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Key Learning Goals

• Write the Map and Reduce functions for 
sorting in MapReduce. Does the choice of 
Partitioner matter?

• Does secondary sort require a special type of 
Partitioner, or could even the simple default 
hash Partitioner work?

• Why do we not just implement secondary sort 
as a total sort on a composite key?

• What is the difference between sort and 
secondary sort? Explain, using an example.
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Key Learning Goals
• How do we implement a Combiner in Spark 

Scala?

• Which of the following pair-RDD operations 
performs per-partition aggregation during the 
grouping stage, before shuffling: 
groupByKey().reduce(), reduceByKey, foldByKey, 
aggregateByKey?

• Is DataSet’s groupBy(…).agg(…) performing per-
partition aggregation before shuffling? Is it 
removing data columns that are neither in the 
grouping list nor appear in the aggregation-
column list?
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Introduction

• We discuss three fundamental techniques that 
appear in many big-data analysis problems:

– Aggregation (with or without grouping)

– Sort

– Secondary sort

• Each of them highlights interesting aspects of 
the underlying system infrastructure.
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Aggregation

• For aggregation, we return to the Word Count 
program.

– Recall that it determines the total number of 
occurrences of each word in a collection of 
documents.

• We will pay particular attention to the 
question of how to ensure that data will be 
aggregated as early as possible.

• First, recall the desired distributed execution.
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Refresh: Word Count
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b a c cInput (a letter represents a word)

Local counting 
task 0

Local counting 
task 1

Local counting 
task 2

(a,1), (b, 1), (c, 2) (b, 3), (c, 1)(a,1), (b, 1), (c, 1), (d, 1)

Summation 
task 0

Summation 
task 1

h(a) mod 2 = 0
h(b) mod 2 = 1
h(c) mod 2 = 0
h(d) mod 2 = 1

Shuffle

(b, 5), (d, 1)(a,2), (c, 4)Final output: (word, count) pairs

a c d b b b c b



Early-Aggregation Opportunities
• Consider local counting task 2. It should send (b, 3), not 3 times (b, 

1), to the summation task.
– Replacing k times (word, 1) by a single record (word, k) will reduce 

network traffic k-fold. It also reduces the cost for the summation task 
for receiving the data, merging the data (it is more likely to fit in 
memory or require fewer passes), and final aggregation.

– On the downside, aggregation increases CPU cost for the local 
counting task.

• What if local counting tasks 0 and 2 are executed on the same 
machine—should we aggregate across tasks?
– No. This complicates system design, because the tasks would have to 

agree on the final counts. What if one task fails half-way and the other 
succeeds? What if one gets re-scheduled on a different machine, but 
not the other?

• In summary, we want to aggregate within each local counting task, 
but aggregation across tasks is left to the summation tasks.
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Early Aggregation in MapReduce
• In MapReduce, local aggregation happens in Map tasks, 

before transferring the data to the Reducers. Hence we 
want to aggregate counts for all words that appear in the 
same input split.

• In Hadoop MapReduce, each map function call sees only a 
single line of text. Hence it cannot aggregate across 
different lines.

• We saw the Combiner feature, which elegantly supports 
the desired per-split aggregation.
– Unfortunately, the Combiner cannot be controlled by the user: 

the MapReduce system decides when and on which Map output 
records the Combiner is executed. It might not be executed at 
all. Or it might be executed only on some subset of the output 
records, e.g., only the records currently in memory. And it might 
be executed multiple times, possibly reading records output by 
an earlier Combiner execution together with “fresh,” recently 
emitted records.
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Combiner Execution Options
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Map task Reduce task
Spill files on 
disk: partitioned 
by reduce task, 
each partition 
sorted by key

Spilled to a 
new disk 
file when 
almost full

Spill files merged 
into single output 
file

Fetch over HTTP

Merge happens in 
memory if data fits, 
otherwise also on disk

The Combiner could be executed on some 
or all records in any of these locations, at 
any time, as often as desired.

Illustration based on White’s book



10

How can the programmer take more 
control of combining?



Original MapReduce Program

• This version of the program does not 
aggregate any counts in the Mapper. It would 
need a Combiner.
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map(offset B, line L )
for each word x in L do

emit(x, 1)

reduce(word x, [c1, c2,…])
total = 0
for each c in input list do

total += c
emit(x, total)



Tally Counts Per Line

• Our first attempt combines counts inside a single Map function call. 
To do so, we need a data structure in Map that tracks the word 
occurrences in the input line. The Reduce function does not change.

