Lecture 12

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 12

Boolean Constraint Propagation

Unit resolution rule:

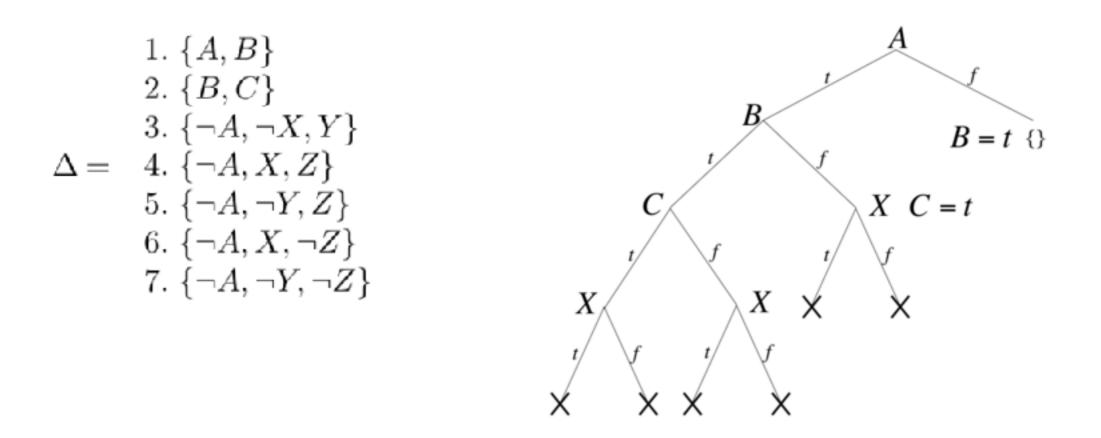
- ▶ BCP: given a set of clauses including {ℓ}
 - remove all other clauses containing { (subsumption)
 - ▶ remove all occurrences of ¬ℓ in clauses (unit resolution)
 - repeat until a fixpoint is reached

DPLL SAT Algorithm

▶ BCP

- Base case: empty clause: UNSAT
- Remove clauses containing pure literals (modern solvers don't do this)
- Base case: no clauses: SAT
- Choose some var, say x (if removing pure literals, x has to appear in both phases)
 - Add {x} and recursively call DPLL
 - Add {¬x} and recursively call DPLL
 - If one of the calls returns SAT, return SAT
 - Else return UNSAT
- Correctness follows from Shannon expansion
- In contrast to DP, space is not a problem

DPLL SAT Example



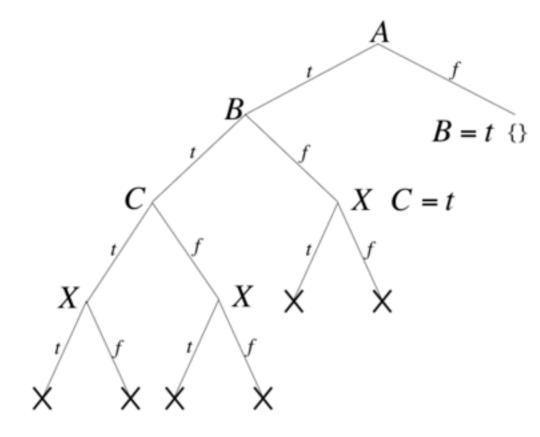
Note that when DPLL detects contradictions it backtracks chronologically

- ▶ When we get a contradiction with X, we try ¬X, then we go back and try ¬C and X, ¬X again, ...
- But the real problem was that we set A; can we avoid this exponential search?

