Lecture 16

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 16

Announcements

> HWK due on Tuesday
> Exams returned on Tuesday

Slides by Pete Manolios for CS4820

FOL Checking

> FO validity checker: Given FO ¢, negate & Skolemize to get universal ¢ s.t.
Valid(¢) iff UNSAT(). Let G be the set of ground instances of (possibly
infinite, but countable). Let G1, G2 ..., be a sequence of finite subsets of G
s.t. vgC@G,|g|<w, 3n s.t. gcGn. If an s.t. Unsat Gy, then Unsat ¢ and Valid ¢

> Question 1: SAT checking

> Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT
checking is easy, but there is a blowup due to DNF

> Davis Putnam (1960): Convert to CNF, so adding new instances does
not lead to blowup

> In general, any SAT solver can be used, eg, DPLL much better than DNF
> Question 2: How should we generate G;?
e Gilmore: Instances over terms with at most O, 1, ..., functions

> Any such “naive” method leads to lots of useless work, eg, the book has
code for minimizing instances and reductions can be drastic

Slides by Pete Manolios for CS4820

Unification

> Better idea: intelligently instantiate formulas. Consider the clauses
{P(x, f(¥) V Ox, y), 7P(g(u), v)}

> Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(g(w), f(y) V O(g(w),y), ~P(g(w), f(y)}

> Now, resolution gives us
{0@w),y)]

> Much better than waiting for our enumeration to allow some resolutions

> Unification: Given a set of pairs of terms S = {(s1,t1), ..., (Sn,tn)} @ unifier of S
is a substitution o such that si|o = ti|o

> We want an algorithm that finds a most general unifier if it exists
> 0 is more general than T, o < T, iff T = 600 for some substitution 6
2 Notice that if o is a unifier, so is Tc0
> Similar to solving a set of simultaneous equations, e.g., find unifiers for

> {(Pf(w), 1y)), Pix, flgw))), (P(x,u), P(v,g(v))} and {(x, fly)), (v, gx))}

Slides by Pete Manolios for CS4820

Using Unification

> Assume we have a unification algorithm. How do we use it?
» Consider DP. When we instantiate a set of clauses, say

{P(x, f(N) V O, y), "P(gw),)} , o= {x < gu),u < f(y)}
2 \We obtain

{P(g(u), f(y) V O(g(w),y), 7 P(gu), f())}

> The original clauses state
(Vx,y,u,v (P(x, () V O,) A =P(g(u),v))
> The instantiated clauses are implied because they state

(Vu,y (P(g(u), f(y)) vV Q(g(u),y)) A —P(g(u), f()))

2 Notice that we are free to further instantiate the above instantiated clauses

> In contrast, if we use DPLL and case split, then we have to be careful, e.g.,
if we first assume P(x,f(y)) and then Q(x,y), then in subsequent
instantiations, x and y have to be instantiated the same way because

(Vx,y P(x, f(y)) V O(x, y)) & (Vx,y P(x, f(y)) V (Vx,y O(x,))
> DP is local or bottom-up, whereas DPLL is global or top-down

Slides by Pete Manolios for CS4820

Unification Basics

> Unification Problem: Given a set of pairs of terms S = {(s1,t1), ..., (Sn,tn)} @
unifier of S is a substitution o such that si|o = ti|o (we’ll write sio = t0)

> U(S) is the set of all unifiers of S; notice that if o is a unifier, so is T°o
> 0 is more general than 1, 0 < T, iff T = 60 (0°0) for some substitution o
> < is a preorder; let 6 be the identify for reflexivity

e transitivity: if o < T, T< 6 then T = 60, 0 =yt = y(d0) = (Yb)O

o~ Tiff o< T, T<0. Notice that if o=x«y, T=y<Xx,theno~T

» 0 ~ T iff there is a renaming (bijection on Vars) 8 s.t. 0 = 01
» A most general unifier (mgu) is o € U(S) s.t. forall Te U(S),o<T

» What is an mgu for x=y? x«y? yex? zeX, z<y? yeX, wez, z<w?
> A substitution is idempotent if oo = o (rules out last case above)