• While simple, this modification will typically not be very effective, 
because it combines the counts only within a single line of text.

• To increase combining opportunities, we would like to aggregate 
counts across the entire Map input split, not just a single line.
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map(offset B, line L )
h = new hashMap // stores count for each word in line L
for each word x in L do

h[x]++
for each word x in h do

emit(x, h[x])



Tally Counts Per Map Task
• To aggregate counts across the entire Map task input 

split, we must work at the task level, i.e., above 
individual Map calls. We need a data structure H that 
is a private member of the Mapper class and can be 
updated by each Map call in the same task.
– Notice that H is local to a single task and only accessed by a 

single thread, i.e., it does not introduce any inter- or intra-
task synchronization issues.

• H must be initialized before the first Map function call 
in the task. This is done in the setup() function, which 
is guaranteed to be executed when the task starts, 
before any of the Map calls.

• Each Map function call then updates the counts for the 
words it finds in its input line. However, it does not 
emit any output!

• To emit the final tally for the entire task, the counts in 
H must be emitted after the last Map call in the task 
has completed. This is achieved by “emptying out” the 
contents of H in the cleanup() function of the Mapper 
class. Cleanup() is guaranteed to be executed after the 
last Map call.

• The Reducer remains unchanged.

13

Class Mapper {
hashMap H

setup() {
H = new hashMap

}

map(offset B, line L ) {
for each word x in L do

H[x]++
}

cleanup() {
for each word x in H do

emit(x, H[x])
}

}



Summary of the Design Pattern for Local 
Aggregation

• The tally-per-task version of Word Count is an example for the in-
mapper combining design pattern. Its main idea is to preserve state 
at the task level, across all Map calls in the same task. This pattern 
can also be applied to Reduce tasks.

• Advantages over using Combiners:
– The Combiner does not guarantee if, when, or how often it will be 

executed.
– A Combiner combines data after it was generated. In-mapper 

combining avoids generating large amounts of intermediate data by 
immediately aggregating it as it is produced by a Map call. This often 
reduces local CPU and disk I/O cost for the Mappers.

• Drawbacks compared to Combiners:
– In-mapper-combining code needs to be integrated with the Mapper 

code, increasing code complexity and hence the probability of
introducing errors.

– It needs more memory for managing state, e.g., to hold the hashMap
H in memory. If the data structure used for in-mapper combining 
exceeds the amount of available memory, the programmer is forced to 
write non-trivial memory-management code to page it to disk.
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What is the equivalent of in-mapper 
combining in Spark?



Refresher: Word Count in Spark

• In the Spark program, it is not obvious if the 
equivalent of a Combiner or in-mapper 
combining is used.

• This means that we have to (1) read the 
documentation of reduceByKey or (2) find out 
by asking Spark to explain the execution to us.
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val textFile = sc.textFile("hdfs://...")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")



Dissecting ReduceByKey
• ReduceByKey(_ + _) is shorthand for reduceByKey((x,y) 

=> (x+y)). It iterates through a list of values, adding 
them one-by-one, as illustrated below.

• Spark understands the semantics of this aggregation 
and applies it, like in-mapper combining, to the RDD 
partition before shuffling.
– The same holds for foldByKey and aggregateByKey.

• In contrast, groupByKey only performs grouping but no 
combining. Hence myRDD.groupByKey().reduce(…) or 
similar will perform aggregation only after shuffling, 
i.e., does not do the equivalent of in-mapper 
combining!
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1 1 1 1Input list: 1 1 1 1

Reduce(1, 1) = 2

1 1 1 1

Reduce(2, 1) = 3

1 1 1 1

Reduce(3, 1) = 4



Aggregation with DataSets
• The semantics of DataSet functions are a little more 

complex. To fully appreciate this, let us use a slightly more 
complicated example and compute annual sales using 
DataSet myDS with columns (year, month, day, sale).
– Looking at the Spark Scala API, we find various versions of 

function agg. While powerful and flexible, it only supports 
aggregation across the entire dataset, not for separate groups.

