# Lecture 23 

Pete Manolios Northeastern

## Unification for FOL

- Let $C$ be a clause; if we negate all literals in $C$, we get $C$ -
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let $C, D$ be clauses (assume there are no common variables since we can rename vars). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{\prime}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be $>1$
$C=\{\neg R(x), R(f(x))\} D=\{\neg R(f(f(x))), P(x)\} \quad$ corresponds to
$\langle\forall x(\neg R(x) \vee R(f(x))) \wedge(\neg R(f(f(x))) \vee P(x))\rangle \quad$ equivalent to
$\langle\forall x \neg R(x) \vee R(f(x))\rangle \wedge\langle\forall x \neg R(f(f(x))) \vee P(x)\rangle \quad$ equivalent to
$\langle\forall x \neg R(x) \vee R(f(x))\rangle \wedge\langle\forall y \neg R(f(f(y))) \vee P(y)\rangle \quad$ corresponds to
$C=\{\neg R(x), R(f(x))\} D=\{\neg R(f(f(y)) \vee P(y)\}$
so I will rename variables in clauses as I see fit
Recall from the Prenex Normal Form algorithm (let $z, y$ be $x$ in the example) $\langle\forall x:: \phi\rangle \wedge\langle\forall y:: \psi\rangle \equiv\left\langle\forall z:: \phi \frac{z}{x} \wedge \psi \frac{z}{y}\right\rangle$ where $z$ is not free in LHS


## U-resolvent example

- Let $C$ be a clause; if we negate all literals in $C$, we get $C^{-}$
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let $C, D$ be clauses (assume there are no common variables since we can rename vars). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{\prime}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be $>1$

$$
\begin{aligned}
& C=\{\neg R(x), R(f(x))\} D=\{\neg R(f(f(x))), P(x)\} \\
& \{\neg R(x), \underbrace{R(f(x))\}} \frac{\{\neg R(f(f(y))),}{}, P(y)\} \\
& \{\neg R(f(y)), P(y)\}
\end{aligned}
$$

## U-resolvent example

- Let $C$ be a clause; if we negate all literals in $C$, we get $C^{-}$
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let $C, D$ be clauses (assume there are no common variables since we can rename vars). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{\prime}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be $>1$
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

One possible U-resolution step


Tautology, so useless

## U-resolvent example

- Let $C$ be a clause; if we negate all literals in $C$, we get $C^{-}$
- A unifier for a clause $C=\left\{l_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let $C, D$ be clauses (assume there are no common variables since we can rename vars). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be $>1$
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$


$$
\{\neg S(c, c), S(c, c)\}
$$

All are tautologies

$$
\{\neg S(c, x), S(c, x)\}
$$ (useless)

## U-resolvent example

- Let $C$ be a clause; if we negate all literals in $C$, we get $C^{-}$
- A unifier for a clause $C=\left\{l_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let $C, D$ be clauses (assume there are no common variables since we can rename vars). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be $>1$
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$



## U-resolvent example

- Let $C$ be a clause; if we negate all literals in $C$, we get $C^{-}$
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let $C, D$ be clauses (assume there are no common variables since we can rename vars). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{Q^{\prime}} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be $>1$
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

- This is the Barber of Seville problem: Prove that there is no barber who shaves all those, and those only, who do not shave themselves.
$\neg\langle\exists b\langle\forall x S(b, x) \equiv \neg S(x, x)\rangle\rangle$


## Unification for FOL

- Let $C$ be a clause; if we negate all literals in $C$, we get $C^{-}$
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let $C, D$ be clauses (assume there are no common variables since we can
 $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime-}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \backslash \underline{D}^{\prime}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be $>1$
- Lemma: Let C, $D$ be clauses. Then
- every resolvent of ground instances of $C, D$ is a ground instance of a $U$ resolvent of $C, D$
- every ground instance of a U-resolvent of $C, D$ is a resolvent of ground instances of $C, D$
- Let $\mathscr{K}$ be a set of ground clauses, $\operatorname{Res}(\mathscr{K})=\mathscr{K} \cup\{K \mid K$ is a resolvent of $C, D \in \mathscr{K}\}$
- Let $\mathscr{K}$ be a set of FO clauses, URes $(\mathscr{K})=\mathscr{K} \cup\{K \mid K$ is a U-resolvent of $C, D \in \mathscr{K}\}$
- Let $\mathrm{URes}_{0}(\mathscr{K})=\mathscr{K}, \mathrm{URes}_{n+1}(\mathscr{K})=\mathrm{URes}\left(\operatorname{URes}_{n}(\mathscr{K})\right), \mathrm{URes}_{\omega}(\mathscr{K})=\mathrm{U}_{n=\omega} \operatorname{URes}_{\mathrm{n}}(\mathscr{K})$


