Lecture 11

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 11

Logistics

- Post on Piazza re. exam
- Papers \& Project post coming
- Speak to me if you haven't done so already

First Order Logic

- Example: Group Theory
- (G1) For all $x, y, z:(x \cdot y) \cdot z=x \cdot(y \cdot z)$
- (G2) For all $x: x \cdot e=x$
- (G3) For all x there is a y such that: $x \cdot y=e$
- Theorem: For every x, there is a y such that $y \cdot x=e$
- Examples of groups: Nat, +, 0?; Int, +, 0?, Real, *, 1?
- Proof:

By (G3) there is: a y s.t. $x \cdot y=e$ and $a z$ s.t. $y \cdot z=e$
Now: $y \cdot x=y \cdot x \cdot e=y \cdot x \cdot y \cdot z=y \cdot e \cdot z=y \cdot z=e$

- Is this true for all groups? Why?
- How many groups are there?
- Are there true statements about groups with no proof?

First Order Logic

- First Order Logic forms the foundation of mathematics
- We study various objects, e.g., groups
- Properties of objects captured by "non-logical" axioms
- (G1-G3 in our example)
- Theory consists of all consequences of "non-logical" axioms
- Derivable via logical reasoning alone
- That's it; no appeals to intuition
- Separation into non-logical axioms logical reasoning is astonishing: all theories use exactly same reasoning
- But, what is a proof $(\Phi \vdash \phi)$?
- Question leads to computer science
- Proof should be so clear, even a machine can check it

First Order Logic: Syntax

- Every FOL (first order language) includes
- Variables $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$
- Boolean connectives: \vee, ᄀ
- Equality: =
- Parenthesis: (,)
- Quantifiers: ョ
- The symbol set of a FOL contains (possibly empty) sets of
- relation symbols, each with an arity >0
- function symbols, each with an arity >0
- constant symbols
- Example: groups 2-ary function symbol • and constant e
- Set theory: \in, a 2-ary relation symbol, ...

First Order Logic: Terms

- Terms denote objects of study, e.g., group elements
- The set of S-terms is the least set closed under:
- Every variable is a term
- Every constant is a term
- If t_{1}, \ldots, t_{n} are terms and f is an n-ary function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

First Order Logic: Formulas

- Formulas: statements about the objects of study
- An atomic formula of S is
- $t_{1}=t_{2}$ or
- $R\left(t_{1}, \ldots, t_{n}\right)$, where t_{i} is an S-term and R is an n-ary relation symbol in S
- The set of S-formulas is the least set closed under:
- Every atomic formula is a formula
- If ϕ, ψ are S-formulas and x is a variable, then $\neg \phi,(\phi \vee \psi)$, and $\exists \times \varnothing$ are S-formulas
- All Boolean connectives can be defined in terms of \neg and \vee
- We can define $\forall x \varnothing$ to be $\neg \exists x \neg \varnothing$

Definitions on Terms \& Formulas

- Define the notion of a free variable for an S-formula
- The definition of formula depends on that of term
- So, we're going to need an auxiliary definition:
$\operatorname{var}(x)=\{x\}$
$\operatorname{var}(c)=\{ \}$
$\operatorname{var}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\operatorname{var}\left(t_{1}\right) \cup \cdots \cup \operatorname{var}\left(t_{n}\right)$
- Is this a definition? (termination!)
$\operatorname{free}\left(t_{1}=t_{2}\right)=\operatorname{var}\left(t_{1}\right) \cup \operatorname{var}\left(t_{2}\right)$
$\operatorname{free}\left(R\left(t_{1}, \ldots, t_{n}\right)\right)=\operatorname{var}\left(t_{1}\right) \cup \cdots \cup \operatorname{var}\left(t_{n}\right)$
free $(\neg \phi)=$ free (ϕ)
free $((\phi \vee \psi))=$ free $(\phi) \cup$ free (ψ)
free $(\exists x \Phi)=$ free $(\phi) \backslash\{x\}$

Semantics of First Order Logic

- What does $\exists v_{0} R\left(v_{0}, v_{1}\right)$ mean?
- It depends on:
- What R means (what relation over what domain?)
- What v_{1} means (what element of the domain?)
- What if the is domain \mathbb{N}, R is $<$, and v_{1} is 1 ? If v_{1} is 0 ?
- An S-interpretation $\mathcal{J}=\langle A, a, \beta\rangle$ where ($\langle A, a\rangle$ is an S-structure)
- A is a non-empty set (domain or universe)
- a is a function with domain S
- $\beta: \operatorname{Var} \rightarrow A$ is an assignment
- If $c \in S$ is a constant, then a.c $c \in A$
- If $f \in S$ is an n-ary function symbol, then a.f: $A^{n} \rightarrow A$
- If $R \in S$ is an n-ary relation symbol, then $a . R \subseteq A^{n}$