– Function groupBy creates groups based on any column(s).
– Putting both together, we find the solution: 

myDS.groupBy(“year”).sum(“sale”)

• Challenge question: Will myDS.groupBy(“year”).sum(“sale”) 
perform combining or not? (Recall that pair RDD’s 
groupByKey did not perform combining.) What happens to 
columns month and day? Are they in the output? Are they 
removed before shuffling?
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DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it 

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which 

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation 

function and  that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like 

Reduce).
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val myDS = sc.parallelize(Seq( (“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4) )).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)



DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it 

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which 

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation 

function and  that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like 

Reduce).
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val myDS = sc.parallelize(Seq( (“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4) )).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)



DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it 

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which 

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation 

function and  that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like 

Reduce).
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val myDS = sc.parallelize(Seq( (“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4) )).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)



DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it 

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which 

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation 

function and  that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like 

Reduce).
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val myDS = sc.parallelize(Seq( (“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4) )).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)

Stage 2:

Partition 0: (x2, 3)
1. Group by x-column and sum the z-

values in each group: (x2, 3)

Partition 1: (x1, 3), (x1, 4)
1. Group by x-column and sum the z-

values in each group: (x1, 7)

Partition(x1) = 1
Partition(x2) = 0

(x1, 3)

(x1, 4)

(x2, 3)



DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it 

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which 

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation 

function and  that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like 

Reduce).
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val myDS = sc.parallelize(Seq( (“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4) )).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)

Stage 2:

Partition 0: (x2, 3)
1. Group by x-column and sum the z-

values in each group: (x2, 3)

Partition 1: (x1, 3), (x1, 4)
1. Group by x-column and sum the z-

values in each group: (x1, 7)

Partition(x1) = 1
Partition(x2) = 0

(x1, 3)

(x1, 4)

(x2, 3)



More DataSet Subtleties
• You might think that applying a function to a DataSet will 

create another DataSet—like relational operators applied 
to relations will always produce relations. And you will 
often be right…

• …but not always. For example, groupBy(…) returns a result 
of type RelationalGroupedDataset, representing a DataSet
that is grouped by some column(s). Why do we need this?
– Consider myDS.sum(…) and myDS.groupBy(…).sum(…). If myDS

is a “simple” DataSet, then the former computes the sum over 
the entire DataSet, while the latter computes a sum for each 
group. If myDS is of type RelationalGroupedDataset, then 
myDS.sum(…) computes the sum for each group.

• In short, you must gain a deep understanding of Spark in 
order to know what really happens internally. Become 
familiar with the explain function—it provides useful 
information about the execution of your program.
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Let us move on to distributed sorting.



Distributed Sort
• Sorting is one of the most widely used data-processing operations. 

How can we sort big data in parallel? First attempt:
– Since data is already managed as file splits, each task could sort a split 

locally.
– Then the sorted splits (called “runs”) are merged, maybe in multiple 

passes.

• It is easy to see that the local sorting parallelizes nicely. How about 
the merge phase?
– No matter how many rounds of merging we consider, at the end a 

single task will have to perform the final merge on the entire dataset.
– This results in poor speedup and does not use multiple workers 

effectively.

• Can we avoid the merge phase?
– Yes, ask long as we partition the data in a clever way.
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Distributed Sorting Through Range-
Partitioning

• Consider a simple scenario with 2 tasks sorting [5, 2, 4, 6, 1, 
3]. If all small numbers, i.e., [2, 1, 3], are assigned to task 0 
and all large numbers, i.e., [5, 4, 6] to task 1, then sorting is 
easy:
– Task 0 sorts locally and writes [1, 2, 3] to output0.
– Task 1 sorts locally and writes [4, 5, 6] to output1.
– Sorted output [1, 2, 3, 4, 5, 6] is obtained by “concatenating” 

output0 with output1. This is a constant-time operation and 
requires no merging.

• The challenge is to separate the given data into “small” and 
“large” numbers, which is called range partitioning. Range 
partitioning ensures that if records i and k, i  k, are 
assigned to a partition, then all records j between them, 
i.e., i  j  k, will be assigned to that same partition.

• We also want the different partitions to be of the same 
size, so that the local sort work is evenly distributed.
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Challenge Question

• Where have you seen this sorting idea before?

1. Bubble sort

2. Merge sort

3. Quicksort

4. Heapsort
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Challenge Question

• Where have you seen this sorting idea before?

1. Bubble sort

2. Merge sort

3. Quicksort

4. Heapsort
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In Quicksort, a pivot element is selected and then the data array is re-
shuffled so that all elements less than or equal to the pivot come before 
all those greater than the pivot. Then each of these “halves” of the array 
is recursively sorted the same way. The ideal choice of pivot element is 

the data median, i.e., the element with the property that as many other 
elements are smaller than it as there are elements larger than it.