Yes: non-chronological backtracking, a major improvement

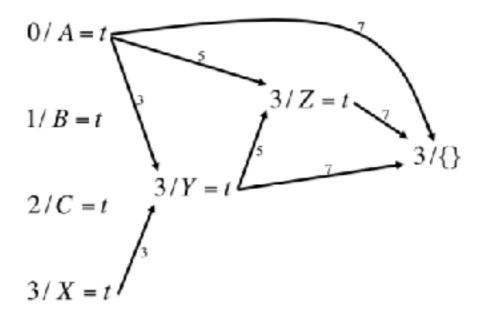
Examples/figures from chp. 3 SAT handbook: pure literals not removed

Implication Graphs

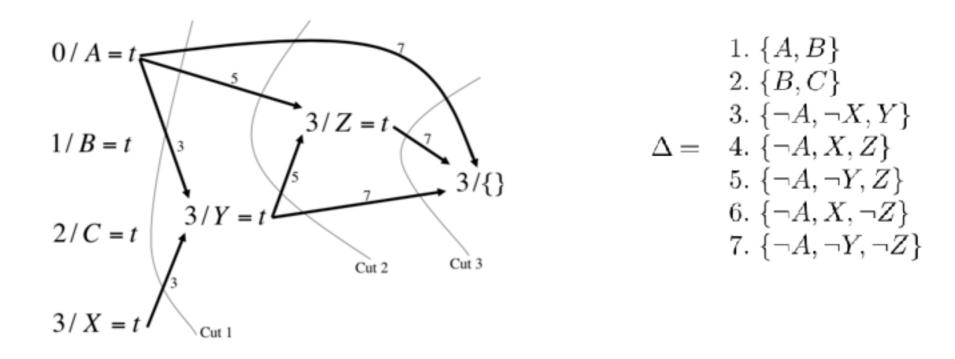


 $1. \{A, B\}$ $2. \{B, C\}$ $3. \{\neg A, \neg X, Y\}$ $4. \{\neg A, X, Z\}$ $5. \{\neg A, \neg Y, Z\}$ $6. \{\neg A, X, \neg Z\}$ $7. \{\neg A, \neg Y, \neg Z\}$

- If node implied, justification recorded (clause #, edges from assignments)
- {} denotes contradiction

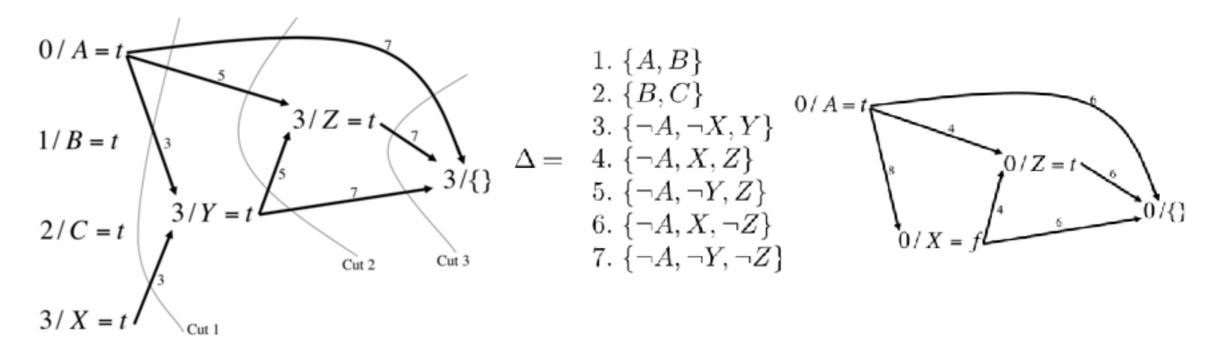


Conflict-Driven Clauses



- Consider any cut of the implication graph that separates decision vars from {}
- The nodes with an edge that crosses the cut are in conflict set
- Negate the assignments in the set to obtain a conflict-driven clause
- Conflict clauses: Cut1: {¬A,¬X}, Cut2: {¬A, ¬Y}, Cut3: {¬A, ¬Z, ¬Y}
- Conflict–driven clauses generated from cuts that contain exactly one variable assigned at the level of conflict are said to be asserting: Cut1 & Cut2 (not Cut 3)

