
Fundamental Techniques

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Key Learning Goals

• Write the Map and Reduce functions for
sorting in MapReduce. Does the choice of
Partitioner matter?

• Does secondary sort require a special type of
Partitioner, or could even the simple default
hash Partitioner work?

• Why do we not just implement secondary sort
as a total sort on a composite key?

• What is the difference between sort and
secondary sort? Explain, using an example.

2

Key Learning Goals
• How do we implement a Combiner in Spark

Scala?

• Which of the following pair-RDD operations
performs per-partition aggregation during the
grouping stage, before shuffling:
groupByKey().reduce(), reduceByKey, foldByKey,
aggregateByKey?

• Is DataSet’s groupBy(…).agg(…) performing per-
partition aggregation before shuffling? Is it
removing data columns that are neither in the
grouping list nor appear in the aggregation-
column list?

3

Introduction

• We discuss three fundamental techniques that
appear in many big-data analysis problems:

– Aggregation (with or without grouping)

– Sort

– Secondary sort

• Each of them highlights interesting aspects of
the underlying system infrastructure.

4

Aggregation

• For aggregation, we return to the Word Count
program.

– Recall that it determines the total number of
occurrences of each word in a collection of
documents.

• We will pay particular attention to the
question of how to ensure that data will be
aggregated as early as possible.

• First, recall the desired distributed execution.

5

Refresh: Word Count

6

b a c cInput (a letter represents a word)

Local counting
task 0

Local counting
task 1

Local counting
task 2

(a,1), (b, 1), (c, 2) (b, 3), (c, 1)(a,1), (b, 1), (c, 1), (d, 1)

Summation
task 0

Summation
task 1

h(a) mod 2 = 0
h(b) mod 2 = 1
h(c) mod 2 = 0
h(d) mod 2 = 1

Shuffle

(b, 5), (d, 1)(a,2), (c, 4)Final output: (word, count) pairs

a c d b b b c b

Early-Aggregation Opportunities
• Consider local counting task 2. It should send (b, 3), not 3 times (b,

1), to the summation task.
– Replacing k times (word, 1) by a single record (word, k) will reduce

network traffic k-fold. It also reduces the cost for the summation task
for receiving the data, merging the data (it is more likely to fit in
memory or require fewer passes), and final aggregation.

– On the downside, aggregation increases CPU cost for the local
counting task.

• What if local counting tasks 0 and 2 are executed on the same
machine—should we aggregate across tasks?
– No. This complicates system design, because the tasks would have to

agree on the final counts. What if one task fails half-way and the other
succeeds? What if one gets re-scheduled on a different machine, but
not the other?

• In summary, we want to aggregate within each local counting task,
but aggregation across tasks is left to the summation tasks.

7

Early Aggregation in MapReduce
• In MapReduce, local aggregation happens in Map tasks,

before transferring the data to the Reducers. Hence we
want to aggregate counts for all words that appear in the
same input split.

• In Hadoop MapReduce, each map function call sees only a
single line of text. Hence it cannot aggregate across
different lines.

• We saw the Combiner feature, which elegantly supports
the desired per-split aggregation.
– Unfortunately, the Combiner cannot be controlled by the user:

the MapReduce system decides when and on which Map output
records the Combiner is executed. It might not be executed at
all. Or it might be executed only on some subset of the output
records, e.g., only the records currently in memory. And it might
be executed multiple times, possibly reading records output by
an earlier Combiner execution together with “fresh,” recently
emitted records.

8

Combiner Execution Options

9

Input
split

M
a
p

Buffer in
memory

R
e
d
u
c
e

merge

merge

merge

Output

Map task Reduce task
Spill files on
disk: partitioned
by reduce task,
each partition
sorted by key

Spilled to a
new disk
file when
almost full

Spill files merged
into single output
file

Fetch over HTTP

Merge happens in
memory if data fits,
otherwise also on disk

The Combiner could be executed on some
or all records in any of these locations, at
any time, as often as desired.

