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1970’s 
Edingurgh Pure Lisp Theorem Prover (1973) 
A Computational Logic (1978) 

1980’s 
NQTHM (1981) 
ACL2 (1989) A Computational Logic for Applicative Common Lisp 

1990’s-Present 
Kaufmman joins as developer  
Workshops (10 already); huge regression suite 

2000’s:  
ACL2 books 
Development environments (ACL2 Sedan) 
2005 ACM Software System Award (Boyer, Kaufmann, Moore)

Boyer-Moore Theorem Provers   
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1970’s: Simple List Processing 
Associativity of append 
Prime factorizations are unique 

1980’s: Academic Math & CS 
Invertibility of RSA 
Undecidability of halting problem 
Gödel’s First Incompleteness Theorem 
Gauss’ Law of Quadratic Reciprocity  
CLI Stack:  

Microprocessor 
Assembler-linker-loader, Compiler, OS 
High-level language

Boyer-Moore Theorems Proved   
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Timeline from J Moore
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CLI Stack
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Industrial Applications
FDIV AMD Floating Point, 
IBM ... 
Motorola CAP DSP 

Bit/cycle-accurate model 

Run fasters than SPW model 

Proved correctness of pipeline 
hazard detection in microcode 

Verified microcode programs 

Rockwell Collins JEM1 
Rockwell Collins AAMP7 

MILS EAL-7 certification from 
NSA for their crypto processor 

Verified separation kernel 

Centaur: Media Unit
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So What?

Mechanized reasoning for commercial systems  ✔ 

Scalability to industrial problems 
Tool maturity 
Human talent 
 Repeatability  
Time to market 
ROI vs other methods
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What’s Next?

Computer-aided reasoning for the masses  
Teach freshmen how to reason about programs
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A programming language: 
Applicative, functional subset of Lisp 
Compilable and executable 
Untyped, first-order 

A mathematical logic: 
First-order predicate calculus 
With equality, induction, recursive definitions 
Ordinals up to ε0 (termination & induction)

ACL2 is ...   
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ACL2 Universe

Atoms Conses
Rationals

Symbols

Integers

Naturals
Booleans

t, nil

Strings

x, var, y
 #\A

0,1

-2

-7/2
(1/2 a)

(1 2)

(len (list 1 2))

(if t 0 1)

(if 1)

(x . 1)

Chars.

…

“hello”

True-lists = ∪i ∈ ℕ Li 
L0 = { ( ) }, Li+1 = Li ∪ {(cons x l): x ∈ All, l ∈ Li}

All = Conses ∪ Atoms

Lists = Conses ∪ { ( ) }
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Data Definitions
Allow us to write recognizers & enumerators for subsets of the universe

Singleton types

Recognizers

Enumerated Types

Range Types

Product Types

Records

Constructors & Accessors

Listof Combinator

Union Types

Recursive Types

Mutually Recursive Data Types

Custom types
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DEMO
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Expressions
“Expressions” (or “terms”) are elements of a subset of U (the Universe)
Evaluation maps expressions to ACL2 objects 

⟦expr⟧ denotes the semantics of expr

or what expr evaluates to at the REPL
Constants are expressions that evaluate to themselves

⟦t⟧ = t

⟦nil⟧ = nil

⟦6⟧ = 6

⟦-21⟧ = -21
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Lazy vs Strict
Semantics of if

⟦(if test then else)⟧ = ⟦then⟧ , when ⟦test⟧ ≠ nil (Generalized Booleans)

⟦(if test then else)⟧ = ⟦else⟧ , when ⟦test⟧ = nil 

if is lazy:

first ACL2s evaluates test, i.e., it computes ⟦test⟧

if ⟦test⟧ ≠ nil then ACL2s returns ⟦then⟧

otherwise, it returns ⟦else⟧

So, test is always evaluated, but only one of then, else is 
All other functions are strict

ACL2s evaluates all of the arguments to the function
Then ACL2s applies the function to evaluated results
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Function Definitions
(defunc mlen (l)
  :input-contract (true-listp l)
  :output-contract (natp (mlen l))
  (if (endp l)
    0
    (+ 1 (mlen (rest l)))))

Why does this definition make sense? 


Because it terminates

A key idea every time you define a program is 
to convince yourself that on every recursive 
call, some  parameter decreases in a well-
founded way

Hmm, can lists be circular? then what?

Lists are non-circular in ACL2s, which is why 
this works

Termination is one of the key ideas in CS

Note that data driven definitions always 
terminate

(defunc mlen (l)
  :input-contract (true-listp l)
  :output-contract (natp (mlen l))
  (if (endp l)
    (+ 1 (mlen (rest l)))
    0))

What if I wrote this?
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Invariants
On to another key concept: invariants


What is an invariant?

