Lecture 5

Pete Manolios Northeastern

Questions?

- Piazza
- Update you email
- Check regularly
- Hwk, announcements
- HWK 2 went up yesterday
- Due in a week (9/23)
- Get partners now!
- Update ACL2s

Equality

- Equality (equal, or =) is an equivalence relation
- Reflexivity:

$$
x=x
$$

- Symmetry of Equality: $x=y \Rightarrow y=x$
- Transitivity of Equality: $x=y \wedge y=z \Rightarrow x=z$
- Equality Axiom Schema for Functions: For every function symbol f of arity n we have the axiom
- $x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \Rightarrow\left(f x_{1} \ldots x_{n}\right)=\left(f y_{1} \ldots y_{n}\right)$
- In ACL2s, we would write (len (cons x z)) $=($ len (cons $y z)$) as

$$
\begin{aligned}
(\text { equal } /==/= & (\text { len }(\text { cons } x \mathrm{z})) ; \text { equal } \&==\text { are equal } \\
& (\text { len }(\text { cons } y \text { z))) } ;=\text { 's contract requires numbers }
\end{aligned}
$$

- = and \neq bind more tightly than any of the propositional operators

Built-in Functions

- Axioms for built-in functions, such as cons, car, and cdr
- Axioms are theorems we get for "free" characterizing cons, car, cdr, consp, if, equal, etc.
- $(\operatorname{car}(\operatorname{cons} x y))=x$
- $(\operatorname{cdr}(\operatorname{cons} x y))=y$
- $($ consp $($ cons $x y))=t$
- $x=n i l \Rightarrow(i f x y z)=z$
- $x \neq \operatorname{nil} \Rightarrow(i f x y z)=y$
- Reason about constant expressions using evaluation
- $t \neq n i l$, (cons 1 ()) $=(l i s t 1), 3 / 9=1 / 3,()=$ 'nil, ...
- Note: from the the semantics of the built-in functions

Built-in Functions

- Propositional Logic
- (not $p)=(i f p n i l t)$
- (implies p q) $=($ if $p(i f q u n i l) t)$
- (iff p) $=($ if $p(i f q u n i l)(i f q n i l t)$
- By embedding propositional calculus and $=$ in term language, terms (τ) can be interpreted as formulas ($\tau \neq \mathrm{nil}$)
- e.g., x as a formula is $x \neq n i l$
- (foo x y z) as a formula is (foo x y z) $\neq n i l$
- Similarly, we add axioms for numbers, strings, etc.
- This is all in GZ, the "ground-zero theory"

Built-in Functions

- Similarly, we add axioms for numbers, strings, etc.
- This is all in GZ, the "ground-zero theory"
- Inference rules include
- propositional calculus
- equality
- instantiation
- Well-foundedness of ϵ_{0}
- GZ also is inductively complete: for every Φ, GZ contains the first order induction axioms

$$
{ }^{\nabla}\left\langle\forall \mathrm{y}<\epsilon_{0}::\langle\forall \mathrm{x}<\mathrm{y}:: \Phi(\mathrm{x})\rangle \rightarrow \Phi(\mathrm{y})\right\rangle \rightarrow\left\langle\forall \mathrm{y}<\epsilon_{0}:: \Phi(\mathrm{y})\right\rangle
$$

- When GZ is extended (definitions), the resulting theory is the inductive completion of the extension
- Extension principles: defchoose, encapsulation, defaxiom

Instantiation

- A substitution σ is a list of the form ((var term $\left._{1}\right)$... (var $_{n}$ term $\left.{ }_{n}\right)$)
- the vars are the "targets" (no repetitions) and the terms are their "images"
- by $\mathrm{f} \mid \sigma$ we mean, substitute every free occurrence of a target by its image
- $($ cons $x(l e t((y z)) y)) I((x a)(y b)(z c)(w d))=$ (cons a (let $\left(\left(\begin{array}{l}\text { c })\end{array}\right) \mathrm{y}\right)$)
- Instantiation: If f is a theorem, so is $f \mid \sigma$
- $($ len $($ list $x))=1$ is theorem, so is (len (list (list $x y))$) 1
- Are the following substitutions correct? (Review RAP)
- (cons 'a b)|((a (cons a (list c))) (b (cons c nil)))
- (cons 'a (cons c nil))
- (cons $x(f x y f)) \mid((x(c o n s a b))(f x)(y(a p p y x)))$
- (cons (cons a b) (f (cons a b) (app y x) x))

