Lecture 3

Pete Manolios
Northeastern

Computer Aided Reasoning, Lecture 3



Definitions Review

(defunc f (X1 .. Xn)
:1nput-contract 1ic
:output-contract oc

b the xi are distinct variable symbols body)

> f is admissible provided:

> f is a new function symbol

> body is a term, possibly using f recursively as a function symboal,
mentioning no variables freely other than the xi

> the function is terminating

P ic = oc is a theorem

> the body contracts hold under the assumption that ic holds
»When we admit f, we get the following

e Definitional axiom: ic = (f x1 ... Xn) = body

» Contract theorem: ic = oc

Slides by Pete Manolios for CS4820



Measure Functions

» We use measure functions to prove termination.

» m is a measure function for f if all of the following hold.
> m is an admissible function defined over the parameters of f;
» m has the same input contract as f;

» m has an output contract stating that it always returns a natural
number; and

> on every recursive call, m applied to the arguments to that recursive
call decreases, under the conditions that led to the recursive call.

Slides by Pete Manolios for CS4820



Measure Function Example

(defunc drop-last (x)
:input-contract (true-listp x)
:output-contract (true-listp (drop-last x))
(cond ((endp x) nil)
(Cendp (rest x)) nil)
(t (cons (first x) (drop-last (rest x))))))

> What is a measure function?
> (len x)

Slides by Pete Manolios for CS4820



Measure Function Example

(defunc prefixes (1)
:input-contract (true-listp 1)
:output-contract (true-listp (prefixes 1))

Ccond (Cendp 1) "C O )
(t Ccons 1 (prefixes (drop-last 1))))))

P |s prefixes admissible?
2 Yes. Use (1len 1)

> But, our main proof obligation is:
(implies (and (true-listp 1)

(not (endp 1)))
(< (len (drop-last 1)) (len 1)))

> This needs a proof by induction
» Common pattern: f’s definition uses g

> to prove termination of f, we often need “size” theorems about g

Slides by Pete Manolios for CS4820



ACL2-count

A very useful, built-in function, since ACL2s uses this function to build
measure functions.

(defun aclZ2-count (x)
(cond ((consp x)

(+ 1 (aclZ2-count (car x))
(acl2-count (cdr x))))

((integerp x) (integer-abs x))

((rationalp x)

(+ (integer-abs (numerator x))
(denominator x)))

((complex/complex-rationalp x)

(+ 1 (acl2-count (realpart x))
Cacl2-count (imagpart x))))

((stringp x) (length x))
(t 9)))

Slides by Pete Manolios for CS4820



Observation

> We require a measure function to return a natural number

> But sometimes need more than a natural number to prove termination
> We need infinite numbers!

» An example is the "weird" function below (Ackermann)

> Try proving that is terminating and you’ll see what | mean

(defunc weird (x y)
:input-contract (and (natp x) (natp y))
:output-contract (posp (weird x y))
(cond ((equal x @) (+ 1 y))
(Cequal y @) (weird (- x 1) 1))
(t (weird (- x 1) (weird x (- y 1))))))

Slides by Pete Manolios for CS4820



Observation

> There are simple programs for which no one knows whether they
terminate

» And no one has any good idea on how to prove that they do or don’t

» Here is a simple, famous example

(defunc c (n)
:1nput-contract (natp n)
:output-contract (natp (c n))
(cond ((< n 2) n)
((integerp (/' n 2)) (c (/' n 2)))
(t (c (+1C*3 )

> The claim that it terminates is called the “Collatz conjecture.”

> Paul Erdos: “Mathematics may not be ready for such problems.”

Slides by Pete Manolios for CS4820



Controlling ACL2s

> :program mode turns off theorem proving in ACL2s

» no termination analysis is attempted
> ACL2s will still test contracts and report any errors it finds
> useful for prototyping & experimenting
> : Llog1ic mode is the default mode and allows you to switch back

» you cannot define :1logic mode functions if they depend on :program
mode functions

> Other useful settings
> (acl2s-defaults :set testing-enabled nil)
> (set-defunc-termination-strictp nil)
» (set-defunc-function-contract-strictp nil)

> (set-defunc-body-contracts-strictp nil)

Slides by Pete Manolios for CS4820



DEMO

Slides by Pete Manolios for CS4820



