
Lecture 26


Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 26



Slides by Pete Manolios for CS4820

Dealing with Equality
Plan for a FO validity checker w/=: Given FO φ, negate & Skolemize to get 
universal ψ s.t. Valid(φ) iff Unsat(ψ). Convert ψ into equivalent CNF 𝓚. 
Generate ψ* in expanded language without = s.t. Sat(ψ) iff Sat(ψ*). Use U-
Resolution on ψ*.

To go from ψ to ψ*


Introduce a new binary relation symbol, E 
Replace t1=t2 with E(t1, t2) everywhere in ψ

Force E to be an equivalence relation by adding clauses


{E(x,x)}, {¬E(x,y), E(y,x)}, {¬E(x,y), ¬E(y,z), E(x,z)}

{E(x,x)}, {¬E(x,y), ¬E(x,z), E(y,z)}


Force E to be a congruence (RAP: Equality Axiom Schema for Functions)

{¬E(x1,y1),…,¬E(xn,yn), E(f(x1,…,xn), f(y1,…,yn))} for every n-ary f in ψ

{¬E(x1,y1),…,¬E(xn,yn), ¬R(x1,…,xn), R(y1,…,yn)} for every n-ary R in ψ


Clauses for E are positive Horn (see later slides)!

Can replace symmetry, transitivity with this!



Equality Decision Procedure
Consider a universal formula ⟨∀x1,…,xn φ(x1,…,xn)⟩ which does not 
contain any predicates, but can contain =, vars, functions, constants 

The formula is valid iff ⟨∃x1,…,xn ¬φ(x1,…,xn)⟩ is Unsat

Iff ¬φ(c1,…,cn) is Unsat, via Skolemization

We can generate equivalent DNF: ψ1(c1,…,cn) ∨ ⋯ ∨ ψk(c1,…,cn) 

Which is Unsat iff ψi(c1,…,cn) is Unsat for all i (there are no vars)

Note: ψi(c1,…,cn) is of the form s1=t1 ∧ ⋯ ∧ sl=tl ∧ u1≠v1 ∧ ⋯ ∧ um≠vm 

Which is Unsat iff s1=t1 ∧ ⋯ ∧ sl=tl  ⇒ u1=v1 ∨ ⋯ ∨ um=vm is Valid

Iff for some j, s1=t1 ∧ ⋯ ∧ sl=tl  ⇒ uj=vj is Valid

So, we can reduce validity of FO formulas with no predicates to 
validity of equational logic with ground terms:


Φ ⊨ s=t where s=t and all elements of Φ are ground equations

By Birkhoff’s theorem, equivalent to Φ ⊢ φ where we only use 
AXIOM, equivalence and congruence rules (see book)



Reduction to Propositional Logic

Ackermann’s idea: reduce the problem to propositional logic

Consider: f(f(f(c)))=c ∧ f(f(c))=c  ⇒  f(c) = c (Valid or not?)

Remove functions: Introduce variables for subterms, say xk=fk(c) for 
0≤k≤3 and add constraints for congruence properties over subterms


x3=x0 ∧ x2=x0 ∧ (x0=x1 ⇒ x1=x2) ∧ (x0=x2 ⇒ x1=x3) ∧ (x1=x2 ⇒ x2=x3)

Check if this implies x1=x0 

Remove =: replace equations, say s=t, with propositional atoms, say 
Ps,t, and add constraints for equivalence properties (Ps,t ∧ Pt,u ⇒ Ps,u)

Now, we can use a propositional SAT solver

Note: this problem is decidable

MP



Ackermann Example
Consider: f(f(f(c)))=c ∧ f(f(c))=c  ⇒  f(c) = c 
Remove functions: Introduce variables for subterms, say


xk=fk(c) for 0≤k≤3, so: x0=c, x1=f(c), x2=f(f(c)), x3=f(f(f(c))) 
Rewrite problem: x3=x0 ∧ x2=x0  ⇒  x1=x0     
Add hyps: constraints for congruence properties over subterms