Inference Rules

- Evaluation
- Propositional calculus validities
- Includes exportation, Modus Ponens, Proof by contradiction, ...
- Equality axioms
- equality is an equivalence relation, equality schema for functions
- Instantiation
- Start with built-in axioms
- New axioms are added via definitional principle
- Also defaxiom, defchoose, encapsulation, etc can add axioms

How to Prove Theorems

- Once you are done with contract checking, completion \& generalization
- Extract the context by rewriting the conjecture into the form:
$[\mathrm{C} 1 \wedge \mathrm{C} 2 \wedge \ldots \wedge \mathrm{Cn}] \Rightarrow$ RHS where there are as many hyps as possible
- Derived context. What obvious things follow? Common patterns:
- (endp x), (tlp x): x=nil
- (t lp x), (consp x): (t lp (rest x))
- $\phi_{1} \wedge \ldots \wedge \Phi_{\mathrm{n}} \Rightarrow \psi$: Derive $\phi_{1}, \ldots, \Phi_{\mathrm{n}}$ and use MP to ψ
- Proof. Use the proof format from RAP.
- For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS \& reduce, then start w/ RHS \& reduce to the same thing
- For transitive relation ($\Rightarrow,<, \leq, \ldots$) same proof format works
- For anything else reduce to t

Equational Reasoning

```
(=> (and (tlp x)
        (tlp y))
    (=> (and (consp x)
        (not (equal a (first x)))
        (=> (tlp (rest x))
        (=> (in a (rest x))
                                (in a (app (rest x) y)))))
        (=> (in a x)
        (in a (app x y)))))
```

- First step: Exportation, PL simplification
- The goals are
- have as many hypotheses as possible
- flatten \& simplify the propositional structure of the conjecture

ER Example

Exportation: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

ER Example

Exportation: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

ER Example

```
(=> (and (tlp x)
        (tlp y)
        (consp x)
        (not (equal a (first x)))
        (=> (tlp (rest x))
        (=> (in a (rest x))
        (in a (app (rest x) y)))))
    (=> (in a x)
    (in a (app x y)))))
```


ER Example

Exportation again: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

ER Example

```
(=> (and (tlp x)
    (tlp y)
    (consp x)
    (not (equal a (first x)))
    (=> (tlp (rest x))
        (=> (in a (rest x))
            (in a (app (rest x) y))))
    (in a x))
    (in a (app x y)))))
```


ER Example

```
(=> (and (tlp x)
    (tlp y)
    (consp x)
    (not (equal a (first x)))
    C>}\mp@subsup{\underbrace}{(=>\frac{(tlp (\mathrm{ rest x))}}{(\mathrm{ (in a (rest x))] B (app (rest x) y))))}}\textrm{C}}{(\mathrm{ in }
    (in a x))
    (in a (app x y)))))
```

Exportation again: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

ER Example

```
(=> (and (tlp x)
    (tlp y)
    (consp x)
    (not (equal a (first x)))
    (=> (and (tlp (rest x))) A
            (in (a(\operatorname{app (rest x) y)))}\mathrm{ (rest x)) B}}
    (in a x))
```

 (in a (app x y)))))
 Exportation again: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

ER Example

```
(=> (and (tlp x)
    (tlp y)
    (consp x)
    (not (equal a (first x)))
    (=> (and (tlp (rest x))
            (in a (rest x)))
        (in a (app (rest x) y)))
    (in a x))
    (in a (app x y)))))
```

Notice that we cannot use exportation in the $5^{\text {th }}$ hypothesis

Equational Reasoning

```
(=> (and (tlp x)
    (tlp y)
    (consp x)
    (not (equal a (first x)))
    (=> (and (tlp (rest x))
            (in a (rest x)))
            (in a (app (rest x) y)))
    (in a x))
    (in a (app x y)))))
```

- Second Step: contract completion
- do we need any hypotheses?
- You can do this first, but it is easier to check after Exportation

Equational Reasoning

```
(=> (and (tlp x)
    (tlp y)
        (consp x)
        (not (equal a (first x)))
        (=> (and (tlp (rest x))
            (in a (rest x)))
            (in a (app (rest x) y)))
        (in a x))
    (in a (app x y)))))
```