Illustration based on White’s book

10

How can the programmer take more
control of combining?

Original MapReduce Program

• This version of the program does not
aggregate any counts in the Mapper. It would
need a Combiner.

11

map(offset B, line L)
for each word x in L do

emit(x, 1)

reduce(word x, [c1, c2,…])
total = 0
for each c in input list do

total += c
emit(x, total)

Tally Counts Per Line

• Our first attempt combines counts inside a single Map function call.
To do so, we need a data structure in Map that tracks the word
occurrences in the input line. The Reduce function does not change.

• While simple, this modification will typically not be very effective,
because it combines the counts only within a single line of text.

• To increase combining opportunities, we would like to aggregate
counts across the entire Map input split, not just a single line.

12

map(offset B, line L)
h = new hashMap // stores count for each word in line L
for each word x in L do

h[x]++
for each word x in h do

emit(x, h[x])

Tally Counts Per Map Task
• To aggregate counts across the entire Map task input

split, we must work at the task level, i.e., above
individual Map calls. We need a data structure H that
is a private member of the Mapper class and can be
updated by each Map call in the same task.
– Notice that H is local to a single task and only accessed by a

single thread, i.e., it does not introduce any inter- or intra-
task synchronization issues.

• H must be initialized before the first Map function call
in the task. This is done in the setup() function, which
is guaranteed to be executed when the task starts,
before any of the Map calls.

• Each Map function call then updates the counts for the
words it finds in its input line. However, it does not
emit any output!

• To emit the final tally for the entire task, the counts in
H must be emitted after the last Map call in the task
has completed. This is achieved by “emptying out” the
contents of H in the cleanup() function of the Mapper
class. Cleanup() is guaranteed to be executed after the
last Map call.

• The Reducer remains unchanged.

13

Class Mapper {
hashMap H

setup() {
H = new hashMap

}

map(offset B, line L) {
for each word x in L do

H[x]++
}

cleanup() {
for each word x in H do

emit(x, H[x])
}

}

Summary of the Design Pattern for Local
Aggregation

• The tally-per-task version of Word Count is an example for the in-
mapper combining design pattern. Its main idea is to preserve state
at the task level, across all Map calls in the same task. This pattern
can also be applied to Reduce tasks.

• Advantages over using Combiners:
– The Combiner does not guarantee if, when, or how often it will be

executed.
– A Combiner combines data after it was generated. In-mapper

combining avoids generating large amounts of intermediate data by
immediately aggregating it as it is produced by a Map call. This often
reduces local CPU and disk I/O cost for the Mappers.

• Drawbacks compared to Combiners:
– In-mapper-combining code needs to be integrated with the Mapper

code, increasing code complexity and hence the probability of
introducing errors.

– It needs more memory for managing state, e.g., to hold the hashMap
H in memory. If the data structure used for in-mapper combining
exceeds the amount of available memory, the programmer is forced to
write non-trivial memory-management code to page it to disk.

14

15

What is the equivalent of in-mapper
combining in Spark?

Refresher: Word Count in Spark

• In the Spark program, it is not obvious if the
equivalent of a Combiner or in-mapper
combining is used.

• This means that we have to (1) read the
documentation of reduceByKey or (2) find out
by asking Spark to explain the execution to us.

16

val textFile = sc.textFile("hdfs://...")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")

Dissecting ReduceByKey
• ReduceByKey(_ + _) is shorthand for reduceByKey((x,y)

=> (x+y)). It iterates through a list of values, adding
them one-by-one, as illustrated below.

• Spark understands the semantics of this aggregation
and applies it, like in-mapper combining, to the RDD
partition before shuffling.
– The same holds for foldByKey and aggregateByKey.

• In contrast, groupByKey only performs grouping but no
combining. Hence myRDD.groupByKey().reduce(…) or
similar will perform aggregation only after shuffling,
i.e., does not do the equivalent of in-mapper
combining!

