Lecture 15

Pete Manolios Northeastern

Unification Basics

- Unification Problem: Given a set of pairs of terms $S=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right)\right\}$ a unifier of S is a substitution σ such that $s_{i}\left|\sigma=t_{i}\right| \sigma$ (we'll write $s_{i} \sigma=t_{i} \sigma$)
- $\boldsymbol{U}(\mathbf{S})$ is the set of all unifiers of S; notice that if σ is a unifier, so is $\tau \circ \sigma$
- σ is more general than $\tau, \sigma \leq \mathbf{\tau}$, iff $\tau=\delta \sigma(\delta \circ \sigma)$ for some substitution δ
- \leq is a preorder; let δ be the identify for reflexivity
- transitivity: if $\sigma \leq \tau, \tau \leq \theta$ then $\tau=\delta \sigma, \theta=\gamma \tau=\gamma(\delta \sigma)=(\gamma \delta) \sigma$
${ }^{\bullet} \sigma \sim \tau$ iff $\sigma \leq \tau, \tau \leq \sigma$. Notice that if $\sigma=x \leftarrow y, \tau=y \leftarrow x$, then $\sigma \sim \tau$
- $\sigma \sim \tau$ iff there is a renaming (bijection on Vars) θ s.t. $\sigma=\theta \tau$
- A most general unifier (mgu) is $\sigma \in U(S)$ s.t. for all $\tau \in U(S), \sigma \leq \tau$

What is an mgu for $\mathrm{x}=\mathrm{y}$? $\mathrm{x} \leftarrow \mathrm{y}$? $\mathrm{y} \leftarrow \mathrm{x}$? $\mathrm{x} \leftarrow \mathrm{z}, \mathrm{y} \leftarrow \mathrm{z}$? $\mathrm{x} \leftarrow \mathrm{y}, \mathrm{z} \leftarrow \mathrm{w}, \mathrm{w} \leftarrow \mathrm{z}$?

- A substitution is idempotent if $\sigma \sigma=\sigma$ (rules out last case above)
$\checkmark \sigma$ is idempotent iff Domain(σ) is disjoint from Vars(Range(σ))
- If a unification problem has a solution, then it has an idempotent mgu
- We want an algorithm that finds an mgu, if a unifier exists

Unification Algorithm

- $S=\left\{\left(x_{1}, t_{1}\right), \ldots,\left(x_{n}, t_{n}\right)\right\}$ is in solved form if the x_{i} are distinct variables and don't occur in any of the t_{i}. Then $S \downarrow=\left\{x_{1} \leftarrow t_{1}, \ldots, x_{n} \leftarrow t_{n}\right\}$
- If S is in solved form and $\sigma \in U(S)$, then $\sigma=\sigma S \downarrow$ ($\sigma, \sigma S \downarrow$ agree on all vars)
- If S is in solved form, then $S \downarrow$ is an idempotent mgu
- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \uplus S \quad \Longrightarrow S$ useful way of thinking about algorithms: SMT/IMT
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \uplus S \Longrightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=s_{n}\right\} \cup S$
- Orient $\{t=x\} \uplus S \quad \Longrightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \uplus S \Longrightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Unify(S) = apply rules nondeterministically; if solved return $S \downarrow$, else fail
- Try it with: $\{x=f(a), g(x, x)=g(x, y)\}$

Unification Algorithm

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=s_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \cup S \Rightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$

$$
\begin{array}{lll}
x=f(a), g(x, x)=g(x, y) & \Rightarrow \text { decompose } & \text { what other rules can I use? } \\
x=f(a), x=x, x=y & \Rightarrow \text { delete } & \text { can't use eliminate on } x=x ; \text { why? } \\
x=f(a), x=y & \Rightarrow \text { eliminate } x & \text { can't use orient on } x=y ; \text { why? } \\
y=f(a), x=y & \Rightarrow \text { eliminate } y & \text { can eliminate using } x=f(a) \\
y=f(a), x=f(a) & \Rightarrow \text { return } S \downarrow &
\end{array}
$$

