
Lecture 2

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 2

Slides by Pete Manolios for CS4820

1970’s
Edingurgh Pure Lisp Theorem Prover (1973)
A Computational Logic (1978)

1980’s
NQTHM (1981)
ACL2 (1989) A Computational Logic for Applicative Common Lisp

1990’s-Present
Kaufmman joins as developer
Workshops (10 already); huge regression suite

2000’s:
ACL2 books
Development environments (ACL2 Sedan)
2005 ACM Software System Award (Boyer, Kaufmann, Moore)

Boyer-Moore Theorem Provers

Slides by Pete Manolios for CS4820

1970’s: Simple List Processing
Associativity of append
Prime factorizations are unique

1980’s: Academic Math & CS
Invertibility of RSA
Undecidability of halting problem
Gödel’s First Incompleteness Theorem
Gauss’ Law of Quadratic Reciprocity
CLI Stack:

Microprocessor
Assembler-linker-loader, Compiler, OS
High-level language

Boyer-Moore Theorems Proved

Slides by Pete Manolios for CS4820

Timeline from J Moore

Slides by Pete Manolios for CS4820

CLI Stack

Slides by Pete Manolios for CS4820

Industrial Applications
FDIV AMD Floating Point,
IBM ...
Motorola CAP DSP

Bit/cycle-accurate model

Run fasters than SPW model

Proved correctness of pipeline
hazard detection in microcode

Verified microcode programs

Rockwell Collins JEM1
Rockwell Collins AAMP7

MILS EAL-7 certification from
NSA for their crypto processor

Verified separation kernel

Centaur: Media Unit

Slides by Pete Manolios for CS4820

So What?

Mechanized reasoning for commercial systems ✔

Scalability to industrial problems
Tool maturity
Human talent
 Repeatability
Time to market
ROI vs other methods

Slides by Pete Manolios for CS4820

What’s Next?

Computer-aided reasoning for the masses
Teach freshmen how to reason about programs

Slides by Pete Manolios for CS4820

A programming language:
Applicative, functional subset of Lisp
Compilable and executable
Untyped, first-order

A mathematical logic:
First-order predicate calculus
With equality, induction, recursive definitions
Ordinals up to ε0 (termination & induction)

ACL2 is ...

Slides by Pete Manolios for CS4820

ACL2 Universe

Atoms Conses
Rationals

Symbols

Integers

Naturals
Booleans

t, nil

Strings

x, var, y
 #\A

0,1

-2

-7/2
(1/2 a)

(1 2)

(len (list 1 2))

(if t 0 1)

(if 1)

(x . 1)

Chars.

…

“hello”

True-lists = ∪i ∈ ℕ Li
L0 = { () }, Li+1 = Li ∪ {(cons x l): x ∈ All, l ∈ Li}

All = Conses ∪ Atoms

Lists = Conses ∪ { () }

Slides by Pete Manolios for CS4820

Data Definitions
Allow us to write recognizers & enumerators for subsets of the universe

Singleton types

Recognizers

Enumerated Types

Range Types

Product Types

Records

Constructors & Accessors

Listof Combinator

Union Types

Recursive Types

Mutually Recursive Data Types

Custom types

Slides by Pete Manolios for CS4820

DEMO

Slides by Pete Manolios for CS4820

Expressions
“Expressions” (or “terms”) are elements of a subset of U (the Universe)
Evaluation maps expressions to ACL2 objects

⟦expr⟧ denotes the semantics of expr

or what expr evaluates to at the REPL
Constants are expressions that evaluate to themselves

⟦t⟧ = t

⟦nil⟧ = nil

⟦6⟧ = 6

⟦-21⟧ = -21

Slides by Pete Manolios for CS4820

Lazy vs Strict
Semantics of if

⟦(if test then else)⟧ = ⟦then⟧ , when ⟦test⟧ ≠ nil (Generalized Booleans)

⟦(if test then else)⟧ = ⟦else⟧ , when ⟦test⟧ = nil

if is lazy:

first ACL2s evaluates test, i.e., it computes ⟦test⟧

if ⟦test⟧ ≠ nil then ACL2s returns ⟦then⟧

otherwise, it returns ⟦else⟧

So, test is always evaluated, but only one of then, else is
All other functions are strict

ACL2s evaluates all of the arguments to the function
Then ACL2s applies the function to evaluated results

Slides by Pete Manolios for CS4820

Function Definitions
(defunc mlen (l)
 :input-contract (true-listp l)
 :output-contract (natp (mlen l))
 (if (endp l)
 0
 (+ 1 (mlen (rest l)))))

Why does this definition make sense?

Because it terminates

A key idea every time you define a program is
to convince yourself that on every recursive
call, some parameter decreases in a well-
founded way

Hmm, can lists be circular? then what?

