
Lecture 4

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 4

Slides by Pete Manolios for CS4820

Invariants
What is an invariant?

A property that is always satisfied in all
executions of a program is an invariant

Properties are associated with program
locations

For example let I = (tlp l)

Then I is an invariant because at that
location in the program it always holds

Why?

The input contract of mlen requires it

(definec mlen (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (mlen (rest l)))))

(definec mlen (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (mlen (rest {I}l)))))

Slides by Pete Manolios for CS4820

Contracts

(definec mlen (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (mlen (rest l)))))

A simple, useful class of invariants that
you should always check are contracts

Every function has an input contract

For every function call, we must be able to

statically establish that the input
contract of the function is satisfied

In ACL2s we can specify contracts

ACL2s checks them for us

All elite programmers I know
think in terms of invariants

Slides by Pete Manolios for CS4820

Contracts
(definec mlen (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (mlen (rest l)))))

Body contracts

1. endp: (listp l)
2. rest: (listp l)
3. mlen: (tlp l)
4. +: (acl2-numberp 1)

 (acl2-numberp (mlen (rest l)))
5. if: t

Function contract

(tlp l) => (natp (mlen l))

Contract contracts

6. tlp: t (tlp is a recognizer)

7. mlen: (tlp l) (input contract!)

8. natp: t (natp is a recognizer)

(defunc mlen (l)
 :input-contract {6}(tlp l)
 :output-contract {8}(natp {7}(mlen l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(mlen {2}(rest l)))))

Every time you write a program, (not just for for this class), check body and function contracts!

You can think of invariants as assertions

{i} means that every time program execution reaches this point then {i} is true

Slides by Pete Manolios for CS4820

Static Checking
Body contracts

1. endp: (listp l)
2. rest: (listp l)
3. mlen: (tlp l)
4. +: (acl2-numberp 1)
 (acl2-numberp (mlen (rest l)))
5. if: t

Function contract, contract contracts …

Static checking of contracts

Before the definition is accepted we prove all the contracts

During execution, only top-level input contracts are checked

We have assurance that, at the language level, code will run without any runtime errors

Static checking of contracts is hard, which is why it is not supported in most PLs

(defunc mlen (l)
 :input-contract {6}(tlp l)
 :output-contract {8}(natp {7}(mlen l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(mlen {2}(rest l)))))

Slides by Pete Manolios for CS4820

Dynamic Checking
Body contracts

1. endp: (listp l)
2. rest: (listp l)
3. mlen: (tlp l)
4. +: (acl2-numberp 1)
 (acl2-numberp (mlen (rest l)))
5. if: t

Function contract, contract contracts …

Dynamic checking of contracts

We generate code to check the contracts at run-time

This code can incur a significant performance penalty

Contract violations are possible and will lead to an exception

Dynamic checking is supported via mechanisms such as assertions; typically used only in
development

(defunc mlen (l)
 :input-contract {6}(tlp l)
 :output-contract {8}(natp {7}(mlen l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(mlen {2}(rest l)))))

Slides by Pete Manolios for CS4820

Invariants & Properties
The best programmers are not marginally better than merely good ones.
They are an order-of-magnitude better, measured by whatever standard:
conceptual creativity, speed, ingenuity of design, or problem-solving ability.

Randall E. Stross

First learn computer science and all the theory. Next develop a
programming style. Then forget all that and just hack.

George Carrette

A great lathe operator commands several times the wage of an average
lathe operator, but a great writer of software code is worth 10,000 times the
price of an average software writer.

Bill Gates

Slides by Pete Manolios for CS4820

Definitional Principle
The definitions

(defunc f (x1 ... xn)
 :input-contract ic
 :output-contract oc
 body)
is admissible provided:

f is a new function symbol

the xi are distinct variable symbols

body is a term, possibly using f recursively as a function symbol, mentioning
no variables freely other than the xi

the function is terminating

ic ⇒ oc is a theorem (definec gets turned into defunc)

the body contracts hold under the assumption that ic holds

(definec f (x1 :t1 ... xn :tn) :tf
 :input-contract ic
 :output-contract oc
 body)

Slides by Pete Manolios for CS4820

Definitional Axioms
When we admit a function, we get the following axiom and theorem

ic ⇒ (f x1 ... xn) = body (Definitional axiom)

ic ⇒ oc (Contract theorem)

In proofs we will not explicitly mention input contracts when using a
function definition because contract completion (test?!)

Why termination? (f x) = 1 + (f x) leads to inconsistency

Why no free vars? (f x) = y leads to inconsistency

Slides by Pete Manolios for CS4820

Measure Functions
We use measure functions to prove termination.

m is a measure function for f if all of the following hold.

m is an admissible function defined over the parameters of f;

m has the same input contract as f;

m has an output contract stating that it always returns a natural
number; and

on every recursive call, m applied to the arguments to that recursive
call decreases, under the conditions that led to the recursive call.

Slides by Pete Manolios for CS4820

Measure Function Example
(definec drop-last (x :tl) :tl
 (match x
 (() ())
 ((&) ())
 ((a . as) (cons a (drop-last as)))))

What is a measure function?

(len x)

Slides by Pete Manolios for CS4820

Measure Function Example
(definec prefixes (l :tl) :tl
 (match l
 (() '(()))
 (& (cons l (prefixes (drop-last l))))))

Is prefixes admissible?

Yes. Use (len l)

But, our main proof obligation is:

(=> (and (tlp l)
 (not (endp l)))
 (< (len (drop-last l)) (len l)))

This needs a proof by induction

Common pattern: f’s definition uses g

to prove termination of f, we often need “size” theorems about g

Slides by Pete Manolios for CS4820

ACL2s-size
A very useful, built-in function, since ACL2s uses this function to
build measure functions.

(definec acl2s-size (x :all) :nat
 (match x
 ((l . r) (+ 1 (acl2s-size l) (acl2s-size r)))
 (:rational (integer-abs (numerator x)))
 (:string (length x))
 (& 0)))

Slides by Pete Manolios for CS4820

Observation
We require a measure function to return a natural number

But sometimes need more than a natural number to prove termination

We need infinite numbers!

An example is the "weird" function below (Ackermann)

Try proving that is terminating and you’ll see what I mean

(definec weird (x :nat y :nat) :pos
 (cond ((= x 0) (+ 1 y))
 ((= y 0) (weird (- x 1) 1))
 (t (weird (- x 1) (weird x (- y 1))))))

Slides by Pete Manolios for CS4820

Observation
There are simple programs for which no one knows whether they
terminate

And no one has any good idea on how to prove that they do or don’t

Here is a simple, famous example

(definec c (n :nat) :nat
 (cond ((< n 2) n)
 ((evenp (/ n 2)) (c (/ n 2)))
 (t (c (+ 1 (* 3 n))))))

The claim that it terminates is called the “Collatz conjecture.”

Paul Erdos: “Mathematics may not be ready for such problems.”

Homework 2

Review

Questions?