17

1 1 1 1Input list: 1 1 1 1

Reduce(1, 1) = 2

1 1 1 1

Reduce(2, 1) = 3

1 1 1 1

Reduce(3, 1) = 4

Aggregation with DataSets
• The semantics of DataSet functions are a little more

complex. To fully appreciate this, let us use a slightly more
complicated example and compute annual sales using
DataSet myDS with columns (year, month, day, sale).
– Looking at the Spark Scala API, we find various versions of

function agg. While powerful and flexible, it only supports
aggregation across the entire dataset, not for separate groups.

– Function groupBy creates groups based on any column(s).
– Putting both together, we find the solution:

myDS.groupBy(“year”).sum(“sale”)

• Challenge question: Will myDS.groupBy(“year”).sum(“sale”)
perform combining or not? (Recall that pair RDD’s
groupByKey did not perform combining.) What happens to
columns month and day? Are they in the output? Are they
removed before shuffling?

18

DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation

function and that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like

Reduce).

19

val myDS = sc.parallelize(Seq((“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4))).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)

DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation

function and that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like

Reduce).

20

val myDS = sc.parallelize(Seq((“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4))).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)

DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation

function and that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like

Reduce).

21

val myDS = sc.parallelize(Seq((“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4))).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)

DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation

function and that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like

Reduce).

22

val myDS = sc.parallelize(Seq((“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4))).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)

Stage 2:

Partition 0: (x2, 3)
1. Group by x-column and sum the z-

values in each group: (x2, 3)

Partition 1: (x1, 3), (x1, 4)
1. Group by x-column and sum the z-

values in each group: (x1, 7)

Partition(x1) = 1
Partition(x2) = 0

(x1, 3)

(x1, 4)

(x2, 3)

DataSet Aggregation in Depth
• Try the code below in the Spark shell and look at the explanation. Read it

from bottom to top—it should say something like this:
– …SerializeFromObject turns the sequence into a DataSet.
– Project[_1 …, _3…] projects away all columns except for 1 (x) and 3 (z), which

are needed for the aggregate.
– HashAggregate(keys=…, functions=…) indicates grouping key and aggregation

function and that aggregation happens locally (like a Combiner).
– Exchange hashpartitioning(…) indicates shuffling using hash partitioning.
– HashAggregate(keys=…, functions=…) is the final aggregation per group (like

Reduce).

23

val myDS = sc.parallelize(Seq((“x1”, “y1”, 1), (“x1”, “y2”, 2), (“x2”, “y3”, 3), (“x1”, “y4”, 4))).toDF(“x”, “y”, “z”)
myDS.groupBy(“x”).agg(sum($”z”)).explain

Stage 1:

Partition 0: (x1, y1, 1), (x1, y2, 2)
1. Remove y-column: (x1, 1), (x1, 2)
2. Group by x-column and sum the z-

values in each group: (x1, 3)

Partition 1: (x2, y3, 3), (x1, y4, 4)
1. Remove y-column: (x2, 3), (x1, 4)
2. Group by x-column and sum the z-

values in each group: (x2, 3), (x1, 4)

Stage 2:

Partition 0: (x2, 3)
1. Group by x-column and sum the z-

values in each group: (x2, 3)

Partition 1: (x1, 3), (x1, 4)
1. Group by x-column and sum the z-

values in each group: (x1, 7)

Partition(x1) = 1
Partition(x2) = 0

(x1, 3)

(x1, 4)

(x2, 3)

More DataSet Subtleties
• You might think that applying a function to a DataSet will

create another DataSet—like relational operators applied
to relations will always produce relations. And you will
often be right…

• …but not always. For example, groupBy(…) returns a result
of type RelationalGroupedDataset, representing a DataSet
that is grouped by some column(s). Why do we need this?
– Consider myDS.sum(…) and myDS.groupBy(…).sum(…). If myDS

is a “simple” DataSet, then the former computes the sum over
the entire DataSet, while the latter computes a sum for each
group. If myDS is of type RelationalGroupedDataset, then
myDS.sum(…) computes the sum for each group.