Non-Chronological Backtracking



- Asserting conflict clauses: Cut1: 8. {¬A,¬X}, Cut2: {¬A, ¬Y}
- Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1
- Backtrack to assertion level and add a learned clause (non-chronological!)
- ▶ We can now immediately infer (BCP) ¬X (we use Cut1), so we have A, ¬X
- ▶ Then by BCP: Z (4), ¬Z (6) so we get a new implication graph
- Asserting clauses: {¬A} at level -1, so we have ¬A, BCP: B and we're done
- Compare to previous search, where the algorithm had to go back a level at a time
- Clause learning can generate exponentially shorter proofs of unsat!

Modern CDCL Solvers

- Based on DPLL, but with conflict-driven clause learning
- Data structures to speed up BCP: 2-watched literal scheme
- Data structures for clause learning
- Decision heuristics: select recently active literals (VSIDS)
- Preprocessing: greedy variable elimination
- Inprocessing: interleave preprocessing & search
- Clause deletion: learned clauses lead to memory & efficiency problems, so delete large, inactive clauses
- Random restarts: keep learned clauses, but restart
 - avoids getting stuck in hard part of search space
 - phase saving: pick last phase of assignment

DIMACS Format

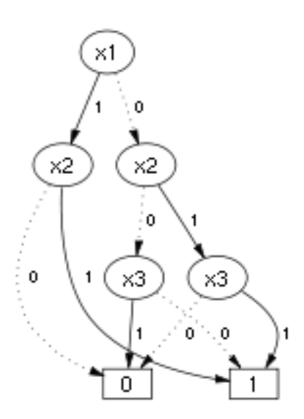
- Modern SAT solvers accept input in CNF
 - Dimacs format:
 - ▶ 1 -3 4 5 0
 - ▶ 2 -4 7 0
 - ▶ ...

BDDs and Decision Trees

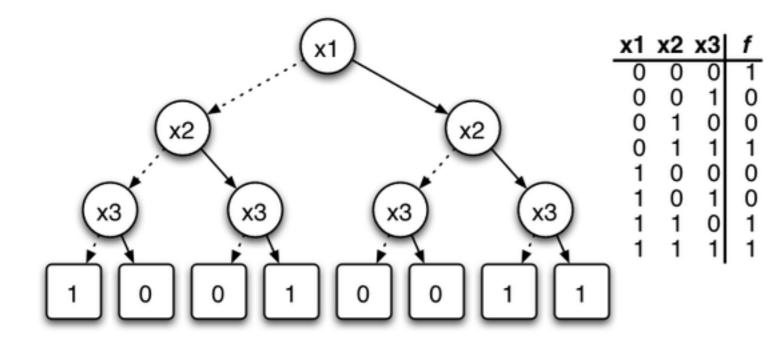
▶ A BDD on x₁, ..., x_n is a DAG G=(V, E) where

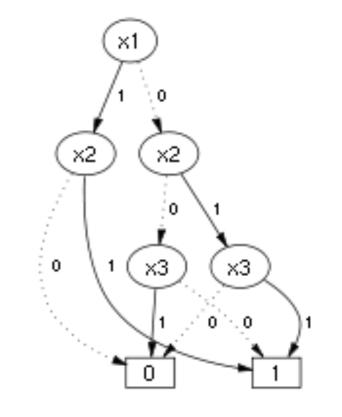
- exactly 1 vertex has indegree 0 (the root)
- all vertices have outdegree 0 (leaves) or 2 (inner nodes)
- ▶ the inner nodes are labeled from $\{x_1, ..., x_n\}$
- the leaves are labeled from {0, 1}
- one of the edges from an inner node is labeled by 0; the other by 1
- The BDD G=(V, E) represents a Boolean function, say f
 - ▶ for any assignment A in Bⁿ, f(A) is computed recursively from root
 - ▶ if we reach a leaf, return the label
 - ▶ for inner nodes, say labeled with x_i, take the edge labeled by A(x_i)
- A decision tree is a BDD whose graph is a tree
- A BDD is an OBDD if there is a permutation on p={1,2, ..., n} s.t. for all edges (u, v) in E, where u, v are labeled by x_i, x_j, we have that p_i < p_j
- An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are distinct