(x0=x1 ⇒ x1=x2) ∧ (x0=x2 ⇒ x1=x3) ∧ (x1=x2 ⇒ x2=x3)

Note (x0=x3 ⇒ x1=x4), etc not needed since x4 is not a subterm


Remove =: replace equations with propositional atoms

P3,0 ∧ P2,0 ∧ (P0,1 ⇒ P1,2) ∧ (P0,2 ⇒ P1,3) ∧ (P1,2 ⇒ P2,3) ⇒ P1,0  

Add equivalence properties (as hyps) Finish the reduction

P0,0 ∧ P1,1 ∧ P2,2 ∧ P3,3 ∧ 

(P0,1≡P1,0)∧(P0,2≡P2,0)∧(P0,3≡P3,0)∧(P1,2≡P2,1)∧(P1,3≡P3,1)∧(P2,3≡P3,2)∧ 

(P1,0∧P0,2⇒P1,2)∧(P1,0∧P0,3⇒P1,3)∧(P2,0∧P0,3⇒P2,3)∧(P0,1∧P1,2⇒P0,2)∧ 
(P0,1∧P1,3⇒P0,3)∧(P2,1∧P1,3⇒P2,3)∧(P0,2∧P2,1⇒P0,1)∧(P0,2∧P2,3⇒P0,3)∧ 
(P1,2∧P2,3⇒P1,3)∧(P0,3∧P3,1⇒P0,1)∧(P0,3∧P3,2⇒P0,2)∧(P1,3∧P3,2⇒P1,2)

Optimizations?



Congruence Closure

Decision procedure for Φ ⊨ s=t where s=t and all elements of Φ are 
ground equations

Let G be a set of terms closed under subterms


If t∈G and s is a subterm of t, then s∈G 
~ is a congruence on G: an equivalence, congruence on terms in G 
For R⊆G×G, the congruence closure of R on G is the smallest 
congruence on G extending R 

Start with R and apply equivalence, congruence rules until fixpoint

Let Φ={s1=t1, …, sn=tn}, G is the minimal set closed under subterms of 
{s1, t1, …, sn, tn, s, t}, ~ the congruence closure of Φ on G. Then:


Φ ⊨ s=t if s~t 
Can do this in P-time 



Congruence Closure Algorithm

Decision procedure for Φ ⊨ s=t where s=t and all elements of Φ are 
ground equations

Main idea: use a graph with structure sharing to represent terms

Start with ~ being the identity

Each node (term) is mapped to its equivalence class

For each assumption, si=ti, 


merge equivalence classes [si], [ti]

propagate congruences efficiently (using predecessor pointers)


Check is [s] = [t] after processing all hypotheses

O(m2) algorithm due to Nelson, Oppen (m is the # edges in graph) in 
book

O(m log(m)2) algorithm due to Downey, Sethi & Tarjan



Congruence Closure Example
Consider: f(f(f(c)))=c ∧ f(f(c))=c  ⇒  f(c) = c

f

f

f

c

f(f(f(c)))=c
f(f(c))=c

f(c)=c

equivalence class of term

Graph representation  
allows structure sharing

[f(f(c))]=[c], so [f(f(f(c)))]=[f(c)] ie, 
[c]=[f(c)] 


congruence propagation

f

c

corresponds to f(c)

corresponds to c

So, when we extend the congruence, by 
unioning [s] [t], we also have to union any 
terms of the form f(…s…) and f(…t…) if the 

rest of the arguments are in same class



Decidable Fragments of FOL

Propositional Satisfiability: DP, DPLL, etc.

LP, ILP, MILP: In NP, simplex, interior point methods, cutting planes, etc.

⟨∀x1,…,xn φ(x1,…,xn)⟩, with =, vars, functions, constants, no predicates 


Uninterpreted functions: congruence closure

How do we combine decision procedures? SMT/IMT (more later)

Tools/language support


ACL2s/Z3 interface: query a solver on supported decidable fragments

Z3, other solvers, provide interfaces for various languages

A powerful, new programming paradigm: arbitrary interleaving of 
computation, constraint solving

Widely used, lots of potential applications


