Lecture 13

Pete Manolios Northeastern

Skolem Normal Form Example

For any FO ϕ, we can find a universal ψ in an expanded language such that ϕ is satisfiable iff ψ is satisfiable. Try it!

$$
\langle\exists x\langle\forall w\langle\exists y\langle\forall u, v\langle\exists z \phi(x, w, y, u, v, z)\rangle\rangle\rangle\rangle\rangle
$$

First, PNF, and push existentials left (2nd order logic)

$$
\begin{gathered}
\left\langle\exists x, F_{y}\left\langle\forall w, u, v\left\langle\exists z \phi\left(x, w, F_{y}(w), u, v, z\right)\right\rangle\right\rangle\right\rangle \\
\left\langle\exists x, F_{y}, F_{z}\left\langle\forall w, u, v \phi\left(x, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle\right\rangle
\end{gathered}
$$

The key idea is the following equivalence We need the axiom of choice

$$
\begin{aligned}
& \left\langle\exists \ldots\left\langle\forall x_{1}, \ldots x_{n}\left\langle\exists y \phi\left(\ldots, x_{1}, \ldots, x_{n}, y\right)\right\rangle\right\rangle\right\rangle \text { for ping } \\
\equiv & \left\langle\exists \ldots\left\langle\exists F_{y}\left\langle\forall x_{1}, \ldots, x_{n} \phi\left(\ldots, x_{1}, \ldots, x_{n}, F_{y}\left(x_{1}, \ldots, x_{n}\right)\right)\right\rangle\right\rangle\right\rangle
\end{aligned}
$$

This allows us to push existential quantifiers to the left
To get back to FO, note that

$$
\begin{aligned}
& \operatorname{Sat}\left\langle\exists \ldots\left\langle\forall x_{1}, \ldots x_{n}\left\langle\exists y \phi\left(\ldots, x_{1}, \ldots, x_{n}, y\right)\right\rangle\right\rangle\right\rangle \text { iff } \\
& \operatorname{Sat}\left\langle\forall x_{1}, \ldots, x_{n} \phi\left(\ldots, x_{1}, \ldots, x_{n}, F_{y}\left(x_{1}, \ldots, x_{n}\right)\right)\right\rangle
\end{aligned}
$$

So, to finish our example, we get, where c, F_{y}, F_{z} are new symbols,

$$
\left\langle\forall w, u, v \phi\left(c, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle
$$

FO Sat/Validity Reductions

Theorem: For any FO ϕ, we can find a universal ψ in an expanded language such that ϕ is satisfiable iff ψ is satisfiable. (Proof in previous slide)

Previous
example

$$
\begin{gathered}
\langle\exists x\langle\forall w\langle\exists y\langle\forall u, v\langle\exists z \phi(x, w, y, u, v, z)\rangle\rangle\rangle\rangle\rangle \\
\left\langle\forall w, u, v \phi\left(c, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle
\end{gathered}
$$

Notice that our approach does not give an equi-valid formula. Consider:

$$
\begin{aligned}
& \langle\forall x\langle\exists y P(x) \Rightarrow P(y)\rangle\rangle \\
& \left\langle\forall x P(x) \Rightarrow P\left(f_{y}(x)\right)\right\rangle
\end{aligned}
$$

Both formulas are satisfiable; the first is valid but the second is not Corollary: For any FO ϕ, we can find an existential ψ in an expanded language such that ϕ is valid iff ψ is valid
Pf: ϕ is valid iff $\neg \phi$ is unsat iff (universal) ϕ ' is unsat iff (existential) $\psi=\neg \phi^{\prime}$ ' is valid

$$
\begin{aligned}
\phi=\langle\forall x\langle\exists y P(x) \Rightarrow P(y)\rangle\rangle & \rightarrow \quad \neg \phi=\langle\exists x\langle\forall y P(x) \wedge \neg P(y)\rangle\rangle \\
\phi^{\prime}=\langle\forall y P(c) \wedge \neg P(y)\rangle & \rightarrow \quad \psi=\langle\exists y P(c) \Rightarrow P(y)\rangle
\end{aligned}
$$

So FO Sat reduced to FO universal Sat and FO Validity to FO universal Unsat

Connections with ACL2

For any FO ϕ, we can find a universal ψ in an expanded language such that ϕ is satisfiable iff ψ is satisfiable.

$$
\langle\forall u, v\langle\exists z \phi(u, v, z)\rangle\rangle \quad\langle\forall u, v\langle\exists z(\operatorname{App} u v)=(\operatorname{Rev} z)\rangle\rangle
$$