- Third Step: Generate context
- List all hypotheses, derived context
- Can then focus on remaining goal

$$
\begin{array}{r}
(=>\text { (and }(t \operatorname{lp} x) \\
(t \ln y)
\end{array}
$$

C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. $a \neq$ (first x)
C5. (tlp (rest x)) ^ (in a (rest x)) $\Rightarrow($ in a (app (rest x) y))
C6. (in $a x$)
(consp x)
(not (equal a (first x)))
(=> (and (tlp (rest x))
(in a (rest x)))
(in a (app (rest x) y)))
(in $a(\operatorname{app} x y))))$)
D1. (tlp (rest x)) \{ C1, Def tlp, C3 \}
D2. (in a (rest x)) \{ C6, Def in, C3, C4, PL \}
D3. (in a (app (rest x) y)) \{ C5, MP, D1, D2 \}
Goal: (in a (app x y))
(definec tlp (l :all) :bool (definec in (a :all X :tl) :bool (if (consp l) (and (consp X) (tlp (rest l)) (or (==a (first X)) (equal l ())))

Equational Reasoning

```
C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. a\not= (first x)
C5. (tlp (rest x)) ^ (in a (rest x))
    =>(in a (app (rest x) y))
C6. (in a x)
```

D1. (tlp (rest x)) \{ C1, Def tlp, C3 \}
D2. (in a (rest x)) \{ C6, Def in, C3, C4, PL \}
D3. (in a (app (rest x) y)) \{ C5, MP, D1, D2 \}
Goal: (in a (app x y))

- Fourth Step: Prove the goal
- Term manipulation is now limited to the goal!

ER Example
C1. ($\operatorname{tlp} \mathrm{x})$
C2. (tlp y)
C3. (consp x)
(definec app (x :tl y :tl) :tl
C4. $a \neq$ (first x)
C5. (tlp (rest x)) $\wedge($ in $a($ rest $x))$ $\Rightarrow($ in a (app (rest $x)$ y))
C6. (in $a x$) (if (endp x) y (cons (first x) (app (rest x) y))))

D1. (tlp (rest x)) \{C1, Def tlp, C3 \}
(definec tlp (l :all) :bool (if (consp l)
D2. (in a (rest x)) \{ C6, Def in, C3, C4, PL \} (tlp (rest l))
D3. (in a (app (rest x) y)) \{ C5, MP, D1, D2 \}
Goal: (in a (app x y))
(definec in (a :all X :tl) :bool (and (consp X)

```
    (in a (app x y))
= {Def app, C3 }
        (in a (cons (first x) (app (rest x) y)))
= {Def in, car-cdr-cons axioms }
        (or (equal a (first x)) (in a (app (rest x) y)))
= {D3, PL }
    t
```

 (or (== a (first X))
 (in a (rest X)))))

Equational Reasoning is Easy Peasy Lemon Squeezy

Fermat's last theorem:

For all positive integers x, y, z and n, where $n>2, x^{n}+y^{z} \neq z^{n}$

I have a truly marvelous proof of this proposition which this margin is too narrow to contain.

Fermat, 1637

It took 357 years for a correct proof to be found (by Andrew Wiles in 1995).

Fermat's Last Theorem

For all positive integers x, y, z and n, where $n>2, x^{n}+y^{z} \neq z^{n}$
We can use Fermat's last theorem to construct a conjecture that is hard to prove.

```
(definec fermat (x :pos y :pos z :pos n :pos) :bool
    :ic (> n 2)
    (!= (+ (expt x n) (expt y n)) (expt z n)))
(property (x :pos y :pos z :pos n :pos)
    (=> (> n 2)
```

 (fermat \(x\) y z n))) We can play this trick with
 OR we can define a function that is hard to admit:
(defdata true t)
(definec fermat (x :pos y :pos z :pos n :pos) :true
:ic (> n 2)
$(!=(+(\operatorname{expt} x n)(\operatorname{expt} y n))(\operatorname{expt} z n)))$

We can play this trick with any conjecture.

Even restricted to integers, $=,+$, ${ }^{*}$, the validity problem is undecidable, so equational reasoning can be hard.

Questions?