• In short, you must gain a deep understanding of Spark in
order to know what really happens internally. Become
familiar with the explain function—it provides useful
information about the execution of your program.

24

25

Let us move on to distributed sorting.

Distributed Sort
• Sorting is one of the most widely used data-processing operations.

How can we sort big data in parallel? First attempt:
– Since data is already managed as file splits, each task could sort a split

locally.
– Then the sorted splits (called “runs”) are merged, maybe in multiple

passes.

• It is easy to see that the local sorting parallelizes nicely. How about
the merge phase?
– No matter how many rounds of merging we consider, at the end a

single task will have to perform the final merge on the entire dataset.
– This results in poor speedup and does not use multiple workers

effectively.

• Can we avoid the merge phase?
– Yes, ask long as we partition the data in a clever way.

26

Distributed Sorting Through Range-
Partitioning

• Consider a simple scenario with 2 tasks sorting [5, 2, 4, 6, 1,
3]. If all small numbers, i.e., [2, 1, 3], are assigned to task 0
and all large numbers, i.e., [5, 4, 6] to task 1, then sorting is
easy:
– Task 0 sorts locally and writes [1, 2, 3] to output0.
– Task 1 sorts locally and writes [4, 5, 6] to output1.
– Sorted output [1, 2, 3, 4, 5, 6] is obtained by “concatenating”

output0 with output1. This is a constant-time operation and
requires no merging.

• The challenge is to separate the given data into “small” and
“large” numbers, which is called range partitioning. Range
partitioning ensures that if records i and k, i  k, are
assigned to a partition, then all records j between them,
i.e., i  j  k, will be assigned to that same partition.

• We also want the different partitions to be of the same
size, so that the local sort work is evenly distributed.

27

Challenge Question

• Where have you seen this sorting idea before?

1. Bubble sort

2. Merge sort

3. Quicksort

4. Heapsort

28

Challenge Question

• Where have you seen this sorting idea before?

1. Bubble sort

2. Merge sort

3. Quicksort

4. Heapsort

29

In Quicksort, a pivot element is selected and then the data array is re-
shuffled so that all elements less than or equal to the pivot come before
all those greater than the pivot. Then each of these “halves” of the array
is recursively sorted the same way. The ideal choice of pivot element is

the data median, i.e., the element with the property that as many other
elements are smaller than it as there are elements larger than it.

Range-Partitioning in MapReduce:
“Explicit” Approach

• Assume we want to sort key-value pairs by key, using two tasks. First, we find the
median of the keys. Exact median computation is expensive, but it can be
estimated reliably and cheaply through sampling.
– To ensure uniform random sampling, all splits of the input data must be accessed. We can

reduce cost by sampling from only a few splits, but this might result in a sample that does not
represent the entire distribution well.

– After obtaining a sample that fits in memory, this sample can be sorted on a single worker. The
median of the sample is an approximation for the true median.

• Once we know the (approximate) median, we can use the program below to sort
the input. All small keys are processed by the Reduce call for intermediate key 0,
all larger ones by the one for key 1. There is more to this program:
– We also need a Partitioner that assigns the smaller input keys to lower task numbers to ensure

ordering across tasks.
– The approach generalizes to more partitions by using more quantiles, not just the median.

• The Reduce function below assumes that its input fits in memory. If not, then
smaller partitions need to be created by using more quantiles; or a disk-based sort
implementation is needed.

30

map(key k, value v)
if (k < median)
emit(0, (k, v))

else
emit(1, (k, v))

reduce(partitionNumber, [(r1.key, r1.value), (r2.key, r2.value),…])
load the value list into memory and sort it on r.key
for each record r in the sorted list
emit(r)

Challenge Question

• What could go wrong if the median is
determined from a few file splits only?