> 0 is idempotent iff Domain(o) is disjoint from Vars(Range(o))
e If a unification problem has a solution, then it has an idempotent mgu
» We want an algorithm that finds an mqui, if a unifier exists

Slides by Pete Manolios for CS4820

Unification Algorithm

S = {(x1,t1), ..., (Xn,tn)} is in solved form if the x; are distinct variables and don’t
occur in any of the ti. Then Sl= {t1<xi, ..., th <Xn}

> If S is in solved form and ocU(S), then 0=0S! (0, 0S| agree on all vars)
> If S is in solved form, then S is an idempotent mgu

> Algorithm: Nondeterministic transition system based on the following rules
> Delete {t=t} uS =S useful way of thinking about algorithms: SMT/IMT

» Decompose {f(t1, ..., tn) = f(S1, ..., Sn)} w S = {t1=s1, ...,th=Sn} U S
pQOrient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t<x, if xeVars(S) - Vars(t)
> Unify(S) = apply rules nondeterministically; if solved return S|, else falil
> Try it with: {x=f(a), g(x,.x)=g(x,y)}

Slides by Pete Manolios for CS4820

Unification Algorithm

> Algorithm: Nondeterministic transition system based on the following rules
> Delete {t=t} v S =S
» Decompose {f(t1, ..., tn) = f(S1, ..., Sn)} v S = {ti=s71, ...,thi=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)

x=f(a), g(x,x)=g(x,y) = decompose what other rules can | use?

x=f(@), x=x, x=y — delete can’t use eliminate on x=x; why?
x=f(a), x=y = eliminate x can’t use orient on x=y; why?
x=f(a), fla)=y = orient

x=f(a), y=f(a) = return S|

Slides by Pete Manolios for CS4820

Unification Algorithm Termination

> Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=t}u S =S
» Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} w S = {t1=S1, ...,th=Sn} U S
»Orient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} u S|t«x, if xeVars(S) - Vars(t)

> Termination: our measure function will be on ordinals (infinite numbers)

» 0,1, 2, ..., w the first infinite ordinal (why stop with the naturals?)
» Keep going: o+, 0+2, ..., 0+w = w2, 02+1, ..., @3, ..., o0 = >,
@3, L, 0% ..., 0% =e¢, ACL2s measures can use ordinals

> Lexicographic ordering on tuples of natural numbers is = ww

2 (X0, ..., Xn-1, Xn) V> WXo + *** + WXn-1 + Xn

> There is an order-preserving bijection from n+1-tuples of Nats to w”

> There is a theorem of this in the ACL2 ordinals books; you can define a
relation, prove it is well-founded and use it in termination proofs

Slides by Pete Manolios for CS4820

Unification Algorithm Termination

> Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=t}u S =S
» Decompose {f(ts, ..., tn) = f(s1, ..., Sn)} w S = {ti=s1, ...,th=Sn} U S
> Orient{t=x} S = {x=t} U S, iftis not avariable
> Eliminate {x=t} v S = {x=t} u S|t+«x, if xeVars(S) - Vars(t)
> Termination: our measure function will be on ordinals (infinite numbers)
> X is solved in S iff x=t € S and x only appears once in S

» Measure: (vars in S not solved, size of S, # of equations t=x in S)
> Delete <why not =? < Maybe xet, x¢S
> Decompose < <
> Orient < = <
> Eliminate <

for every rule we have (< | =)*<, so the lexicographic order is decreasing
(and well-founded), i.e., any algorithm based on these rules terminates

Slides by Pete Manolios for CS4820

Unification Algorithm Soundness

> Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=tfju S =S
» Decompose {f(t, ..., tn) = f(S1, ..., Sn)} w S = {t1=s7, ...,th=Sn} U S
»Orient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} u S|t+«x, if xeVars(S) - Vars(t)
> If V= T then U(V)=U(T): Easy: delete, decompose, orient; for eliminate:
> let oeU(V), B=t<—x. By lemma, 0=00 if xo=to, since x=t is in solved form
> lemma: If X is in solved form then o=0X1 for all ceU(X)
» Proof: o, X1 agree on all vars by case analysis on yeDomain(X!)

