
The multiplicative weight algorithms

Huy L. Nguy�ên

This time we will take an opposite approach to uncertainty and do not assume any knowledge

about future outcomes. One reason for the lack of knowledge is the lack of resources: we might not

have the resources to consider all possible future outcomes, learn the probability distributions, and

maximize the expected utility.

1 Weighted majority

We will illustrate the algorithm with a concrete example. Assume that we are interested in the price

of one particular stock. Everyday, the stock can either move up or down. Each morning, we would

like to predict the stock movement for that day. Since we do not know anything about the stock,

we can watch n di�erent experts giving their predictions. The goal is to minimize the number of

mistakes.

Question. What would be a good performance? Can we aim to make fewer than, say 40%
mistakes?

Our target is to do as well as possible compared with the best expert in hindsight.

One idea is to follow the majority vote of the experts. However, this does not work because it

is possible that most experts are consistently wrong on most days and just one expert is correct on

all days. If we follow the majority, we will also be wrong most of the times.

The second idea is to follow the best expert so far (in case of tie, we will follow the one with the

minimum index). Consider the following simple example. The stock moves up every day. There

are 3 experts. Expert 1 predicts the stock to go down on days 2, 5, 8, 11, . . . Expert 2 predicts the

stock to go down on days 3, 6, 9, 12, . . . Expert 3 predicts the stock to go down on days 4, 7, 10, . . ..
On day 2, we follow expert 1 and guess wrong. On day 3, we follow expert 2 and guess wrong. On

day 4, we follow expert 1 and guess wrong. The cycle then repeats. We are always wrong but the

experts are correct roughly 2/3 of the times. By increasing the number of experts, we are always

wrong but the experts are wrong roughly T/n of the times.

The third idea is to reweight the experts gradually as we learn more about the performance in

the past. We consider the following algorithm:

Theorem 1.1. Let m
(t)
i be the number of mistakes of expert i after t steps. Let M (t) be the number

of mistakes our algorithm makes after t steps. We have the following bound for every i:

M (T ) ≤ 2(1 + ε)m
(T )
i +

2 lnn

ε

Proof. Consider the potential function Φ(t) =
∑n

i=1w
(t)
i . We will show that

• when we are wrong, the potential decreases.

• if there is a good expert, the potential cannot be too small.

1



Algorithm 1 Weighted majority.

1: Initialize weights w
(0)
i = 1 ∀i ∈ {1, 2, . . . , n} and a constant ε ∈ (0, 1/2).

2: for t from 1 to T do

3: Make the prediction by the majority vote weighted by the weights w
(t−1)
i

4: After the result is revealed, set

a
(t)
i =

{
1 if i is wrong

0 otherwise

5: Update w
(t)
i ← w

(t−1)
i (1− ε · a(t)

i )
6: end for

• conclude that we cannot be wrong too often.

Consider an iteration t where we are wrong. It must be the case that the weighted majority of

the experts are wrong. Thus, at least half of the weight decreases by a factor 1− ε. Thus, the total
weight decreases by at least a factor 1− ε/2:

Φ(t) ≤ Φ(t−1)(
1

2
+

1− ε
2

) = Φ(t−1)(1− ε/2)

Thus, by induction, we get Φ(T ) ≤ n(1− ε/2)M
(T )

.

For the second step, observe that Φ(T ) ≥ w(T )
i = (1− ε)m

(T )
i . This is because w

(0)
i = 1 and it is

decreases by a factor 1− ε every time expert i is wrong. Combining the two inequalities, we obtain

(1− ε)m
(T )
i ≤ n(1− ε/2)M

(T )

m
(T )
i ln(1− ε) ≤ lnn+M (T ) ln(1− ε/2)

m
(T )
i

− ln(1− ε)
− ln(1− ε/2)

+
lnn

− ln(1− ε/2)
≥M (T )

Observe that −x−x2 ≤ ln(1−x) ≤ −x ∀x ∈ (0, 1/2] so − ln(1−ε) ≤ ε+ε2 and − ln(1−ε/2) ≥
ε/2. Substituting these facts into the last line above, we obtain the theorem.

2 Randomized weighted majority

In this section, we will develop a new algorithm that avoids the factor 2 in the number of mistakes

we su�er compared with the best expert. This is because we do not consider how strong the majority

vote is (it could be 99 vs 1 or 51 vs 49). Instead, we will use a randomized strategy that follow the

majority vote with probability proportional to its weight. Note that this can also be interpreted as

following a random expert with probability proportional to his weight.