- Try it with: $\{(x, f(y)),(y, g(x))\}$
- Try it with: $\{(P(f(w), f(y)), P(x, f(g(u))),(P(x, u), P(v, g(v))\}$
- Try it with: $\{(f(a, b, g(x, x), g(y, y), z), f(g(v, v), g(a, a), y, z, b))\}$

Unification Algorithm Termination

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \uplus S \quad \Longrightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \uplus S \Longrightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=s_{n}\right\} \cup S$
- Orient $\{t=x\} \uplus S \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \uplus S \Longrightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
$0,1,2, \ldots, \omega$ the first infinite ordinal (why stop with the naturals?)
- Keep going: $\omega+1, \omega+2, \ldots, \omega+\omega=\omega 2, \omega 2+1, \ldots, \omega 3, \ldots, \omega \omega=\omega^{2}$, $\ldots, \omega^{3}, \ldots, \omega^{\omega}, \ldots, \omega^{\omega^{\omega \cdots}}=\epsilon_{0}$ ACL2s measures can use ordinals
- Lexicographic ordering on tuples of natural numbers is $\approx \omega^{\omega}$
- $\left\langle x_{0}, \ldots, x_{n-1}, x_{n}\right\rangle \longmapsto \omega^{n} x_{0}+\cdots+\omega x_{n-1}+x_{n}$
- There is an order-preserving bijection from n+1-tuples of Nats to ω^{n}
- There is a theorem of this in the ACL2 ordinals books; you can define a relation, prove it is well-founded and use it in termination proofs

Unification Algorithm Termination

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=s_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \cup S \Rightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
* x is solved in S iff $x=t \in S$ and x only appears once in S
- Measure:
- Delete
- Decompose
- Orient
- Eliminate
for every rule we have $(\leq \mid=)^{*}<$, so the lexicographic order is decreasing (and well-founded), i.e., any algorithm based on these rules terminates

Unification Algorithm Soundness

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=S_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \cup S \Rightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- If $V \Rightarrow T$ then $\mathrm{U}(V)=\mathrm{U}(T)$: Easy: delete, decompose, orient; for eliminate:
- let $\sigma \in \mathrm{U}(V), \theta=x \leftarrow t$. By lemma, $\sigma=\sigma \theta$ if $x \sigma=t \sigma$, since $x=t$ is in solved form - lemma: If X is in solved form then $\sigma=\sigma X \downarrow$ for all $\sigma \in \mathrm{U}(X)$
- Proof: $\sigma, \sigma X \downarrow$ agree on all vars by case analysis on $y \in$ Domain $(X \downarrow)$
- $\sigma \in \mathrm{U}(\{x=t\} \cup S)$ iff $x \sigma=t \sigma \wedge \sigma \in \mathrm{U}(S)$ iff $x \sigma=t \sigma \wedge \sigma \theta \in \mathrm{U}(S)$ iff $x \sigma=t \sigma \wedge \sigma \in \mathrm{U}(S \theta)$ iff $\sigma \in U(\{x=t\} \cup S \theta)$
- Soundness: If Unify returns σ, then σ is an idempotent mgu of S

Unification Algorithm Completeness

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=S_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \quad \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \uplus S \Rightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Completeness: If S is solvable, then Unify(S) does not fail
- Lemmas
- $f(\ldots)=g(\ldots)$ has no solution if $f \neq g$
- $x=t$, where $x \neq t$ and $x \in \operatorname{Vars}(t)$ has no solution ($|x \sigma|<|t \sigma|$ for all σ)
- Proof: If S is solvable and in normal form wrt \Rightarrow, then S is in solved form. S cannot contain pairs of form $f($ (..) $=f(\ldots)$ (decompose) or $f(\ldots)=g(\ldots)$ (lemma) or $x=x$ (delete) or $t=x$ where t is not a var (orient), so all equations are of form $x=t$ where $x \notin \operatorname{Vars}(t)$ (lemma). Also x cannot occur twice in S (eliminate), so S is in solved form.

