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Proof Theory

> Goal:relate P =pto D - ¢P
» We defined &, next we define
> @ - ¢ denotes that ¢ is provable from @
> Provability should be machine checkable
> [t may seem hopeless to nail down what a proof is
> don’t mathematicians expand their proof methods?
» FOL has a fairly simply set of obvious rules

> There are many equivalent ways of defining proof

> In fact, we’ve seen how to do this already in a very sophisticated way
using U-/UH-resolution



Sequent Calculus

> A sequent is a nonempty sequence of formulas
> Sequent rules:
' =¢ ¢
[ = -y if @ is a member of [
I r ¢

> The left rule says if you have a proof of both = and ¢ from l'u {-¢},
that constitutes a proof of ¢ from I

> |f there is a derivation of the sequent " ¢, then we write —T ¢ and
say that ' ¢ is derivable

> A formula ¢ is formally provable or derivable from a set @ of formulas,
written @ + ¢, iff there are finitely many formulas &1, ..., dnin ©

St.-P1...Pn P



Sequent Rules

Antecedent Rule (Ant)

I
I ¢

A sequent [ ¢ is correctifl = ¢

if every member of I' is also a member of I".

A rule is correct: applied to correct sequents, it yields correct sequents
Notice that the sequent rules are correct

Assumption Rule (Assm)

if ¢ is a member of I'.

I' ¢
Proof by Cases Rule (PC) Contradiction Rule (Ctr)
I' ¥ ¢ I' =p 9
I % ¢ L ~p ¢

I 77 I 77



Sequent Rules for v

V-Rule for the Antecedent (V A)

I' o ¢
r v ¢
I' (pVvy) &

V-Rule for the Succedent (V S)
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Derived Sequent Rules

Tertium non datur (Ctr)

(o V —p)
Proof? We can prove it by assuming ¢, getting ¢ V —¢ and similarly with

p @ (Ant)
¢ (pV-p) (VS)
- (Ant)
¢ (pV-p) (VS)

(pV-p) (PC)

> Defining derived rules helps us keep proofs short

Al o i

» For our purposes, we want a minimal set of built-in rules

> If we wanted to use the logic, we would want a large set of rules
(consider ACL2s)



Sequent Rules

Reflexivity Rule for Equality (=)

t=1
Substitution Rule for Equality (Sub)

> Can derive that equality is symmetric and transitive (so equivalence)
> Can derive that equality is a congruence

> Suppose D is a set of equations (universal formulas of the form s=t)
and ¢ is an equation

» Then, ® = ¢ iff ® - ¢ where we only use Assm, Sub, equivalence
and congruence rules (Birkhoff’s theorem)

2 More on this soon



Sequent Rules for 3

J-Introduction in the Succedent (3 S)
L ot
I' dzop

Proof Suppose I' |= ¢f. If 7 =T, we have J |= ¢f. By the substitution
lemma, J <t k= ¢ and thus J = 3zp. O

J-Introduction in the Antecedent (3 A)

[ i
' dzp

Proof So, I'pZ = 1. Suppose J =T and J = 3zp. Then there is an a such
that 7% = ¢, but by the coincidence lemma, (J %)% = . Since J %(y) = a,

we have (J %)ifﬁ = ¢ and by substitution lemma J ” = @2 Since J =T
and y & free.I', we get .,7% = I'. Now, we get J% = 9 and therefore J = ¢
because y ¢ free.rp. [

if y is not free in I' dzp .



Gddel’s Completeness Part 1

> For all ® and ¢, ® + ¢ iff there is a finite ®o € O s.t. Do - P
> Directly from definition of derivable

> Easy part of Gddel’s completeness theorem
@+ ¢ implies O =0od

> By induction on structure of derivations, using the correctness of
sequent rules



Consistency

> @ is consistent, Con @, iff thereis no formula® st. O+ ¢ and O~ -

> @ is inconsistent, Inc @, iff ® is not consistent: A ps.t. PP and O + -P

> Inc @ iff forall d, ® - ¢
> Con O iff there is some ¢ s.t. not ® + ¢
? For all ®, Con O iff Con ®g for all finite subsets ®g of ®

» Sat @ implies Con ©
plIncP=Pr¢P andD+-Pp=DP=p and ® = -~¢p = not Sat ©

> For all ® and ¢ the following holds
> O+ ¢ iff Inc ® u {-d}
> O+ ¢ iff Inc © u {P}
> If Con @, then Con ® u {¢} or Con ® u {~P}



Useful Lemma

For allj € w, let Si be a symbol set s.t. S € Siz7 and let ®@; be a set of S;-
formulae s.t. Consi @, and @; € @1 Let S = Uiy Si and @ = Uiy, D..

Then Cons @

Proof:

Incs @
= { Incs W for finite W s.t. WD, thus WD, for some k }

Incs Ok
= {Any derivation of ¢, =¢ is finite so all symbols are in S, for some m=k }

InCSm cDm



Gddel’'s Completeness Part 2

» Godel’s completeness theorem, part 2: ® = ¢ implies ® - ¢
> Lemma: Con @ implies Sat ©
> Proof: ONNO)

iff {previous lemma} not Sat (O u {-¢})

iff {above lemma, soundness} not Con (® u {~®})

iff {hint: use Contradiction Rule} @ + ¢

Contradiction Rule (Ctr)
' ¢ 9

I' = —

I P




Henkin’s Theorem

» The insight: if Con @, just reflect the syntax into the semantics

> 4= (TS, a, B> (so the universe is the set of terms)
2 B(vi) = Vi
Pa.c=c,a.f(t)=ft
® This doesn’t work! g(vo) # 4(v1), but what if vo = v1 € ©?