Lists are non-circular in ACL2s, which is why
this works

Termination is one of the key ideas in CS

Note that data driven definitions always
terminate

(defunc mlen (l)
 :input-contract (true-listp l)
 :output-contract (natp (mlen l))
 (if (endp l)
 (+ 1 (mlen (rest l)))
 0))

What if I wrote this?

Slides by Pete Manolios for CS4820

Invariants
On to another key concept: invariants

What is an invariant?

A property that is always satisfied in all
executions of a program is an invariant

Properties are associated with program
locations

For example let I = (true-listp l)

Then I is an invariant because at that
location in the program it always holds

Why?

The input contract requires it

(defunc mlen (l)
 :input-contract (true-listp l)
 :output-contract (natp (mlen l))
 (if (endp l)
 0
 (+ 1 (mlen (rest l)))))

(defunc mlen (l)
 :input-contract (true-listp l)
 :output-contract (natp (mlen l))
 (if (endp l)
 0
 (+ 1 (mlen (rest {I}l)))))

Slides by Pete Manolios for CS4820

Contracts

(defunc mlen (l)
 :input-contract (true-listp l)
 :output-contract (natp (mlen l))
 (if (endp l)
 0
 (+ 1 (mlen (rest l)))))

A simple, useful class of invariants that
you should always check are contracts

Every function has an input contract

For every function call, we must be able to

statically establish that the input
contract of the function is satisfied

In ACL2s we can specify contracts

ACL2s checks them for us

All elite programmers I know
think in terms of invariants

Slides by Pete Manolios for CS4820

Contracts
(defunc mlen (l)
 :input-contract (true-listp l)
 :output-contract (natp (mlen l))
 (if (endp l)
 0
 (+ 1 (mlen (rest l)))))

Body contracts

1. endp: (listp l)
2. rest: (listp l)
3. mlen: (true-listp l)
4. +: (acl2-numberp 1)

 (acl2-numberp (mlen (rest l)))
5. if: t

Function contract

(true-listp l) => (natp (mlen l))

Contract contracts

6. true-listp: t (true-listp is a recognizer)

7. mlen: (true-listp l) (input contract!)

8. natp: t (natp is a recognizer)

(defunc mlen (l)
 :input-contract {6}(true-listp l)
 :output-contract {8}(natp {7}(mlen l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(mlen {2}(rest l)))))

Every time you write a program, (not just for for this class), check body and function contracts!

You can think of invariants as assertions

{i} means that every time program execution reaches this point then {i} is true

Slides by Pete Manolios for CS4820

Static Checking
Body contracts

1. endp: (listp l)
2. rest: (listp l)
3. mlen: (true-listp l)
4. +: (acl2-numberp 1)

 (acl2-numberp (mlen (rest l)))
5. if: t

Function contract, contract contracts …

Static checking of contracts

Before the definition is accepted we prove all the contracts

During execution, only top-level input contracts are checked

We have assurance that, at the language level, code will run without any runtime errors

Static checking of contracts is hard, which is why it is not supported in most PLs

(defunc mlen (l)
 :input-contract {6}(listp l)
 :output-contract {8}(natp {7}(mlen l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(mlen {2}(rest l)))))

Slides by Pete Manolios for CS4820

Dynamic Checking
Body contracts

1. endp: (listp l)
2. rest: (listp l)
3. mlen: (true-listp l)
4. +: (acl2-numberp 1)

 (acl2-numberp (mlen (rest l)))
5. if: t

Function contract, contract contracts …

Dynamic checking of contracts

We generate code to check the contracts at run-time

This code can incur a significant performance penalty

Contract violations are possible and will lead to an exception

Dynamic checking is supported via mechanisms such as assertions; typically used only in
development

(defunc mlen (l)
 :input-contract {6}(listp l)
 :output-contract {8}(natp {7}(mlen l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(mlen {2}(rest l)))))

Slides by Pete Manolios for CS4820

Definitional Principle
The definition

(defunc f (x1 . . . xn)
 :input-contract ic
 :output-contract oc
 body)
is admissible provided:

f is a new function symbol

the xi are distinct variable symbols

body is a term, possibly using f recursively as a function symbol, mentioning
no variables freely other than the xi

the function is terminating

ic ⇒ oc is a theorem

the body contracts hold under the assumption that ic holds

Slides by Pete Manolios for CS4820

Definitional Axioms
When we admit a function, we get the following axiom and theorem

ic ⇒ (f x1 ... xn) = body (Definitional axiom)

ic ⇒ oc (Contract theorem)

In proofs we will not explicitly mention input contracts when using a
function definition because contract completion (test?!)

Why termination? (f x) = 1 + (f x) leads to inconsistency

Why no free vars? (f x) = y leads to inconsistency

Slides by Pete Manolios for CS4820

Next Time
Measure Functions

Reasoning about Programs

Axioms

Equational Reasoning

Induction

Lemmas

Generalization