Unification Algorithm Improvements

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \leftrightarrow S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=S_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \uplus S \Rightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Clash $\left\{f\left(t_{1}, \ldots, t_{n}\right)=g\left(s_{1}, \ldots, s_{m}\right)\right\} \uplus S \Rightarrow \perp$ if $f \neq g$
- Occurs-Check $\{x=t\} \cup S \Rightarrow \perp$ if $x \in \operatorname{Vars}(t) \wedge x \neq t$
- This is justified by the lemmas used for completeness
- $f(\ldots)=g(\ldots)$ has no solution if $f \neq g$
- $x=t$, where $x \neq t$ and $x \in \operatorname{Vars}(t)$ has no solution ($|x \sigma|<|t \sigma|$ for all σ)
- Early termination when \exists no solution, saving (how much?) time

Complexity of Unification

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, s_{n}=t_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \uplus S \Rightarrow\{x=t\} \cup S \mid x \leftarrow t$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Clash $\left\{f\left(t_{1}, \ldots, t_{n}\right)=g\left(s_{1}, \ldots, s_{m}\right)\right\} \cup S \Rightarrow \perp$ if $f \neq g$
- Occurs-Check $\{x=t\} \cup S \Rightarrow \perp$ if $x \in \operatorname{Vars}(t) \wedge x \neq t$
- Exponential blow up: $\left\{\left(x_{1}=f\left(x_{0}, x_{0}\right)\right), x_{2}=f\left(x_{1}, x_{1}\right), x_{3}=f\left(x_{2}, x_{2}\right), \ldots, x_{n}=f\left(x_{n-1}, x_{n-1}\right)\right\}$
- Notice that the output is exponential
- Can we do better?
- Yes, by using a dag to represent terms and returning a dag
- General idea: operate on a concise representation of problem
- BDDs are concise representations of truth tables, decision trees, etc
- Model checking searches an implicitly given graph (transition system)

History of Unification

- What we have studied is syntactic, first-order unification
- syntactic: substitutions should make terms syntactically equal
- equational unification: unification modulo an equational theory
- eg for commutative $f, f(x, f(x, x))=f(f(x, x), x)$ is E-unifiable not syntactically unifiable
- first-order: no higher-order variables (no variables ranging over functions)
- Herbrand gave a nondeterministic algorithm in his 1930 thesis
- Robinson (1965) introduced FO theorem proving using resolution, unification
- Required exponential time \& space
- Robinson (1971) \& Boyer-Moore (1972): structure sharing algorithms that were space efficient, but required exponential time
- Venturini-Zilli (1975): reduction to quadratic time using marking scheme
- Huet (1976) worked on higher-order unification led to na(n) time: almost linear Robinson also discovered this algorithm
- Paterson and Wegman (1976) linear time algorithm
- Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Unification Applications

- First-order theorem proving
- Matching (ACL2) is a special case: given s, t find σ s.t. $s \sigma=t$
- Prolog (logic programming)
- Higher-order theorem proving
- Undecidable for third-order logic (Huet 1973)
- Undecidable for second-order logic (Goldfarb 1981)
- Natural language processing
- Unification-based grammars
- Equational theories
- Commutative, Associative, Distributative, etc
- Term rewrite systems
- Type inference (eg ML, Haskell, etc)
- Logic programming
- Machine learning: generalization is a dual of unification

Schedule

- 11/8: FOL/SMT
- 11/11: Temporal Logic/Safety \& Liveness/Buchi (Veteran's Day)
- 11/15: Refinement
- 11/18: Paper Presentations
- 11/22: Paper Presentations
- 11/29: Term Rewriting
- 12/2: Projects, Exam 2 (Take home)
- 12/6: Projects

Projects \& Presentations

- 3 Minute Pitch, discussion