> The plan is to fix this and a number of other problems until it
works!

> First idea: use equivalence classes of terms, so that provably
equivalent terms are in the same class, so voand v+ will be equal

under 4 because they are in the same equivalence class



Term Structure

Define the equivalence relation on TS

tl Nt2 iﬁ‘(pktl Etz
1. ~ 1is an equivalence relation.

2. Ifty ~t),...,tn ~ 1, then forn-ary f € S: ft1...t, ~ ft|...t,
and forn-ary Re€ S: ®+ Rty ...t, iff P+ Rt} ... ¢t.

Let t = {t' € T° : t ~ t'}, i.e., t is the equivalence class of t.
Let T® be the set of equivalence classes: T® = {t : t € T°}. Note that T®
is not empty. We now define the term structure over 7%, 72 as follows.

1. ch):E

2. fT5 (..., tn) = ft1.. . tn

3. RT"%,...1, if ®+ Rt,...t,



Term Interpretation

We define the term interpretation associated with ® to be J2 = (T2, B%),
where 3% (z) = 7.

1. For allt, J%(t) =t.

2. For every atomic formula ¢, J® = ¢ iff ® F .
3. For every formula ¢ and pairwise disjoint variables x1,...,x,

(a) J¢ =3z, ... 3z, iff there are tq,...,t, € T® s.t. J® | pli=ta

xl...xn ’

(b) T¢ =Nz, ...V, iff for allty,. .., t, € T° we have J® = pr=tn

ml...xn ’



More Problems

Where are we? Well, by the previous lemma J® is a model of the atomic
formulas in ®, but we do not know that it is a model of all formulas in ®. In fact,
it isn’t. Consider ® = {3zRz}. Then, by (3) of the previous lemma, J® = ®
iff there is a term (in our case a variable) y such that 3z Rz + Ry, but this does
not hold, as one of the exercises requires you to show. Consider ® U {-Ry : y is
a variable }. This set is satisfiable, thus consistent, but for no term ¢t € T° do
we have ® - Rt.

1. For allt, J%(t) =t.
2. For every atomic formula ¢, J% = ¢ iff ® - .

3. For every formula ¢ and pairwise disjoint variables x1,...,z,
(a) J¢ =3z ...3z,0 iff there are ty,...,t, € TS s.t. J® = w;ti—;t:

(b) T¢ E=Vzy.. VYo, iff for all ty,...,t, € T we have J® | plr=in

L1...Tn :



Closure Conditions

® is negation complete iff for every formula ¢, ® - ¢ or ® - —¢.
® contains witnesses iff for every formula of the form Jzy, there is a term ¢
such that ® - (3zp — ¢1).

Lemma 21 If ® is consistent, negation complete, and contains witnesses, then
for all ¢ and .

1. - iff not @+ ¢
2. - (VYY) iff P or @Y
3. ® + 3z iff there is a term t s.t. <I>I—<p£



Henkin’s Theorem

If ® is consistent, negation complete, and contains witnesses, then J% = ®

We now show that any consistent set of formulas can be extended to one that
is consistent, negation complete, and contains witnesses. Then, from Henkin’s
theorem we get the completeness theorem.

we assume that |S| < w.



Completeness Theorem

Theorem 4 Let ® C L° be a consistent set of formulas and let |free(®)| < w.
Then, ® is satisfiable.

Proof
Con ® A® C L7 A |free(®)| < w
= { Lemma 23 }
3P s.t. Con WA P C ¥ C L5 A U contains witnesses
= { Lemma 22 }

3O s.t. Con OA¥ C © C L° AO contains witnesses and is negation complete
= { Henkin’s Theorem }

J® is a model of ©, ¥, and ®
= { Definition of Sat }

Sat & [



Negation Completeness

Lemma 22 Let U C LS, Con V. Then there ezists © s.t. Con©, ¥ C O C L,
and © s negation complete.

Proof Enumerate LS: g, @1, @2,.... Define ©,, as follows:
Oy =V

On+1 = O, Ua, where a = {p,} if Con 6, U {¢,} and a = () otherwise.

Finally, © = J,c, On-

Since for all 7, Con ©;, by lemma 18, we have Con ©.

© is also negation complete. For every i if © I/ —y;, then Con © U {y;}
(lemma 17) so Con © U {p;} so ¢; € O,41 CO. [



Withesses

Lemma 23 Let ® C L°, Con ®, |free(®)| < w. Then there exists ¥ s.t. Con
U, ® C VU C LS and ¥ contains witnesses.

Proof Enumerate all ¢ € L° beginning with an existential quantifier: 3zopo, Iz1¢1, .. ..

Now, define 1,, as follows:

Up = (an‘Pn — ‘Pny_n

In

where y, is the variable with the smallest index not free in ®,, = ® U {¢;

0 <i<n} Let V¥V =Uje,P;. Now, ® C ¥ and V¥ contains witnesses. If for

all i € w, Con ®; then Con ¥ by lemma 18. Proof by induction.



Gddel’'s Completeness Theorem

eD-¢ iff P
» What does this mean for group theory?
» What about new proof techniques?

» Once we show the equivalence between - ¢ and =, we can
transfer properties of one to the other

> Compactness theorem:
(a) ® = ¢ iff there is a finite Po € @ such that o =

(b) Sat O iff for all finite ®g ¢ O, Sat g

» From the proof, we get the Lowenheim-Skolem theorem: Every
satisfiable and at most countable set of formulas is satisfiable over
a domain which is at most countable