A property that is always satisfied in all 
executions of a program is an invariant

Properties are associated with program 
locations


For example let I = (true-listp l)

Then  I is an invariant because at that 
location in the program it always holds 

Why?

The input contract requires it

(defunc mlen (l)
  :input-contract (true-listp l)
  :output-contract (natp (mlen l))
  (if (endp l)
    0
    (+ 1 (mlen (rest l)))))

(defunc mlen (l)
  :input-contract (true-listp l)
  :output-contract (natp (mlen l))
  (if (endp l)
    0
    (+ 1 (mlen (rest {I}l)))))
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Contracts

(defunc mlen (l)
  :input-contract (true-listp l)
  :output-contract (natp (mlen l))
  (if (endp l)
    0
    (+ 1 (mlen (rest l)))))

A simple, useful class of invariants that 
you should always check are contracts 

Every function has an input contract

For every function call, we must be able to 


statically establish that the input 
contract of the function is satisfied


In ACL2s we can specify contracts 

ACL2s checks them for us 

All elite programmers I know 
think in terms of invariants
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Contracts
(defunc mlen (l)
  :input-contract (true-listp l)
  :output-contract (natp (mlen l))
  (if (endp l)
    0
    (+ 1 (mlen (rest l)))))

Body contracts

1. endp: (listp l)
2. rest: (listp l)
3. mlen: (true-listp l)
4. +: (acl2-numberp 1)

         (acl2-numberp (mlen (rest l)))
5. if: t

Function contract

(true-listp l) => (natp (mlen l))

Contract contracts

6. true-listp: t (true-listp is a recognizer)


7. mlen: (true-listp l) (input contract!)


8. natp: t (natp is a recognizer)

(defunc mlen (l)
  :input-contract {6}(true-listp l)
  :output-contract {8}(natp {7}(mlen l))
  {5}(if {1}(endp l)
    0
    {4}(+ 1 {3}(mlen {2}(rest l)))))

Every time you write a program, (not just for for this class), check body and function contracts!


You can think of invariants as assertions


{i} means that every time program execution reaches this point then {i} is true
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Static Checking
Body contracts


1. endp: (listp l)
2. rest: (listp l)
3. mlen: (true-listp l)
4. +: (acl2-numberp 1) 

         (acl2-numberp (mlen (rest l)))
5. if: t

Function contract, contract contracts …

Static checking of contracts


Before the definition is accepted we prove all the contracts

During execution, only top-level input contracts are checked

We have assurance that, at the language level, code will run without any runtime errors


Static checking of contracts is hard, which is why it is not supported in most PLs

(defunc mlen (l)
  :input-contract {6}(listp l)
  :output-contract {8}(natp {7}(mlen l))
  {5}(if {1}(endp l)
    0
    {4}(+ 1 {3}(mlen {2}(rest l)))))
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Dynamic Checking
Body contracts


1. endp: (listp l)
2. rest: (listp l)
3. mlen: (true-listp l)
4. +: (acl2-numberp 1) 

         (acl2-numberp (mlen (rest l)))
5. if: t

Function contract, contract contracts …

Dynamic checking of contracts


We generate code to check the contracts at run-time

This code can incur a significant performance penalty

Contract violations are possible and will lead to an exception


Dynamic checking is supported via mechanisms such as assertions; typically used only in 
development

(defunc mlen (l)
  :input-contract {6}(listp l)
  :output-contract {8}(natp {7}(mlen l))
  {5}(if {1}(endp l)
    0
    {4}(+ 1 {3}(mlen {2}(rest l)))))
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Definitional Principle
The definition 

(defunc f (x1 . . . xn) 
  :input-contract ic 
  :output-contract oc 
  body) 
is admissible provided: 


f is a new function symbol

the xi are distinct variable symbols

body is a term, possibly using f recursively as a function symbol, mentioning 
no variables freely other than the xi

the function is terminating

ic ⇒ oc is a theorem


the body contracts hold under the assumption that ic holds
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Definitional Axioms
When we admit a function, we get the following axiom and theorem 


ic ⇒ (f x1 ... xn) = body (Definitional axiom)

ic ⇒ oc (Contract theorem)


In proofs we will not explicitly mention input contracts when using a 
function definition because contract completion (test?!)

Why termination? (f x) = 1 + (f x) leads to inconsistency


Why no free vars?  (f x) = y leads to inconsistency
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Next Time
Measure Functions


Reasoning about Programs

Axioms

Equational Reasoning

Induction

Lemmas

Generalization