First, PNF, and push existentials left (2nd order logic)

$$
\left\langle\exists F_{z}\left\langle\forall u, v \phi\left(u, v, F_{z}(u, v)\right)\right\rangle\right\rangle \quad\left\langle\exists F_{z}\left\langle\forall u, v(A p p u v)=\left(\operatorname{Rev}\left(F_{z} u v\right)\right)\right\rangle\right\rangle
$$

Previously, we saw how to go back to FO while preserving SAT with

$$
\left\langle\forall u, v \phi\left(u, v, F_{z}(u, v)\right)\right\rangle
$$

$$
\left\langle\forall u, v(A p p u v)=\left(\operatorname{Rev}\left(F_{z} u v\right)\right\rangle\right.
$$

But what about preserving validity? This method doesn't work, as we've seen. Can we make it work in a FO setting?
$\langle\forall u, v\langle\exists z(A p p u v)=(\operatorname{Rev} z)\rangle\rangle$

This is how ACL2 handles quantifiers

 DEMO$\left\langle\forall u, v\left(E_{z} u v\right)\right\rangle$
As above, but not enough
$\left(E_{z} u v\right) \equiv(\operatorname{App} u v)=\left(\operatorname{Rev}\left(F_{z} u v\right)\right) \quad$ Constrain F_{z} :
$(\operatorname{App} u v)=(\operatorname{Rev} z) \Rightarrow\left(E_{z} u v\right)$
if $(\operatorname{App} u v)=(\operatorname{Rev} z)$ has solution then F_{z} is also a solution

Reduce FOL to Propositional SAT

- We reduced FOL SAT to SAT of the universal fragment
- We now go one step further
ground: quantifier/variable free
- Theorem: A universal FO formula (w/out $=$) is SAT iff all finite sets of ground instances are (propositionally) SAT (eg $P(x) \vee \neg P(x)$ is propositionally SAT)
- Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of ground instances is (propositionally) UNSAT
- FO validity checker: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let $G_{1}, G_{2} \ldots$, be a sequence of finite subsets of G s.t. $\forall g \subseteq G,|g|<\omega, \exists n$ s.t. $g \subseteq G_{n}$. If $\exists n$ s.t. Unsat G_{n}, then Unsat ψ and Valid ϕ
- The SAT checking is done via a propositional SAT solver!
- If ϕ is not valid, the checker may never terminate, i.e., we have a semidecision procedure and we'll see that's all we can hope for
- How should we generate G_{i} ? One idea is to generate all instances over terms with at most $0,1, \ldots$, functions. We'll explore that more later.

Example

$\langle\exists x\langle\forall y P(x) \Rightarrow P(y)\rangle\rangle$ is Valid?

Example

$\langle\exists x\langle\forall y P(x) \Rightarrow P(y)\rangle\rangle$ is Valid iff $\langle\forall x\langle\exists y P(x) \wedge \neg P(y)\rangle\rangle$ is UNSAT iff $\left\langle\forall x P(x) \wedge \neg P\left(f_{y}(x)\right)\right\rangle$ is UNSAT
with smart Skolemization iff $\langle\forall x P(x) \wedge \neg P(c)\rangle$ is UNSAT

- Herbrand universe of FO language L is the set of all ground terms of L, except that if L has no constants, we add c to make the universe non-empty.
- For our example we have $H=\left\{c, f_{y}(c), f_{y}\left(f_{y}(c)\right), \ldots\right\}$
- So $G=\left\{P(t) \wedge \neg P\left(f_{y}(t)\right) \mid t \in H\right\}$
- Notice that $\Delta=\left\{P(\mathrm{c}) \wedge \neg P\left(f_{y}(\mathrm{c})\right), P\left(f_{y}(\mathrm{c})\right) \wedge \neg P\left(f_{y}\left(f_{y}(\mathrm{c})\right)\right)\right\}$ is UNSAT
- the SAT solver will report UNSAT for: $P(\mathrm{c}) \wedge \neg P\left(f_{y}(\mathrm{c})\right) \wedge P\left(f_{y}(\mathrm{c})\right) \wedge \neg P\left(f_{y}\left(f_{y}(\mathrm{c})\right)\right)$
- So, for the first G_{i} that has both $\neg P\left(f_{y}(\mathrm{c})\right)$ and $P\left(f_{y}(\mathrm{c})\right)$ will lead to termination
- BTW, why do we restrict ourselves to FO w/out equality?
- Consider $P(\mathrm{c}) \wedge \neg P(\mathrm{~d}) \wedge \mathrm{c}=\mathrm{d}$
- $H=\{\mathrm{c}, \mathrm{d}\}$
- $G=\{P(\mathrm{c}) \wedge \neg P(\mathrm{~d}) \wedge \mathrm{c}=\mathrm{d}\}$, which is propositionally SAT, but FO UNSAT
- This is why smart Skolemization is useful