Images from Wikipedia



BDDs and Decision Trees





Decision Tree for f

ROBDD for f

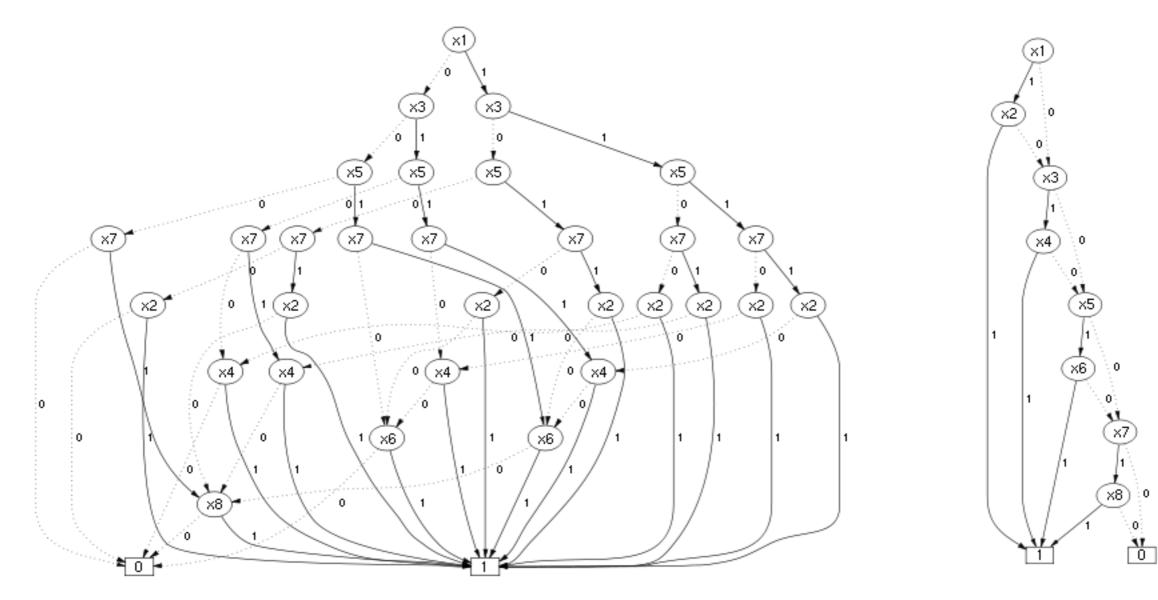
How do we generate DNF from a decision tree? ROBDD?

Images from Wikipedia

- Decision trees are widely used, e.g., in machine learning (ID3, C4.5, …)
- BDDs are widely used (BDD usually means ROBDD)
 - Popularized by Bryant
 - Very efficient algorithms for constructing, manipulating BDDs
 - Used in verification, synthesis, fault trees, security, AI, model checking, static analysis, ...
 - Bryant's paper was the most cited research paper (at some point)
 - Many BDD packages available
- Once a variable ordering is selected, BDDs are canonical!
 - Construct decision tree using Shannon expansion and merge isomorphic nodes, remove nodes who children are equal until you reach a fixpoint
 - To see, this note that BDDs are essentially DFAs that recognize strings in {0,1}ⁿ and such automata can be minimized (note nodes with equal children remain)
 - So, checking equality is just pointer equality (with appropriate data structures)
 - Can be used for model checking: represent set of reachable states & transition system with BDDs

Variable Ordering for BDDs

Variable ordering matters: finding the best ordering is hard.



Bad Ordering

Good Ordering

Images from Wikipedia