Range-Partitioning in MapReduce: 
“Explicit” Approach

• Assume we want to sort key-value pairs by key, using two tasks. First, we find the 
median of the keys. Exact median computation is expensive, but it can be 
estimated reliably and cheaply through sampling.
– To ensure uniform random sampling, all splits of the input data must be accessed. We can 

reduce cost by sampling from only a few splits, but this might result in a sample that does not 
represent the entire distribution well.

– After obtaining a sample that fits in memory, this sample can be sorted on a single worker. The 
median of the sample is an approximation for the true median.

• Once we know the (approximate) median, we can use the program below to sort 
the input. All small keys are processed by the Reduce call for intermediate key 0, 
all larger ones by the one for key 1. There is more to this program:
– We also need a Partitioner that assigns the smaller input keys to lower task numbers to ensure 

ordering across tasks.
– The approach generalizes to more partitions by using more quantiles, not just the median.

• The Reduce function below assumes that its input fits in memory. If not, then 
smaller partitions need to be created by using more quantiles; or a disk-based sort 
implementation is needed.
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map( key k, value v )
if (k < median)
emit(0, (k, v))

else
emit(1, (k, v))

reduce(partitionNumber, [(r1.key, r1.value), (r2.key, r2.value),…])
load the value list into memory and sort it on r.key
for each record r in the sorted list
emit(r)



Challenge Question

• What could go wrong if the median is 
determined from a few file splits only?

– Consider a file that is already sorted and assume 
we only access the first out of a thousand splits. 
Instead of sampling uniformly from the entire key 
distribution, we would only sample from the 
smallest 1/1000-th. This sample would provide a 
poor representation of the entire distribution, 
because it does not contain any of the larger keys.
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Challenge Question

• What could go wrong if the median is 
determined from a few file splits only?

– Consider a file that is already sorted and assume 
we only access the first out of a thousand splits. 
Instead of sampling uniformly from the entire key 
distribution, we would only sample from the 
smallest 1/1000-th. This sample would provide a 
poor representation of the entire distribution, 
because it does not contain any of the larger keys.
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Range-Partitioning in MapReduce: 
“Minimalist” Approach

• This approach is more elegant and exploits that the MapReduce system 
guarantees that for each Reduce task, the assigned set of intermediate 
keys is processed in key order. We leverage this guarantee for sorting, 
taking advantage of the fact that MapReduce is already optimized for 
dealing with big data.

• The program below shows how this is done. Map and Reduce both emit 
their input 1-to-1, i.e., they are identity functions. The “magic” of this 
program lies in the Partitioner’s getPartition function, which assigns the 
small keys to Reduce task 0 and the large ones to Reduce task 1. Since 
Reduce function calls in a task are processed in key order, all records are 
correctly sorted by input key.
– We need an appropriate key comparator. Since Hadoop MapReduce keys must 

implement WritableComparable, they have a compareTo function.

• This idea generalizes to arbitrary range partitions, e.g., quantiles. Instead 
of an explicit if-then-else or case statement in getPartition, Hadoop 
already offers the TotalOrderPartitioner class to assign key ranges to 
Reduce tasks.
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map( key k, value v )
emit(k, v)

reduce(key k, [v1, v2,…])
for each value v in the input list

emit( k, v )

getPartition( key k )
if (k < median) return 0
else return 1



Challenge Question

• Look at the sort program code in the Hadoop 
distribution and find the following:

– How does it determine the approximate 
quantiles?

– How are they passed to the TotalOrderPartitioner?

– Where are Mapper and Reducer class defined?

• You can find a copy of the file from Hadoop 
3.1.1 at 
http://khoury.northeastern.edu/home/mirek/
code/Sort.java
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http://khoury.northeastern.edu/home/mirek/code/Sort.java


Sort in a DBMS

• In SQL, sorting is done with the ORDER BY 
clause. Given a relation R with schema (key, 
value), the query is

– SELECT * FROM R ORDER BY key.

• The implementation will be chosen 
automatically by the optimizer. If the data is 
already range-partitioned, the optimizer will 
ideally determine that no shuffling is needed.
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Sort in Spark Scala
• The sortBy(elementFunction) transformation sorts an 

RDD by whatever value elementFunction returns for an 
element of the RDD. Typically elementFunction
extracts a field embedded in a string or non-scalar data 
type such as list or list of lists etc.