Propositional Compactness

- A set Γ of propositional formulas is SAT iff every finite subset is SAT
- This is a key theorem justifying the correctness of our FO validity checker
- Proof: Ping is easy. Let p_{1}, p_{2}, \ldots, be an enumeration of the atoms (assume the set of atoms is countable). Define Δ_{i} as follows
- $\Delta_{0}=\Gamma$
- $\Delta_{n+1}=\Delta_{n} \cup\left\{p_{n+1}\right\}$ if this is finitely SAT
- $\Delta_{n+1}=\Delta_{n} \cup\left\{\neg \mathrm{p}_{n+1}\right\}$ otherwise

Note: for all i, Δ_{i} is finitely SAT as is $\Delta=v_{i} \Delta_{i}$ (any finite subset is in some Δ_{i}) Here is an assignment for $\Gamma: v\left(p_{i}\right)=$ true iff $p_{i} \in \Delta$

Herbrand Interpretations

- Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground instances are (propositionally) SAT (eg $P(x) \vee \neg P(x)$ is propositionally SAT)
- Let ψ be a universal FO formula w/out equality
- Let H be the Herbrand universe (all ground terms in language of ψ, as before)
- If G (all ground instances of ψ) is propositionally UNSAT then ψ is UNSAT (universal formulas imply all their instances)
- If G is propositionally SAT, say with assignment v, then ψ is SAT
- Let \jmath be a canonical interpretation where the universe is H and
- constants are interpreted autonomously: a(c) = c
- functions are interpreted autonomously: $a\left(f t_{1} \ldots t_{n}\right)=f t_{1} \ldots t_{n}$
- relations are interpreted as follows: $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in \operatorname{a.} . R$ iff $v\left(R t_{1}, \ldots, t_{n}\right)=$ true
- variables are mapped to terms (how doesn't matter)
- Notice that $\mathcal{f} \vDash \psi$. We need to check that for all vars x_{1}, \ldots, x_{n} in ψ, and for all t_{1}, \ldots, t_{n} in $H, \mathcal{F} \frac{t_{1} \ldots t_{n}}{x_{1} \ldots x_{n}} \vDash \psi$ iff $\mathcal{F} \frac{\mathcal{F}\left(t_{1}\right) \ldots \mathcal{F}\left(t_{n}\right)}{x_{1} \ldots x_{n}} \vDash \psi$ iff $\mathscr{J} \vDash \psi \frac{t_{1} \ldots t_{n}}{x_{1} \ldots x_{n}}$ which holds by construction since G contains all ground instances

FOL Checking

- FO validity checker: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid(ϕ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let $G_{1}, G_{2} \ldots$, be a sequence of finite subsets of G s.t. $\forall g \subseteq G,|g|<\omega$, $\exists n$ s.t. $g \subseteq G_{n}$. $\exists n$ s.t. Unsat G_{n} iff Unsat ψ (and Valid Φ)
- Question 1: SAT checking
- Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT checking is easy, but there is a blowup due to DNF
- Davis Putnam (1960): Convert ψ to CNF, so adding new instances does not lead to blowup
- In general, any SAT solver can be used, eg, DPLL much better than DNF
- Question 2: How should we generate G_{i} ?
- Gilmore: Instances over terms with at most $0,1, \ldots$, functions
- Any such "naive" method leads to lots of useless work, eg, the book has code for minimizing instances and reductions can be drastic

Unification

- Better idea: intelligently instantiate formulas. Consider the clauses $\{P(x, f(y)) \vee Q(x, y), \neg P(g(u), v)\}$
- Instead of blindly instantiating, use $x=g(u), v=f(y)$ so that we can resolve $\{P(g(u), f(y)) \vee Q(g(u), y), \neg P(g(u), f(y))\}$
- Now, resolution gives us $\{Q(g(u), y)\}$
- Much better than waiting for our enumeration to allow some resolutions
- Unification: Given a set of pairs of terms $S=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right)\right\}$ a unifier of S is a substitution σ such that $s_{i}\left|\sigma=t_{i}\right| \sigma$
- We want an algorithm that finds a most general unifier if it exists
- σ is more general than $\tau, \sigma \leq \tau$, iff $\tau=\delta \circ \sigma$ for some substitution δ
- Notice that if σ is a unifier, so is $\delta \circ \sigma$
- Similar to solving a set of simultaneous equations, e.g., find unifiers for
- $\{(P(f(w), f(y)), P(x, f(g(u)))),(P(x, u), P(v, g(v)))\}$ and $\{(x, f(y)),(y, g(x))\}$