– Consider a file that is already sorted and assume
we only access the first out of a thousand splits.
Instead of sampling uniformly from the entire key
distribution, we would only sample from the
smallest 1/1000-th. This sample would provide a
poor representation of the entire distribution,
because it does not contain any of the larger keys.

31

Challenge Question

• What could go wrong if the median is
determined from a few file splits only?

– Consider a file that is already sorted and assume
we only access the first out of a thousand splits.
Instead of sampling uniformly from the entire key
distribution, we would only sample from the
smallest 1/1000-th. This sample would provide a
poor representation of the entire distribution,
because it does not contain any of the larger keys.

32

Range-Partitioning in MapReduce:
“Minimalist” Approach

• This approach is more elegant and exploits that the MapReduce system
guarantees that for each Reduce task, the assigned set of intermediate
keys is processed in key order. We leverage this guarantee for sorting,
taking advantage of the fact that MapReduce is already optimized for
dealing with big data.

• The program below shows how this is done. Map and Reduce both emit
their input 1-to-1, i.e., they are identity functions. The “magic” of this
program lies in the Partitioner’s getPartition function, which assigns the
small keys to Reduce task 0 and the large ones to Reduce task 1. Since
Reduce function calls in a task are processed in key order, all records are
correctly sorted by input key.
– We need an appropriate key comparator. Since Hadoop MapReduce keys must

implement WritableComparable, they have a compareTo function.

• This idea generalizes to arbitrary range partitions, e.g., quantiles. Instead
of an explicit if-then-else or case statement in getPartition, Hadoop
already offers the TotalOrderPartitioner class to assign key ranges to
Reduce tasks.

33

map(key k, value v)
emit(k, v)

reduce(key k, [v1, v2,…])
for each value v in the input list

emit(k, v)

getPartition(key k)
if (k < median) return 0
else return 1

Challenge Question

• Look at the sort program code in the Hadoop
distribution and find the following:

– How does it determine the approximate
quantiles?

– How are they passed to the TotalOrderPartitioner?

– Where are Mapper and Reducer class defined?

• You can find a copy of the file from Hadoop
3.1.1 at
http://khoury.northeastern.edu/home/mirek/
code/Sort.java

34

http://khoury.northeastern.edu/home/mirek/code/Sort.java

Sort in a DBMS

• In SQL, sorting is done with the ORDER BY
clause. Given a relation R with schema (key,
value), the query is

– SELECT * FROM R ORDER BY key.

• The implementation will be chosen
automatically by the optimizer. If the data is
already range-partitioned, the optimizer will
ideally determine that no shuffling is needed.

35

Sort in Spark Scala
• The sortBy(elementFunction) transformation sorts an

RDD by whatever value elementFunction returns for an
element of the RDD. Typically elementFunction
extracts a field embedded in a string or non-scalar data
type such as list or list of lists etc.

• On a pair RDD, transformation sortByKey() will
efficiently sort the data by key.

• For DataSet, the corresponding transformation is
sort(“key”), assuming the DataSet has schema (key,
value).

• Sorting is implemented using range partitioning, with
range boundaries obtained from a sample, as discussed
for MapReduce.

36

Comparators in Scala
• For a class to be orderable, it needs to extend

Scala’s Ordered trait (like Java’s Comparable
interface).
– This means that it must implement the compare

function.

– Or it needs to use Scala’s Ordering trait (like Java’s
Comparator interface). To do so, one defines an object
of type Ordering[myKeyClass] in the scope of the
function calling sortByKey.

• Recommendation: If you can change the class,
make it extend Ordered. If you cannot change it,
use Ordering.

37

38

From sort to secondary sort…

Secondary Sort
• Secondary sort requires two keys: one for grouping the

data, and the other to locally sort each group. Hence the
input conceptually is a set of (k1, k2, v) triples. How can
secondary sort be implemented?

