
BAT: The Bit-Level Analysis Tool⋆

Panagiotis Manolios1, Sudarshan K. Srinivasan2, and Daron Vroon1

1 College of Computing
2 School of Electrical & Computer Engineering

Georgia Institute of Technology
Atlanta, GA-30313

{manolios@cc.gatech.edu, darshan@ece.gatech.edu, vroon@cc.gatech.edu}

Abstract. While effective methods for bit-level verification of low-level proper-
ties exist, system-level properties that entail reasoning about a significant part of
the design pose a major verification challenge. We present the Bit-level Analy-
sis Tool (BAT), a state-of-the-art decision procedure for bit-level reasoning that
implements a novel collection of techniques targeted towards enabling the ver-
ification of system-level properties. Key features of the BAT system arean ex-
pressive strongly-typed modeling and specification language, a fully automatic
and efficient memory abstraction algorithm for extensional arrays, and a novel
CNF generation algorithm. The BAT system can be used to automatically solve
system-level RTL verification problems that were previously intractable,such as
refinement-based verification of RTL-level pipelined machines.

1 Introduction

The Bit-level Analysis Tool (BAT) [5] is a system for verifying bit-level problems aris-
ing from hardware, software, and security domains. BAT implements a state-of-the-art
decision procedure for solving quantifier-free formulas over the extensional theory of
fixed-size bit-vectors and fixed-size bit-vector arrays (memories). BAT is a publicly
available tool that can be downloaded from the BAT Webpage [5].

Our primary goal in developing BAT is to enable the verification of high-level prop-
erties of complex systems described at the bit-level, such as the verification of bit-level
pipelined machine models. We have been able to use BAT to verify a 32-bit 5 stage
pipelined machine in approximately 2 minutes [4]. Key features of BAT that enable the
verification of complex systems such as pipelined machines are a fully automatic and
efficient algorithm for abstracting bit-level memories [4]and a novel method for gener-
ating CNF (Conjunctive Normal Form) from a high-level circuit representation [6].

2 The BAT Specification Language

The BAT specification language is a strongly typed, Lisp-like language whose types
include bit-vectors, bit-vector memories, and sequences over these types (multiple value
types). We invested much effort in designing a powerful, general, and usable language

⋆ This research was funded in part by NSF grants CCF-0429924, IIS-0417413, and CCF-
0438871.



BAT
Specification mem operations

NICE + next + NICE + 
mem operations

NICE dagCNFInvalid
Valid/

simplify

Unroll

Translate to CNFSolve with SAT

Inline functions

Counter−
example memories

Abstract

Fig. 1.The Bit-level Analysis Tool (BAT) decision procedure.

that can be the target for synthesizable subsets of VHDL or Verilog. The language
also allows for a clear separation of concerns between models and specifications, a
feature that drastically simplifies the effort required to describe system-level properties
of complex hardware models such as pipelined machines.

An important feature of the BAT language is that memories aretreated as first class
objects. Memories can be compared for equality and inequality in all contexts, and they
can be passed as arguments to functions and returned by functions. Other key features
of the language include a type inference algorithm that can determine the type of any
expression; this alone finds many silly mistakes, especially when one is experiment-
ing with parametrized modes. The language allows users to define functions that can be
used not only to model systems, but to specify their correctness. BAT also provides mul-
tiple value types,i.e., users can create a sequence of any types. Finally, BAT provides
support for easily defining parametrized models.

The BAT language supports a variety of bit-vector operations including bit-vector
comparisons such as equality, less than, and greater than; various types of shift opera-
tions; arithmetic operations including modular and machine addition, subtraction, and
multiplication; bitwise operations such as bitwise conjunction, disjunction, negation,
implication. The language also supports temporal operators AG and AF. Applicative
functions for reading and updating memories are also supported.

3 The BAT Decision Procedure

BAT can be used as a decision procedure, a bounded model checker, or as ak-induction
engine. BAT takes a specification described using the BAT language as input, and com-
piles this specification to a SAT problem in four high-level steps. The SAT problem is
then checked with a SAT solver. If a bug is found, BAT generates a counterexample
in terms of the original BAT specification. The compilation to CNF is performed us-
ing a novel data structure for representing circuits, knownas the NICE dag, because it
contains Negations, Ites, Conjunctions, and Equivalences.

We now describe the four high-level compilation steps. First, BAT inlines functions,
propagates constants, and performs a simplification step totransform the original spec-
ification to a NICE dag extended withnext operators (used to specify the transition
relation) and memory operators. Second, the transition relation is unrolled, resulting
in a NICE dag extended with memory operations. Third, the memories are abstracted
using BAT’s memory reduction algorithm and the memory operations for the resulting

2



reduced memories are replaced with their equivalent Boolean circuits, resulting in a
NICE dag. Fourth, the NICE dag is translated to a SAT problem in CNF. Note that BAT
can make a decision after any of the above steps. For example,during simplification,
BAT may simplify the problem to true or false.

3.1 Memory Abstraction

BAT implements a sound, complete, fully automatic, and efficient memory abstraction
algorithm that can deal with an extensional theory of finite bit-vector memories [4]. The
use of memory abstraction is crucial in bit-level verification problems as the presence
of large memories would otherwise lead to intractable SAT problems.