## Unification for FOL

- Let $C, D$ be clauses (assume there are no common variables since we can rename vars). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C^{\prime} \subseteq C, ~} \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C^{\prime}} \cup D \backslash \underline{D}^{\prime}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be $>1$
- $G(K)$ is the set of ground instances of $K, G(\mathscr{K})=U_{K \in \mathscr{K}} G(K)$
- Lemma: $\operatorname{Res}_{\mathrm{n}}(G(\mathscr{K}))=G\left(\operatorname{URes}_{n}(\mathscr{K})\right)$ and $\operatorname{Res}_{\omega}(G(\mathscr{K}))=G\left(\operatorname{URes}_{\omega}(\mathscr{K})\right)$
- Lemma: $\varnothing \in \operatorname{Res}_{\omega}\left(G(\mathscr{K})\right.$ ) iff $\varnothing \in \operatorname{URes}_{\omega}(\mathscr{K})$
- For $\Phi$ a set of $\forall$ formulas in CNF: $G(\mathscr{K}(\Phi))=\mathscr{K}(\mathrm{G}(\Phi))$, where $\mathscr{K}(\Phi)$ is setrepresentation of CNF
- Theorem: For $\Phi$ a set of $\forall$ formulas in CNF, $\Phi$ is Sat iff $\varnothing \notin \mathrm{URes}_{\omega}(\mathscr{K}(\Phi))$
- Proof: $\Phi$ is Sat iff $\mathrm{G}(\Phi)$ is (propositionally) Sat iff $\mathscr{K}(\mathrm{G}(\Phi))$ is Sat iff $\mathrm{G}(\mathscr{K}(\Phi))$ is Sat iff $\varnothing \notin \operatorname{Res}_{\omega} \mathrm{G}(\mathscr{K}(\Phi))$ iff $\varnothing \notin \mathrm{URes}{ }_{\omega} \mathscr{K}(\Phi)$


## FOL Checking with Unification

- FO validity checker: Given FO $\phi$, negate \& Skolemize to get universal $\psi$ s.t. Valid $(\phi)$ iff UNSAT $(\psi)$. Let $G$ be the set of ground instances of $\psi$ (possibly infinite, but countable). Let $G_{1}, G_{2} \ldots$, be a sequence of finite subsets of $G$ s.t. $\forall g \subseteq G,|g|<\omega$, $\exists n$ s.t. $g \subseteq G_{n}$. $\exists n$ s.t. Unsat $G_{n}$ iff Unsat $\psi$ (and Valid $\Phi$ )
- Unification: intelligently instantiate formulas
- FO validity checker w/ unification: Given FO $\phi$, negate \& Skolemize to get universal $\psi$ s.t. Valid $(\$)$ iff UNSAT $(\psi)$. Convert $\psi$ into equivalent CNF $\mathscr{K}$. Then, Unsat $\psi$ iff $\varnothing \in \mathrm{URes}_{\omega}(\mathscr{K})$ iff $\exists n$ s.t. $\varnothing \in \mathrm{URes}_{n}(\mathscr{K})$.
- We say that U-resolution is refutation-compete: If Unsat( $\mathscr{K})$ then there is a proof using U-resolution (i.e., you can derive $\varnothing$ ), so we have a semidecision procedure for validity.


## FOL Checking Examples

- FO validity checker w/ unification: Given FO $\phi$, negate \& Skolemize to get universal $\psi$ s.t. Valid $(\phi)$ iff UNSAT $(\psi)$. Convert $\psi$ into equivalent CNF $\mathscr{K}$.
Then, Unsat $(\psi)$ iff $\varnothing \in \operatorname{URes}_{\omega}(\mathscr{K})$ iff $\exists n$ s.t. $\varnothing \in \operatorname{URes}_{n}(\mathscr{K})$.

$$
\begin{aligned}
& \phi=\neg\langle\forall x, y(R(x, y) \vee Q(x)) \wedge \neg R(x, g(x)) \wedge \neg Q(y)\rangle \\
& \psi=\langle\forall x, y(R(x, y) \vee Q(x)) \wedge \neg R(x, g(x)) \wedge \neg Q(y)\rangle \\
& \mathscr{K}=\{\{R(x, y), Q(x)\},\{\neg R(x, g(x))\},\{\neg Q(y)\}\}
\end{aligned}
$$



Let $C, D$ be clauses ( $\mathrm{w} / \mathrm{no}$ common variables). $K$ is a U-resolvent of $C, D$ iff there are non-empty $\underline{C}^{\prime} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. $\sigma$ is a unifier for $\underline{C}^{\prime} u \underline{D}^{\prime}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \backslash \underline{D}^{\prime}\right) \sigma$.

Recall
So, Unsat $(\psi)$ and Valid( $(\$)$