• On a pair RDD, transformation sortByKey() will 
efficiently sort the data by key.

• For DataSet, the corresponding transformation is 
sort(“key”), assuming the DataSet has schema (key, 
value).

• Sorting is implemented using range partitioning, with 
range boundaries obtained from a sample, as discussed 
for MapReduce.
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Comparators in Scala
• For a class to be orderable, it needs to extend 

Scala’s Ordered trait (like Java’s Comparable 
interface).
– This means that it must implement the compare

function.

– Or it needs to use Scala’s Ordering trait (like Java’s 
Comparator interface). To do so, one defines an object 
of type Ordering[myKeyClass] in the scope of the 
function calling sortByKey.

• Recommendation: If you can change the class, 
make it extend Ordered. If you cannot change it, 
use Ordering.
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From sort to secondary sort…



Secondary Sort
• Secondary sort requires two keys: one for grouping the 

data, and the other to locally sort each group. Hence the 
input conceptually is a set of (k1, k2, v) triples. How can 
secondary sort be implemented?

• We could perform a full sort on composite key (k1, k2).
– The drawbacks of this approach are (1) that we waste resources 

to sort on k1, even though we only need to group by it, and (2) 
that the range partitions might separate keys belonging to the 
same group. The latter is particularly undesirable, because 
secondary sort is generally applied with the goal of performing 
some operation on the (entire) sorted group.

• Both drawbacks can be addressed by partitioning the data 
on k1 and sorting each partition on k2.
– A simple hash Partitioner suffices, avoiding the cost of finding 

approximate quantiles.
– The sorting part is more subtle as we discuss next.
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Where to Sort?
• This is the obvious approach: the first round of tasks partitions the 

data, while sorting happens in the next round. As the example 
illustrates, this can result in high sort cost for tasks receiving bigger 
groups, e.g., when the input is skewed on key k1.
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B, 4 B, 6 C, 3 C, 1 A, 1 D, 1 B, 7 B, 2 B, 5 B, 1 C, 2 B, 3Input (only keys shown)

Partition by k1

Sort groups by k2, 
task 0

h(A) mod 2 = 0
h(B) mod 2 = 1
h(C) mod 2 = 0
h(D) mod 2 = 1

0: (C, 3), (C, 1)
1: (B, 4), (B, 6)

Partition by k1

0: (A, 1)
1: (B, 7), (B, 2); (D, 1)

Partition by k1

0: (C, 2)
1: (B, 5), (B, 1), (B, 3)

Sort groups by k2, 
task 1

Groups:
[(A, 1)]
[(C, 1), (C, 2), (C, 3)]

Groups:
[(B, 1), (B, 2), (B, 3), (B, 4), (B, 5), (B, 6), (B, 7)]
[(D, 1)]



Where to Sort?
• This version already sorts each output partition in the Mappers by 

k2. Now the cost for sorting k1=B is spread over multiple tasks in 
round 1. Task 1 in round 2 simply merges the pre-sorted B-records. 
In addition to better load distribution, this also simplifies the 
implementation in MapReduce.
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B, 4 B, 6 C, 3 C, 1 A, 1 D, 1 B, 7 B, 2 B, 5 B, 1 C, 2 B, 3Input (only keys shown)

Partition by k1, 
sort by k2

Merge groups, 
task 0

h(A) mod 2 = 0
h(B) mod 2 = 1
h(C) mod 2 = 0
h(D) mod 2 = 1

0: (C, 1), (C, 3)
1: (B, 4), (B, 6)

Partition by k1, 
sort by k2

0: (A, 1)
1: (B, 2), (B, 7); (D, 1)

Partition by k1, 
sort by k2

0: (C, 2)
1: (B, 1), (B, 3), (B, 5)

Merge groups, 
task 1

Groups:
[(A, 1)]
[(C, 1), (C, 2), (C, 3)]

Groups:
[(B, 1), (B, 2), (B, 3), (B, 4), (B, 5), (B, 6), (B, 7)]
[(D, 1)]



Secondary Sort in MapReduce
• How can we implement this idea in MapReduce?
• We illustrate this with weather observations of 

type (station, date, temperature). (In practice 
there will be more fields). Our goal is to compute 
the temperature change between all consecutive 
measurements by the same station. For 
simplicity, assume there is at most one 
temperature reported per station and date.