The key idea of the BAT memory abstraction algorithm is to reduce memories to
manageable sizes in a sound and complete way. This is possible because, even for very
large memories, correctness conditions tend to refer to only a relatively small collection
of memory references, which can be to any part of memory, however.

The complexity of the resulting verification problem depends heavily on the size of
the abstracted memory, which is based on the number of uniquememory accesses. Our
memory abstraction algorithm includes term-rewriting techniques that are very effective
in simplifying expressions containing memory operations.This allows us to recognize
when syntactically distinct expressions correspond to thesame memory address, which
leads to more efficient memory abstractions and eventually to simpler SAT problems.

We deal with extensionality by keeping the abstract memories around. The intuition
is that this allows us to compare memories for equality or inequality by comparing
the abstract memories directly. To make this sound and efficient, a more sophisticated
analysis is required, which is presented in our previous work on memory abstraction [4].

3.2 Efficient Translation to CNF

BAT uses a novel and efficient approach to generate SAT problems based on the use
of NICE dags, a new data structure for representing circuits[6]. This is an important
problem because, while modern SAT solvers have become proficient at solving Boolean
satisfiability problems in CNF, these problems mostly arisefrom general Boolean cir-
cuits that are then translated to CNF. Furthermore, the CNF translation algorithm can
significantly impact verification times. Experimental evaluation based on over 8,000
benchmarks showed that our CNF generation algorithm leads to significant time sav-
ings over both the widely used Tseitin algorithm [7] and Jackson and Sheridan’s state-
of-the-art algorithm [2]. For example, Minisat2 was able tohandle all the SAT problems
generated by the BAT CNF translation algorithm, whereas, ittimed out on many of the
SAT problems generated by both the Tseitin and Jackson/Sheridan algorithms.

4 Applications

BAT is the first bit-level reasoning tool that has been used successfully to verify non-
trivial bit-level pipelined machines automatically [4]. Pipelined machine verification
entails showing that the pipelined machine refines its instruction set architecture. This
is a computationally demanding problem as it requires reasoning about a large part of

3



the control logic of the system. The problem also involves comparing large memories
for equality. With previous work, it was only possible to automatically solve pipelined
machine verification problems at the term-level.

Using BAT we have been able to prove automatically that a 32-bit 5 stage pipelined
machine refines its ISA in about 125 seconds. Other state-of-the-art tools that we have
tried, including Yices [1] (winner of the 2006 SMT competition), cannot solve simple
2-stage pipelined machine problems. Such problems can be solved with BAT in less
than a second. We have also been able to use BAT in a compositional verification flow
to check complex pipelined machines with as many as 10 stages[3].

5 Conclusions

We have presented the Bit-level Analysis Tool (BAT), a state-of-the-art decision pro-
cedure for bit-level reasoning. We have used BAT to solve system-level verification
problems, including the verification of pipelined machine which cannot be handled
by other verification tools. For example, BAT can be used to verify that a 32-bit 5-
stage pipelined machine model refines its instruction set architecture in approximately
2 minutes. The BAT language is feature-rich and enables users to effectively model
systems and to specify properties. From an algorithm point of view, we described two
key advances that are implemented in BAT. One is an efficient,automatic, sound, and
complete memory abstraction algorithm for extensional arrays that is further improved
with term-rewriting techniques. The second is a novel circuit to CNF conversion al-
gorithm that provides significant improvements over other available CNF conversion
algorithms. For future work, we plan to extend BAT with a counterexample guided
abstraction-refinement framework, explore the use of more advanced term-rewriting
techniques, and consider methods for automatically abstracting data paths.

References

[1] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In T. Ball and
R. B. Jones, editors,Computer Aided Verification, CAV 2006, pages 81–94, 2006.

[2] P. Jackson and D. Sheridan. Clause form conversions for boolean circuits. In H. H. Hoos and
D. G. Mitchell, editors,Theory and Applications of Satisfiability Testing, 7th International
Conference, SAT 2004, volume 3542 ofLNCS, pages 183–198. Springer, 2004.

[3] P. Manolios and S. K. Srinivasan. A complete compositional reasoning framework for the
efficient verification of pipelined machines. InInternational Conference on Computer-Aided
Design (ICCAD’05), pages 863–870. IEEE Computer Society, 2005.

[4] P. Manolios, S. K. Srinivasan, and D. Vroon. Automatic memory reductions for RTL-level
verification. InICCAD 2006, ACM-IEEE International Conference on Computer Aided De-
sign. ACM, 2006.

[5] P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The Bit-level Analysis Tool. 2006.
Available fromhttp://www.cc.gatech.edu/∼manolios/bat/.

[6] P. Manolios and D. Vroon. Efficient circuit to CNF conversion. InInternational Conference
on Theory and Applications of Satisfiability Testing, 2007.

[7] G. S. Tseitin. On the complexity of derivation in propositional calculus.In A. O. Slisenko,
editor,Studies in Constructive Mathematics and Mathematical Logic, Part2, pages 115–125.
Consultants Bureau, New York-London, 1962.

4


