Lecture 26

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 26

Dealing with Equality

» Plan for a FO validity checker w/=: Given FO ¢, negate & Skolemize to get
universal P s.t. Valid(¢) iff Unsat(p). Convert | into equivalent CNF %' .

Generate * in expanded language without = s.t. Sat(p) iff Sat(p*). Use U-
Resolution on *.

» To go from to P*

P

P

B

ntroduce a new binary relation symbol, E
Replace ti=t2 with E(ts, to) everywhere in

-orce E to be an equivalence relation by adding clauses

*{EXX)L DEXY), VX)) {ZEXY), TEW.2), EXx.2)]
> {E(Xx,x)}, {H—uE}(x‘,y), —uE(‘x,_z),‘ E(y,lz)} Can replace symmetry, transitivity with this!

» Force E to be a congruence (RAP: Equality Axiom Schema for Functions)

> {=E(X1,y1),...,mEXn,Yn), E(f(X71,...,Xn), fy1,...,yn))} fOr every n-ary fin {
> {=E(X1,y1),...,mE(Xn,Yn), 7R(Xx1,...,Xn), R(y1,...,yn)} for every n-ary R in |

» Clauses for E are positive Horn (see later slides)!

Slides by Pete Manolios for CS4820

Yy Vv

Yy ¥V Vv V¥

Equality Decision Procedure

Consider a universal formula <vxi,...,xn $(x7,...,Xn)> Which does not
contain any predicates, but can contain =, vars, functions, constants

The formula is valid iff (3xy,....xn ~"®(x71,...,Xn)> is Unsat

Iff =d(cy,...,cn) is Unsat, via Skolemization

We can generate equivalent DNF: 1(cy,...,cn) v **+ v Yk(C1,...,Cn)
Which is Unsat iff Yi(cy,...,cn) is Unsat for all / (there are no vars)
Note: Yi(cC1,...,Cn) is of the form s1=t1 A ==+ A SIELA U1ZVI A *** A Um#EVm
Which is Unsat iff s1=t1 A =+ A Si=ti = U1=v1 Vv *** v Um=Vmis Valid

Iff for some j, s1=t1 A -+ A Si=t; = uj=Vv;is Valid

So, we can reduce validity of FO formulas with no predicates to
validity of equational logic with ground terms:

> O = s=t where s=t and all elements of ® are ground equations

> By Birkhoff’s theorem, equivalent to ® -~ ¢ where we only use
AXIOM, equivalence and congruence rules (see book)

Reduction to Propositional Logic

» Ackermann’s idea: reduce the problem to propositional logic

> Consider: f(f(f(c)))=c A f(f(c))=c = f(c) =c (Valid or not?)

» Remove functions: Introduce variables for subterms, say xx=f(c) for
O<k<3 and add constraints for congruence properties over subterms
¥ X3=X0 A X2=X0 A (Xo=X1 = X1=X2) A W = w) A (X1=X2 = X2=X3)
> Check if this implies x1=xo MR

» Remove =: replace equations, say s=t, with propositional atoms, say

Pst, and add constraints for equivalence properties (Ps,t A Pty = Ps,u)
> Now, we can use a propositional SAT solver
» Note: this problem is decidable

Ackermann Example

Consider: f(f(f(c)))=c A f(f(c))=c = flc)=c

Remove functions: Introduce variables for subterms, say

> xx=rfk(c) for O0<k<3, so: xo=c, x1=f(C), x2=f(f(c)), x3=f(f(f(C)))
Rewrite problem: x3=Xo A X2=Xo = X1=X0

Add hyps: constraints for congruence properties over subterms
> (Xo=X1 = X1=X2) A (Xo=X2 = X1=X3) A (X1=X2 = X2=X3)

> Note (xo=x3 = x1=X4), etc not needed since x4 is not a subterm
Remove =: replace equations with propositional atoms

> P3oA P20A (Po1= P12 A (Po2= P1,3) A (P1,2= P23) = P10
Add equivalence properties (as hyps) Finish the reduction

P
P
P

PooA P11APosA P33A Optimizations?
(Po,1=P1,0)A(Po,2=P2,0) A(Po,3=P3,0) A(P1,2=P2,1) A(P1,3=P3,1) A(P2,3=P3,2) A
P1,0AP0,2=P1.2)A(P1,0AP0,3=P1,3) A(P2,0AP0,3=P2,3) A(Po,1AP1,2=Po,2) A
(Po,1AP1,3=P0,3)A(P2,1AP1,3=P2 3) A(Po,2AP2,1=Po,1) A(Po,2AP2,3=Po,3) A
(P1,2AP2,3=P1,3)A(Po,3AP3,1=Po,1) A(Po,3AP3,2=P0.2) A(P1,3AP3,2=P1,2)

Congruence Closure

Decision procedure for ® = s=t where s=t and all elements of ® are
ground equations

Let G be a set of terms closed under subterms
> |f teG and s is a subterm of t, then seG
~ IS a congruence on G: an equivalence, congruence on terms in G

For RCcGx@G, the congruence closure of R on G is the smallest
congruence on G extending R

> Start with R and apply equivalence, congruence rules until fixpoint

Let ®={s1=t1, ..., sn=tn}, G is the minimal set closed under subterms of
{s1, t1, ..., Sn, tn, S, t}, ~ the congruence closure of ® on G. Then:

> @ &= s=t iff s~t
> Can do this in P-time

Yy ¥V Vv ©

Congruence Closure Algorithm

Decision procedure for @ = s=t where s=t and all elements of ® are
ground equations

Main idea: use a graph with structure sharing to represent terms
Start with ~ being the identity

Each node (term) is mapped to its equivalence class

For each assumption, si=t;,

> merge equivalence classes [s]], [t]

> propagate congruences efficiently (using predecessor pointers)
Check is [s] = [t] after processing all hypotheses

O(m?) algorithm due to Nelson, Oppen (m is the # edges in graph) in
book

O(m log(m)?3) algorithm due to Downey, Sethi & Tarjan

Congruence Closure Example

Consider: f(f(f(c))=c A f(f(c))=c = f(c)=c

(f > corresponds to f(c)
‘\ Graph representation
\ allows structure sharing
fif(c))=c..--" : corresponds to ¢
o f(f(f(c)))=c
:\ f(c)=c, : .
\\; V" :,‘ equivalence class of term
. .
[f(f (C))]:[C]’ SO [f (f (f (c)))]:[f (C)] 1S, So, when we extend the congruence, by

[c]=[f(c)] unioning [s] [t], we also have to union any
congruence propagation terms of the form f(...s...) and f(...t...) if the

rest of the arguments are in same class

Decidable Fragments of FOL

Propositional Satisfiability: DP, DPLL, etc.

LP, ILP, MILP: In NP, simplex, interior point methods, cutting planes, etc.
(vX1,....Xn ®(X1,...,Xn)), With =, vars, functions, constants, no predicates

> Uninterpreted functions: congruence closure

How do we combine decision procedures? SMT/IMT (more later)
Tools/language support

> ACL2s/Z3 interface: query a solver on supported decidable fragments
> /3, other solvers, provide interfaces for various languages

> A powerful, new programming paradigm: arbitrary interleaving of
computation, constraint solving

> Widely used, lots of potential applications