Meaning via Interpretations

－The meaning of a term in an interpretation $\jmath=\langle\mathrm{A}, \mathrm{a}, \beta\rangle$
－If $v \in \operatorname{Var}$ ，then $\nexists . v=\beta . v$
－If $c \in S$ is a constant，then $\begin{aligned} & \text { ．c }=\text { a．c }\end{aligned}$
－If $f\left(t_{1}, \ldots, t_{n}\right)$ is a term，then $z\left(f\left(t_{1}, \ldots, t_{n}\right)\right)$ is $($ a．f $f)\left(子 . t_{1}, \ldots, \jmath^{\prime} t_{n}\right)$
－What it means for an interpretation to satisfy a formula：
－ $\boldsymbol{J} \vDash\left(t_{1}=t_{2}\right)$ iff J．$t_{1}=$ J．t_{2}
－$\quad \vDash R\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle\jmath . t_{1}, \ldots, \jmath . t_{n}\right\rangle \in a . R$
－$コ \vDash \neg \Phi$ iff not $\not \vDash \varnothing$
－コに $(\phi \vee \psi)$ iff $コ \vDash \varnothing$ or $コ \vDash \psi$
－$コ \vDash \exists x \varnothing$ iff for some $b \in A, \nexists(x \leftarrow b) \vDash \varnothing$

Models \& Consequence

- Let Φ be a set of formulas and Φ a formula

- $\Phi \vDash \Phi(\phi$ is a consequence of Φ) iff for every interpretation, \mathfrak{z}, which is a model of Φ, we have that $\jmath \vDash \phi$
- ϕ is valid iff $\varnothing \vDash \phi$, which we write as $\vDash \phi$
- A formula ϕ is satisfiable, written Sat ϕ, iff there is an interpretation which is a model of ϕ
- A set of formulas Φ is satisfiable (Sat Φ), iff there is an interpretation which is a model of all the formulas in Φ

SAT \& Validity

- Lemma: For all $\Phi, \Phi: \Phi \vDash \Phi$ iff not Sat $(\Phi \cup\{\neg \Phi\})$
- Proof $\Phi \vDash \phi$
iff for all $\mathfrak{\jmath}, \boldsymbol{\jmath} \vDash$ © implies $\mathfrak{\jmath} \vDash \varnothing$
iff there is no \jmath such that $\jmath \vDash \Phi$ but not $\not \vDash \varnothing$
iff there is no \jmath such that $\jmath \vDash \Phi \cup\{\neg Ф\}$
iff not Sat $\Phi \cup\{\neg \Phi\}$
- As a consequence, ϕ is valid iff $\neg \phi$ is not satisfiable

Examples

- Consider symbol sets $S_{a r}:=\{+, \cdot, 0,1\}$ and $S_{a r}{ }^{r}:=\{+, \cdot, 0,1,<\}$
- N denotes the $\left.S_{a r-s t r u c t u r e ~}^{\langle\omega,}{ }^{\omega}, \omega, 0^{\omega}, 1 \omega\right\rangle$, where $+^{\omega}, \omega, 0 \omega, 1 \omega$ correspond to $+, \cdot, 0,1$ on ω
- $N<$ denotes the $S_{a r}<$-structure $\left\langle\omega,+^{\omega}, \omega, 0^{\omega}, 1^{\omega},\langle\omega\rangle\right.$, where $<\omega$ corresponds to < on ω
- R denotes the $S_{a r}$-structure $\left\langle R,+R, R, O^{R}, 1 R\right\rangle$, where R is the set of real numbers
- $R^{<}$denotes the $S_{a r} r^{-s t r u c t u r e ~}\left\langle R,+^{R}, \cdot R, 0^{R}, 1^{R},\langle R\rangle\right.$, where $+{ }^{R}, R^{R}, 0^{R}, 1^{R}$, $<^{R}$ correspond to $+, \cdot, 0,1,<$ on R
- $+{ }^{R}$ and $+^{\omega}$ are very different objects, but we will drop the subscripts when (we think) no ambiguity will arise

HW3 Review