• Recall that secondary sort uses two keys, but 
MapReduce allows only one key per record. We 
want to implement this in a single MapReduce 
job.
– What should be the intermediate key of this job?
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First Attempt: Station as Key

• Since we want to group the data by station, 
station would be a natural choice for the 
intermediate key. This way all weather reports 
from the same station end up in the same Reduce 
call. Unfortunately, they are not sorted by date.

– Sorting then must happen in user code, requiring non-
trivial logic if the Reduce input list does not fit in 
memory.
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map( station S, date D, temperature T )
emit( S, (D, T) )

reduce( station S, [(D1, T1), (D2, T2),…] )
L = load all (D, T) pairs into memory
Sort L on the D field
Iterate through L and emit all (S, T[i] –T[i-1])



Second Attempt: (Station, Date) as Key
• When using composite key (station, date), Mappers automatically 

sort and partition on the two fields. The sorting on date is exactly 
what we wanted, when data for the same station is assigned to the 
same Reduce task.
– Recall that Mappers sort all data going to the same Reduce task by key.
– The Reducers then simply merge the pre-sorted runs, which is cheaper 

than sorting.

• Unfortunately, there are two drawbacks:
– Each Reduce call gets only reports from a single date, i.e., it cannot 

produce temperature differences. In-reducer combining could fix this.
– The Partitioner might assign records of the same station to different 

Reduce tasks. Then even a task-level data structure cannot put reports 
from the same station together across different Reducers.
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map( station S, date D, temperature T )
emit( (S, D), T )

reduce( (station S, date D), [T] )
// We only have the temperature from a 

single date
// How can we access the other dates for 

the same station?



Second Attempt—Problem Solved?
• We can use in-reducer combining, like in-

mapper combining, to keep track of “state” 
across the different Reduce calls.

• For this to work, we need the right 
Partitioner that ensures that all dates for a 
given station are assigned to the same 
Reduce task. Any Partitioner that only 
considers the station field for partition 
assignment will have this property.

• Since all Reduce calls in the same task are 
executed in key order, we can collect the 
data in the right order from the Reduce calls.

• This looks a bit clumsy and incurs 
unnecessary overhead for executing many 
Reduce calls, each doing trivial work.
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map( station S, date D, temperature T )
emit( (S, D), T )

getPartition( (station S, date D) )
return myPartitionFct( S )

Class Reducer {
currentStation
lastTemp

setup() {
currentStation = NULL
lastTemp = NULL

}

reduce( (station S, date D), [T] ) {
if (S <> currentStation)
// New station found.
currentStation = S
lastTemp = T

else { // Another call for current station
emit( S, T – lastTemp)
lastTemp = T

}

cleanup() {}
}

keyComparator( (station S, date D) )
// Sorts on station first.
// If the station is equal, sorts on date



Third Attempt: Best of Both Worlds

• We use the same Mapper, Partitioner, and key 
comparator as for the second attempt, but will 
essentially use the Reducer from the first 
attempt (without the need for sorting in user 
code).

• To make this work, we need a special grouping 
comparator. It determines which key-value 
pairs are passed to the same Reduce function 
call.
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Pseudo-Code for Third Attempt
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map( station S, date D, temperature T )
emit( (S, D), T )

getPartition( (station S, date D) )
return myPartitionFct( S )

keyComparator( (station S, date D) )
// Sorts on station first.
// If the station is equal, sorts on date

groupingComparator( (station S, date D) )
// Considers station only.
// Hence two keys with the same station
// are considered identical, no matter the
// date.

reduce( station S, [(D1, T1), (D2, T2),…] )
for each (Di, Ti) in input list

emit( S, Ti – Ti-1)



How Does this Actually Work?
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Key: station Key: date Value: temperature

S1 2011 80

S1 2013 65

S1 2013 70

S2 2010 75

S2 2010 80

S2 2012 71

Assume Reduce task 0 received the example records below from the 
Mappers. Notice that these records are sorted based on the key comparator 
(sorted first by station, then by date).



Example (Cont.)
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Without the special grouping comparator, there is one Reduce call per 
distinct (station, date) pair.

