
Lecture 3

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 3

Slides by Pete Manolios for CS4820

Definitions Review
f is admissible provided:

f is a new function symbol

the xi are distinct variable symbols

body is a term, possibly using f recursively as a function symbol,
mentioning no variables freely other than the xi

the function is terminating

ic ⇒ oc is a theorem

the body contracts hold under the assumption that ic holds

When we admit f, we get the following

Definitional axiom: ic ⇒ (f x1 ... xn) = body

Contract theorem: ic ⇒ oc

(defunc f (x1 … xn)
 :input-contract ic
 :output-contract oc
 body)

Slides by Pete Manolios for CS4820

Measure Functions
We use measure functions to prove termination.

m is a measure function for f if all of the following hold.

m is an admissible function defined over the parameters of f;

m has the same input contract as f;

m has an output contract stating that it always returns a natural
number; and

on every recursive call, m applied to the arguments to that recursive
call decreases, under the conditions that led to the recursive call.

Slides by Pete Manolios for CS4820

Measure Function Example
(defunc drop-last (x)
 :input-contract (true-listp x)
 :output-contract (true-listp (drop-last x))
 (cond ((endp x) nil)
 ((endp (rest x)) nil)
 (t (cons (first x) (drop-last (rest x))))))

What is a measure function?

(len x)

Slides by Pete Manolios for CS4820

Measure Function Example
(defunc prefixes (l)
 :input-contract (true-listp l)
 :output-contract (true-listp (prefixes l))
 (cond ((endp l) '(()))
 (t (cons l (prefixes (drop-last l))))))

Is prefixes admissible?

Yes. Use (len l)

But, our main proof obligation is:

(implies (and (true-listp l)
 (not (endp l)))
 (< (len (drop-last l)) (len l)))

This needs a proof by induction

Common pattern: f’s definition uses g

to prove termination of f, we often need “size” theorems about g

Slides by Pete Manolios for CS4820

ACL2-count
A very useful, built-in function, since ACL2s uses this function to build
measure functions.

(defun acl2-count (x)
 (cond ((consp x)
 (+ 1 (acl2-count (car x))
 (acl2-count (cdr x))))
 ((integerp x) (integer-abs x))
 ((rationalp x)
 (+ (integer-abs (numerator x))
 (denominator x)))
 ((complex/complex-rationalp x)
 (+ 1 (acl2-count (realpart x))
 (acl2-count (imagpart x))))
 ((stringp x) (length x))
 (t 0)))

Slides by Pete Manolios for CS4820

Observation
We require a measure function to return a natural number

But sometimes need more than a natural number to prove termination

We need infinite numbers!

An example is the "weird" function below (Ackermann)

Try proving that is terminating and you’ll see what I mean

(defunc weird (x y)
 :input-contract (and (natp x) (natp y))
 :output-contract (posp (weird x y))
 (cond ((equal x 0) (+ 1 y))
 ((equal y 0) (weird (- x 1) 1))
 (t (weird (- x 1) (weird x (- y 1))))))

Slides by Pete Manolios for CS4820

Observation
There are simple programs for which no one knows whether they
terminate

And no one has any good idea on how to prove that they do or don’t

Here is a simple, famous example

(defunc c (n)
 :input-contract (natp n)
 :output-contract (natp (c n))
 (cond ((< n 2) n)
 ((integerp (/ n 2)) (c (/ n 2)))
 (t (c (+ 1 (* 3 n))))))

The claim that it terminates is called the “Collatz conjecture.”

Paul Erdos: “Mathematics may not be ready for such problems.”

Slides by Pete Manolios for CS4820

Controlling ACL2s
:program mode turns off theorem proving in ACL2s

no termination analysis is attempted

ACL2s will still test contracts and report any errors it finds

useful for prototyping & experimenting

:logic mode is the default mode and allows you to switch back

you cannot define :logic mode functions if they depend on :program
mode functions

Other useful settings

(acl2s-defaults :set testing-enabled nil)

(set-defunc-termination-strictp nil)
(set-defunc-function-contract-strictp nil)
(set-defunc-body-contracts-strictp nil)

Slides by Pete Manolios for CS4820

DEMO