• We could perform a full sort on composite key (k1, k2).
– The drawbacks of this approach are (1) that we waste resources

to sort on k1, even though we only need to group by it, and (2)
that the range partitions might separate keys belonging to the
same group. The latter is particularly undesirable, because
secondary sort is generally applied with the goal of performing
some operation on the (entire) sorted group.

• Both drawbacks can be addressed by partitioning the data
on k1 and sorting each partition on k2.
– A simple hash Partitioner suffices, avoiding the cost of finding

approximate quantiles.
– The sorting part is more subtle as we discuss next.

39

Where to Sort?
• This is the obvious approach: the first round of tasks partitions the

data, while sorting happens in the next round. As the example
illustrates, this can result in high sort cost for tasks receiving bigger
groups, e.g., when the input is skewed on key k1.

40

B, 4 B, 6 C, 3 C, 1 A, 1 D, 1 B, 7 B, 2 B, 5 B, 1 C, 2 B, 3Input (only keys shown)

Partition by k1

Sort groups by k2,
task 0

h(A) mod 2 = 0
h(B) mod 2 = 1
h(C) mod 2 = 0
h(D) mod 2 = 1

0: (C, 3), (C, 1)
1: (B, 4), (B, 6)

Partition by k1

0: (A, 1)
1: (B, 7), (B, 2); (D, 1)

Partition by k1

0: (C, 2)
1: (B, 5), (B, 1), (B, 3)

Sort groups by k2,
task 1

Groups:
[(A, 1)]
[(C, 1), (C, 2), (C, 3)]

Groups:
[(B, 1), (B, 2), (B, 3), (B, 4), (B, 5), (B, 6), (B, 7)]
[(D, 1)]

Where to Sort?
• This version already sorts each output partition in the Mappers by

k2. Now the cost for sorting k1=B is spread over multiple tasks in
round 1. Task 1 in round 2 simply merges the pre-sorted B-records.
In addition to better load distribution, this also simplifies the
implementation in MapReduce.

41

B, 4 B, 6 C, 3 C, 1 A, 1 D, 1 B, 7 B, 2 B, 5 B, 1 C, 2 B, 3Input (only keys shown)

Partition by k1,
sort by k2

Merge groups,
task 0

h(A) mod 2 = 0
h(B) mod 2 = 1
h(C) mod 2 = 0
h(D) mod 2 = 1

0: (C, 1), (C, 3)
1: (B, 4), (B, 6)

Partition by k1,
sort by k2

0: (A, 1)
1: (B, 2), (B, 7); (D, 1)

Partition by k1,
sort by k2

0: (C, 2)
1: (B, 1), (B, 3), (B, 5)

Merge groups,
task 1

Groups:
[(A, 1)]
[(C, 1), (C, 2), (C, 3)]

Groups:
[(B, 1), (B, 2), (B, 3), (B, 4), (B, 5), (B, 6), (B, 7)]
[(D, 1)]

Secondary Sort in MapReduce
• How can we implement this idea in MapReduce?
• We illustrate this with weather observations of

type (station, date, temperature). (In practice
there will be more fields). Our goal is to compute
the temperature change between all consecutive
measurements by the same station. For
simplicity, assume there is at most one
temperature reported per station and date.

• Recall that secondary sort uses two keys, but
MapReduce allows only one key per record. We
want to implement this in a single MapReduce
job.
– What should be the intermediate key of this job?

42

First Attempt: Station as Key

• Since we want to group the data by station,
station would be a natural choice for the
intermediate key. This way all weather reports
from the same station end up in the same Reduce
call. Unfortunately, they are not sorted by date.

– Sorting then must happen in user code, requiring non-
trivial logic if the Reduce input list does not fit in
memory.