Reduce call for key 
(S1, 2011)

Reduce call for key 
(S1, 2013)

Reduce call for key 
(S2, 2010)

Reduce call for key 
(S2, 2012)

Key: station Key: date Value: temperature

S1 2011 80

S1 2013 65

S1 2013 70

S2 2010 75

S2 2010 80

S2 2012 71



Example (Cont.)
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With the special grouping comparator, keys such as (S1, 2011) and (S1, 2013) 
are considered identical. Hence, they are processed in the same Reduce 
function call. In general, there is only a single Reduce function call per 
station.

Reduce call for key 
(S1, *)

Reduce call for key 
(S2, *)

Key: station Key: date Value: temperature

S1 2011 80

S1 2013 65

S1 2013 70

S2 2010 75

S2 2010 80

S2 2012 71



Real Code

• Take a look at the secondary sort program 
example from Tom White’s book at 
http://khoury.northeastern.edu/home/mirek/
code/MaxTemperatureUsingSecondarySort.jav
a
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http://khoury.northeastern.edu/home/mirek/code/MaxTemperatureUsingSecondarySort.java


Secondary Sort in MapReduce Summary

• The general design pattern for secondary sort is as 
follows:
– To partition by key k1 and sort each k1-group by another 

key k2, make (k1, k2) the intermediate key.
– Define a key comparator to order by composite key (k1, 

k2).
– Define Partitioner and grouping comparator for key (k1, 

k2) to consider only k1 for partitioning and grouping: Their 
getPartition and compareTo functions should ignore k2.

• Secondary sort is also useful for finding the greatest or 
smallest value of key k2 for each key k1. However, since 
MIN and MAX can be found trivially in linear time in 
the Reduce function input list, using only constant 
space to hold the current MIN/MAX, secondary sort is 
not necessarily faster.
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Secondary Sort in a DBMS
• In SQL, GROUP BY cannot return individual 

records in a group, but only a single record 
representing an aggregate for the group. Given a 
relation R with schema (k1, k2, value), the closest 
to secondary sort would be SELECT * FROM R 
ORDER BY k1, k2. However, this would not 
compute the desired temperature differences.

• With the introduction of window functions in 
SQL:2003, one can now write a query like SELECT 
k1, value - lag(value) OVER (PARTITION BY k1 
ORDER BY k2) FROM D. The lag() function returns 
the value of the previous entry in the same 
partition.
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Secondary Sort in Spark Scala
• For pair RDDs, secondary sort can be achieved using the  

repartitionAndSortWithinPartitions(partitionerObject) 
transformation. It partitions the RDD using the specified 
Partitioner and sorts each partition by the key.
– From the Spark 2.3.0 API (as of September 2018): “This is more 

efficient than calling repartition and then sorting within each 
partition because it can push the sorting down into the shuffle 
machinery.”

• Interestingly, when using DataSet, one can write window 
functions like in SQL:2003, using 
org.apache.spark.sql.expressions.Window
– Define the DataSet with schema (k1, k2, value)
– val groupedSorted = Window.partitionBy(k1).orderBy(k2)
– val diff = lag(value, 1).over(groupedSorted)

54



55

Time to wrap up this module.



Module Summary: Local Aggregation
• Opportunities to perform local aggregation vary depending on problem 

type and data distribution.
• Combiners can significantly reduce cost by decreasing the amount of data 

sent from Mappers to Reducers. Unfortunately, the programmer cannot 
control if and when a Combiner will be executed by Hadoop.

• In-mapper combining can be used instead of a Combiner. It gives the 
programmer explicit control but requires changes to the Mappers.

• Both Combiners and in-mapper combining are only applicable for certain 
types of aggregate functions. And they are only effective if many Map 
output records in the same Map task have the same key.

• In Spark, when using pair RDDs, use specialized aggregation operations 
such as reduceByKey, foldByKey, and aggregateByKey. They perform the 
equivalent of in-mapper combining—in contrast to using groupByKey
followed by aggregation.

• When using DataSets, DataSet.groupBy.agg is the right approach. Here the 
optimizer automatically determines that “in-mapper combining” can be 
applied.
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Module Summary: Sorting
• In MapReduce, it is best to let the system take 

care of all sorting, using its highly optimized key-
sorting algorithm during the shuffle phase. This 
eliminates the need for sorting in user code.
– To do this, sort uses the identity function for both 

Map and Reduce, relying on range partitioning for 
correctness.

– Secondary sort requires the secondary key to be part 
of the intermediate key. For correctness, Partitioner
and grouping comparator need to ignore the 
secondary key.

• In Spark, one should choose the corresponding 
built-in functionality for sort and secondary sort.
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