> oeU({x=t}uS) iff xo=to A oeU(S) iff xo=to A cBcU(S) iff xo=to A ocU(SO) iff
ocU({x=t} U SO)

> Soundness: If Unify returns o, then o is an idempotent mgu of S

Slides by Pete Manolios for CS4820

Unification Algorithm Completeness

> Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=tfju S =S
» Decompose {f(t, ..., tn) = f(S1, ..., Sn)} w S = {t1=s7, ...,th=Sn} U S
»Orient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} u S|t+«x, if xeVars(S) - Vars(t)
» Completeness: If S is solvable, then Unify(S) does not fail
> Lemmas
f(...) =g(...) has no solution if fz g
» x=t, where x= t and xeVars(t) has no solution (|xo| < |to| for all o)

> Proof: If S is solvable and in normal form wrt =, then S is in solved form. S
cannot contain pairs of form f(...) = f(...) (decompose) or f(...) = g(...)
(lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations
are of form x=t where x ¢ Vars(t) (lemma). Also x cannot occur twice in S
(eliminate), so S is in solved form.

Slides by Pete Manolios for CS4820

Unification Algorithm Improvements

> Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=tfju S =S
» Decompose {f(t, ..., tn) = f(S1, ..., Sn)} w S = {t1=s7, ...,th=Sn} U S
»Orient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} u S|t+<x, if xeVars(S) - Vars(t)
> Clash {f(ts, ..., tn) = g(s7, ..., Sm)} uS= Liff#g
» Occurs-Check {x=t} v S = 1 if xeVars(t) A x #t

> This is justified by the lemmas used for completeness
»f(...)=9(...) has no solution if f # g
> x=t, where x= t and xeVars(t) has no solution (|xo| < |to| for all o)

> Early termination when 3 no solution, saving (how much?) time

Slides by Pete Manolios for CS4820

Complexity of Unification

> Algorithm: Nondeterministic transition system based on the following rules
> Delete {t=t} v S =S
» Decompose {f(t1, ..., t)) = f(s1, ..., Sn)} v S = {ti=s71, ...,Sn=th} U S
pQOrient{t=x} v S = {x=t}US, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)
» Exponential blow up: {(x1=f(xo0,x0)), xo=f(x1,X1), X3=f(X2,X2), ..., Xn=F(Xn-1,Xn-1)}
> Notice that the output is exponential
» Can we do better?
> Yes, by using a dag to represent terms and returning a dag
> General idea: operate on a concise representation of problem
> BDDs are concise representations of truth tables, decision trees, etc
» Model checking searches an implicitly given graph (transition system)

Slides by Pete Manolios for CS4820

History of Unification

> What we have studied is syntactic, first-order unification
P syntactic: substitutions should make terms syntactically equal
> equational unification: unification modulo an equational theory
> eg for commutative f, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable
e first-order: no higher-order variables (no variables ranging over functions)
» Herbrand gave a nondeterministic algorithm in his 1930 thesis
> Robinson (1965) introduced FO theorem proving using resolution, unification
> Required exponential time & space

» Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space
efficient, but required exponential time

& Venturini-Zilli (1975): reduction to quadratic time using marking scheme

> Huet (1976) worked on higher-order unification led to na(n) time: almost linear
Robinson also discovered this algorithm

> Paterson and Wegman (1976) linear time algorithm
> Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Slides by Pete Manolios for CS4820

Unification Applications

> First-order theorem proving
» Matching (ACL2) is a special case: given s,t find o s.t. so=t
» Prolog
» Higher-order theorem proving
» Undecidable for second-order logic
» Natural language processing
» Unification-based grammars
» Equational theories
» Commutative, Associative, Distributative, etc
> Term rewrite systems
> Type inference (eg ML)
> Logic programming
» Machine learning: generalization is a dual of unification

Slides by Pete Manolios for CS4820