43

map(station S, date D, temperature T)
emit(S, (D, T))

reduce(station S, [(D1, T1), (D2, T2),…])
L = load all (D, T) pairs into memory
Sort L on the D field
Iterate through L and emit all (S, T[i] –T[i-1])

Second Attempt: (Station, Date) as Key
• When using composite key (station, date), Mappers automatically

sort and partition on the two fields. The sorting on date is exactly
what we wanted, when data for the same station is assigned to the
same Reduce task.
– Recall that Mappers sort all data going to the same Reduce task by key.
– The Reducers then simply merge the pre-sorted runs, which is cheaper

than sorting.

• Unfortunately, there are two drawbacks:
– Each Reduce call gets only reports from a single date, i.e., it cannot

produce temperature differences. In-reducer combining could fix this.
– The Partitioner might assign records of the same station to different

Reduce tasks. Then even a task-level data structure cannot put reports
from the same station together across different Reducers.

44

map(station S, date D, temperature T)
emit((S, D), T)

reduce((station S, date D), [T])
// We only have the temperature from a

single date
// How can we access the other dates for

the same station?

Second Attempt—Problem Solved?
• We can use in-reducer combining, like in-

mapper combining, to keep track of “state”
across the different Reduce calls.

• For this to work, we need the right
Partitioner that ensures that all dates for a
given station are assigned to the same
Reduce task. Any Partitioner that only
considers the station field for partition
assignment will have this property.

• Since all Reduce calls in the same task are
executed in key order, we can collect the
data in the right order from the Reduce calls.

• This looks a bit clumsy and incurs
unnecessary overhead for executing many
Reduce calls, each doing trivial work.

45

map(station S, date D, temperature T)
emit((S, D), T)

getPartition((station S, date D))
return myPartitionFct(S)

Class Reducer {
currentStation
lastTemp

setup() {
currentStation = NULL
lastTemp = NULL

}

reduce((station S, date D), [T]) {
if (S <> currentStation)
// New station found.
currentStation = S
lastTemp = T

else { // Another call for current station
emit(S, T – lastTemp)
lastTemp = T

}

cleanup() {}
}

keyComparator((station S, date D))
// Sorts on station first.
// If the station is equal, sorts on date

Third Attempt: Best of Both Worlds

• We use the same Mapper, Partitioner, and key
comparator as for the second attempt, but will
essentially use the Reducer from the first
attempt (without the need for sorting in user
code).

• To make this work, we need a special grouping
comparator. It determines which key-value
pairs are passed to the same Reduce function
call.

46

Pseudo-Code for Third Attempt

47

map(station S, date D, temperature T)
emit((S, D), T)

getPartition((station S, date D))
return myPartitionFct(S)

keyComparator((station S, date D))
// Sorts on station first.
// If the station is equal, sorts on date

groupingComparator((station S, date D))
// Considers station only.
// Hence two keys with the same station
// are considered identical, no matter the
// date.

reduce(station S, [(D1, T1), (D2, T2),…])
for each (Di, Ti) in input list

emit(S, Ti – Ti-1)

How Does this Actually Work?

48

Key: station Key: date Value: temperature

S1 2011 80

S1 2013 65

S1 2013 70

S2 2010 75

S2 2010 80

S2 2012 71

Assume Reduce task 0 received the example records below from the
Mappers. Notice that these records are sorted based on the key comparator
(sorted first by station, then by date).

Example (Cont.)

49

Without the special grouping comparator, there is one Reduce call per
distinct (station, date) pair.

Reduce call for key
(S1, 2011)

Reduce call for key
(S1, 2013)

Reduce call for key
(S2, 2010)

Reduce call for key
(S2, 2012)

Key: station Key: date Value: temperature

S1 2011 80

S1 2013 65

S1 2013 70

S2 2010 75

S2 2010 80

S2 2012 71

Example (Cont.)

50

With the special grouping comparator, keys such as (S1, 2011) and (S1, 2013)
are considered identical. Hence, they are processed in the same Reduce
function call. In general, there is only a single Reduce function call per
station.

