent* if $\sigma\sigma = \sigma$ (rules out last case above)
 - $\triangleright \sigma$ is idempotent iff Domain(σ) is disjoint from Vars(Range(σ))
- If a unification problem has a solution, then it has an idempotent mgu
- We want an algorithm that finds an mgu, if a unifier exists

Unification Algorithm

- ▷ $S = \{(x_1, t_1), ..., (x_n, t_n)\}$ is in **solved form** if the x_i are distinct variables and don't occur in any of the t_i . Then $S \downarrow = \{x_1 \leftarrow t_1, ..., x_n \leftarrow t_n\}$
- ▶ If S is in solved form and $\sigma \in U(S)$, then $\sigma = \sigma S \downarrow (\sigma, \sigma S \downarrow agree on all vars)$
- If S is in solved form, then $S\downarrow$ is an idempotent mgu
- Algorithm: Nondeterministic transition system based on the following rules
 - ▶ Delete $\{t=t\} \cup S \implies S$ useful way of thinking about algorithms: SMT/IMT
 - ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊌ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
 - ▶ Orient $\{t=x\} \cup S \implies \{x=t\} \cup S$, if *t* is not a variable
 - ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | x \leftarrow t$, if $x \in Vars(S) Vars(t)$
- Unify(S) = apply rules nondeterministically; if solved return S1, else fail
- ▶ Try it with: {x=f(a), g(x,x)=g(x,y)}

Unification Algorithm

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ {\ \Downarrow \ } S \longrightarrow S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\}$ $\exists S \implies \{x=t\} \cup S | x \leftarrow t, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$

 $x=f(a), g(x,x)=g(x,y) \implies$ decompose what other rules can I use?

x=f(a), x=x, x=y \Rightarrow deletecan't use eliminate on x=x; why?x=f(a), x=y \Rightarrow eliminate xcan't use orient on x=y; why?y=f(a), x=y \Rightarrow eliminate ycan't use orient on x=y; why?y=f(a), x=f(a) \Rightarrow return $S\downarrow$

▶ Try it with: {(*x*, *f*(*y*)), (*y*, *g*(*x*))}

- ▶ Try it with: {(*P*(*f*(*w*), *f*(*y*)), *P*(*x*, *f*(*g*(*u*))), (*P*(*x*,*u*), *P*(*v*,*g*(*v*))}
- ▶ Try it with: {(*f*(*a*,*b*,*g*(*x*,*x*),*g*(*y*,*y*),*z*), *f*(*g*(*v*,*v*),*g*(*a*,*a*),*y*,*z*,*b*))}

Slides by Pete Manolios for CS4820

Unification Algorithm Termination

Algorithm: Nondeterministic transition system based on the following rules

▶ Delete
$$\{t=t\} \ ⊎ \ S \implies S$$

- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | x \leftarrow t, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
 - ▶ 0,1, 2, ..., ω the first infinite ordinal (why stop with the naturals?) ▶ Keep going: $\omega + 1$, $\omega + 2$, ..., $\omega + \omega = \omega 2$, $\omega 2 + 1$, ..., $\omega 3$, ..., $\omega \omega = \omega^2$,

..., ω^3 , ..., ω^{ω} , ..., $\omega^{\omega^{\omega^{\cdots}}} = \epsilon_0$ ACL2s measures can use ordinals

Lexicographic ordering on tuples of natural numbers is $\approx \omega^{\omega}$

$$\triangleright \langle X_0, \, \dots, \, X_{n-1}, \, X_n \rangle \longmapsto \omega^n X_0 + \cdots + \omega X_{n-1} + X_n$$

- ▶ There is an order-preserving bijection from n+1-tuples of Nats to ω^n
- There is a theorem of this in the ACL2 ordinals books; you can define a relation, prove it is well-founded and use it in termination proofs

Unification Algorithm Termination

Algorithm: Nondeterministic transition system based on the following rules

- $\blacktriangleright \text{ Delete } \{t{=}t\} \Downarrow S \implies S$
- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\}$ $\exists S \implies \{x=t\} \cup S | x \leftarrow t, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
 - ▶ x is solved in S iff $x=t \in S$ and x only appears once in S

Measure:	<pre></pre>	ze of	f S, # of equations <i>t=x</i> in S>
Delete	≤ why not =?	<	Maybe <i>x</i> ∈ <i>t</i> , <i>x</i> ∉S
Decompose	\leq	<	
Orient	\leq	=	<
Eliminate	<		

for every rule we have $(\leq | =)^* <$, so the lexicographic order is decreasing (and well-founded), i.e., any algorithm based on these rules terminates

Unification Algorithm Soundness

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} ⊎ S \implies \{x=t\} \cup S | x \leftarrow t, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$

▶ If $V \implies T$ then U(V)=U(T): Easy: delete, decompose, orient; for eliminate:

- ▶ let $\sigma \in U(V)$, $\theta = x \leftarrow t$. By lemma, $\sigma = \sigma \theta$ if $x\sigma = t\sigma$, since x = t is in solved form
 - ▶ lemma: If *X* is in solved form then $\sigma = \sigma X \downarrow$ for all $\sigma \in U(X)$
 - Proof: σ , $\sigma X \downarrow$ agree on all vars by case analysis on $y \in \text{Domain}(X \downarrow)$
- ▶ $\sigma \in U({x=t} \cup S)$ iff $x\sigma = t\sigma \land \sigma \in U(S)$ iff $x\sigma = t\sigma \land \sigma \in U(S)$ iff $x\sigma = t\sigma \land \sigma \in U(S\theta)$ iff $\sigma \in U({x=t} \cup S\theta)$
- Soundness: If Unify returns σ , then σ is an idempotent mgu of S

Unification Algorithm Completeness

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | x \leftarrow t, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- Completeness: If S is solvable, then Unify(S) does not fail

Lemmas

- ▶ f(...) = g(...) has no solution if $f \neq g$
- ▶ x=t, where $x \neq t$ and $x \in Vars(t)$ has no solution ($|x\sigma| < |t\sigma|$ for all σ)
- Proof: If S is solvable and in normal form wrt ⇒, then S is in solved form. S cannot contain pairs of form f(...) = f(...) (decompose) or f(...) = g(...) (lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations are of form x=t where x ∉ Vars(t) (lemma). Also x cannot occur twice in S (eliminate), so S is in solved form.

Unification Algorithm Improvements

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\}$ $\exists S \implies \{x=t\} \cup S | x \leftarrow t, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- ▶ Clash { $f(t_1, ..., t_n) = g(s_1, ..., s_m)$ } ⊎ S ⇒ ⊥ if $f \neq g$
- ▶ Occurs-Check {x=t} $\forall S \implies \bot \text{ if } x \in Vars(t) \land x \neq t$
- This is justified by the lemmas used for completeness

▶ f(...) = g(...) has no solution if $f \neq g$

▶ x=t, where $x \neq t$ and $x \in Vars(t)$ has no solution ($|x\sigma| < |t\sigma|$ for all σ)

Early termination when I no solution, saving (how much?) time

Complexity of Unification

Algorithm: Nondeterministic transition system based on the following rules

- $\blacktriangleright \text{ Delete } \{t{=}t\} \Downarrow S \implies S$
- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., s_n=t_n} \cup S$
- ▷ Orient $\{t=x\}$ $\exists S$ $\Rightarrow \{x=t\}$ U S, if *t* is not a variable
- ▶ Eliminate $\{x=t\}$ $\exists S \implies \{x=t\}$ U $S|x \leftarrow t$, if $x \in Vars(S)$ Vars(t)
- ▷ Clash { $f(t_1, ..., t_n) = g(s_1, ..., s_m)$ } ⊎ S ⇒ ⊥ if $f \neq g$
- ▷ Occurs-Check {x=t} $\forall S \implies \bot \text{ if } x \in Vars(t) \land x \neq t$
- ▶ Exponential blow up: {($x_1 = f(x_0, x_0)$), $x_2 = f(x_1, x_1)$, $x_3 = f(x_2, x_2)$, ..., $x_n = f(x_{n-1}, x_{n-1})$ }
- Notice that the output is exponential
- Can we do better?
 - Yes, by using a dag to represent terms and returning a dag
 - General idea: operate on a concise representation of problem
 - BDDs are concise representations of truth tables, decision trees, etc
 - Model checking searches an implicitly given graph (transition system)

History of Unification

What we have studied is syntactic, first-order unification

- syntactic: substitutions should make terms syntactically equal
- equational unification: unification modulo an equational theory

▶ eg for commutative f, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable

- first-order: no higher-order variables (no variables ranging over functions)
- Herbrand gave a nondeterministic algorithm in his 1930 thesis
- Robinson (1965) introduced FO theorem proving using resolution, unification
 - Required exponential time & space
- Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space efficient, but required exponential time
- Venturini-Zilli (1975): reduction to quadratic time using marking scheme
- Huet (1976) worked on higher-order unification led to nα(n) time: almost linear Robinson also discovered this algorithm
- Paterson and Wegman (1976) linear time algorithm
- Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Unification Applications

- First-order theorem proving
 - Matching (ACL2) is a special case: given s,t find σ s.t. $s\sigma=t$
- Prolog (logic programming)
- Higher-order theorem proving
 - Undecidable for third-order logic (Huet 1973)
 - Undecidable for second-order logic (Goldfarb 1981)
- Natural language processing
- Unification-based grammars
- Equational theories
 - Commutative, Associative, Distributative, etc
 - Term rewrite systems
- Type inference (eg ML, Haskell, etc)
- Logic programming
- Machine learning: generalization is a dual of unification

Slides by Pete Manolios for CS4820

Schedule

- ▶ 11/8: FOL/SMT
- 11/11: Temporal Logic/ Safety & Liveness/ Buchi (Veteran's Day)
- 11/15: Refinement
- 11/18: Paper Presentations
- 11/22: Paper Presentations
- 11/29: Term Rewriting
- 12/2: Projects, Exam 2 (Take home)
- 12/6: Projects

Projects & Presentations

▶ 3 Minute Pitch, discussion

Slides by Pete Manolios for CS4820