Reduce call for key
(S1, *)

Reduce call for key
(S2, *)

Key: station Key: date Value: temperature

S1 2011 80

S1 2013 65

S1 2013 70

S2 2010 75

S2 2010 80

S2 2012 71

Real Code

• Take a look at the secondary sort program
example from Tom White’s book at
http://khoury.northeastern.edu/home/mirek/
code/MaxTemperatureUsingSecondarySort.jav
a

51

http://khoury.northeastern.edu/home/mirek/code/MaxTemperatureUsingSecondarySort.java

Secondary Sort in MapReduce Summary

• The general design pattern for secondary sort is as
follows:
– To partition by key k1 and sort each k1-group by another

key k2, make (k1, k2) the intermediate key.
– Define a key comparator to order by composite key (k1,

k2).
– Define Partitioner and grouping comparator for key (k1,

k2) to consider only k1 for partitioning and grouping: Their
getPartition and compareTo functions should ignore k2.

• Secondary sort is also useful for finding the greatest or
smallest value of key k2 for each key k1. However, since
MIN and MAX can be found trivially in linear time in
the Reduce function input list, using only constant
space to hold the current MIN/MAX, secondary sort is
not necessarily faster.

52

Secondary Sort in a DBMS
• In SQL, GROUP BY cannot return individual

records in a group, but only a single record
representing an aggregate for the group. Given a
relation R with schema (k1, k2, value), the closest
to secondary sort would be SELECT * FROM R
ORDER BY k1, k2. However, this would not
compute the desired temperature differences.

• With the introduction of window functions in
SQL:2003, one can now write a query like SELECT
k1, value - lag(value) OVER (PARTITION BY k1
ORDER BY k2) FROM D. The lag() function returns
the value of the previous entry in the same
partition.

53

Secondary Sort in Spark Scala
• For pair RDDs, secondary sort can be achieved using the

repartitionAndSortWithinPartitions(partitionerObject)
transformation. It partitions the RDD using the specified
Partitioner and sorts each partition by the key.
– From the Spark 2.3.0 API (as of September 2018): “This is more

efficient than calling repartition and then sorting within each
partition because it can push the sorting down into the shuffle
machinery.”

• Interestingly, when using DataSet, one can write window
functions like in SQL:2003, using
org.apache.spark.sql.expressions.Window
– Define the DataSet with schema (k1, k2, value)
– val groupedSorted = Window.partitionBy(k1).orderBy(k2)
– val diff = lag(value, 1).over(groupedSorted)

54

55

Time to wrap up this module.

Module Summary: Local Aggregation
• Opportunities to perform local aggregation vary depending on problem

type and data distribution.
• Combiners can significantly reduce cost by decreasing the amount of data

sent from Mappers to Reducers. Unfortunately, the programmer cannot
control if and when a Combiner will be executed by Hadoop.

• In-mapper combining can be used instead of a Combiner. It gives the
programmer explicit control but requires changes to the Mappers.

• Both Combiners and in-mapper combining are only applicable for certain
types of aggregate functions. And they are only effective if many Map
output records in the same Map task have the same key.

• In Spark, when using pair RDDs, use specialized aggregation operations
such as reduceByKey, foldByKey, and aggregateByKey. They perform the
equivalent of in-mapper combining—in contrast to using groupByKey
followed by aggregation.

• When using DataSets, DataSet.groupBy.agg is the right approach. Here the
optimizer automatically determines that “in-mapper combining” can be
applied.

56

Module Summary: Sorting
• In MapReduce, it is best to let the system take

care of all sorting, using its highly optimized key-
sorting algorithm during the shuffle phase. This
eliminates the need for sorting in user code.
– To do this, sort uses the identity function for both

Map and Reduce, relying on range partitioning for
correctness.

– Secondary sort requires the secondary key to be part
of the intermediate key. For correctness, Partitioner
and grouping comparator need to ignore the
secondary key.

• In Spark, one should choose the corresponding
built-in functionality for sort and secondary sort.

57