Theorem 2.1. Let m
(t)
i be the number of mistakes of expert i after t steps. Let M (t) be the expected

number of mistakes our algorithm makes after t steps. We have the following bound for every i:

M (T ) ≤ (1 + ε)m
(T )
i +

lnn

ε

2



Algorithm 2 Randomized weighted majority.

1: Initialize weights w
(0)
i = 1 ∀i ∈ {1, 2, . . . , n} and a constant ε ∈ (0, 1/2).

2: for t from 1 to T do

3: Pick expert i with probability
w

(t−1)
i

Φ(t−1) and follow his prediction.

4: After the result is revealed, set

a
(t)
i =

{
1 if i is wrong

0 otherwise

5: Update w
(t)
i ← w

(t−1)
i (1− ε · a(t)

i )
6: end for

Proof. On day t the probability that we make mistake is

b(t) =
n∑
i=1

Pr[we follow expert i and i is wrong] =

n∑
i=1

w
(t−1)
i a

(t)
i

Φ(t−1)

We have

Φ(t) =
n∑
i=1

w
(t−1)
i (1− εa(t)

i )

=
n∑
i=1

w
(t−1)
i − ε

n∑
i=1

w
(t−1)
i a

(t)
i

= Φ(t−1)(1− εb(t))
≤ Φ(t−1) exp(−εb(t))

Thus, by induction, we get Φ(T ) ≤ n exp(−εM (T )).

Observe that Φ(T ) ≥ w(T )
i = (1− ε)m

(T )
i . This is because w

(0)
i = 1 and it is decreases by a factor

1− ε every time expert i is wrong. Combining the two inequalities and taking the log of both sides,

we obtain

(1− ε)m
(T )
i ≤ n exp(−εM(T )

)

m
(T )
i ln(1− ε) ≤ lnn− εM (T )

M (T ) ≤ m(T )
i

− ln(1− ε)
ε

+
lnn

ε

Observe that − ln(1− ε) ≤ ε+ ε2. Substituting this fact into the last line above, we obtain the

theorem.

3 The multiplicative weight algorithm

Finally we slightly generalize the setting. Each day, we can pick an expert and imitate his action.

The action of expert i on day t will su�er a cost a
(t)
i in the range [−1, 1] (negative cost can be

viewed as reward). The goal is to minimize the total cost.

We can observe that the exact same proof goes through and we obtain the following theorem.

3



Algorithm 3 The multiplicative weight algorithm.

1: Initialize weights w
(0)
i = 1 ∀i ∈ {1, 2, . . . , n} and a constant ε ∈ (0, 1/2).

2: for t from 1 to T do

3: Pick expert i with probability
w

(t−1)
i

Φ(t−1) and follow his action.

4: Action of expert i su�ers cost a
(t)
i .

5: Update w
(t)
i ← w

(t−1)
i (1− ε · a(t)

i )
6: end for

Theorem 3.1. Let m
(t)
i be the total cost of expert i after t steps. Let M (t) be the expected cost of

our algorithm after t steps. We have the following bound for every i:

M (T ) ≤ m(T )
i + ε

T∑
t=1

|a(t)
i |+

lnn

ε

4 Solving the set cover linear program

The multiplicative weight algorithm can be used to solve LP. In this section, we will describe its

application to one speci�c LP we encountered before: the set cover LP. Recall that we have m sets

S1, S2, . . . , Sm over a universe of n elements. We would like to pick the minimum number of sets

that cover all the elements.

min
m∑
i=1

xi∑
i:j∈Si

xi ≥ 1 ∀j

xi ≥ 0 ∀i

We can think of each constraint as an expert. Initially, we have equal weights on the constraints

w
(0)
j = 1. In round t, adding up all the constraints with the weights gives us a single constraint

m∑
j=1

w
(t−1)
j

 ∑
i:j∈Si

xi

 ≥ m∑
j=1

w
(t−1)
j

While solving LP with many constraint is hard, solving LP with just one constraint is much

easier. Suppose we can solve the following single-constraint LP and obtain the solution x(t).

min
m∑
i=1

xi

m∑
i=1

∑
j∈Si

w
(t−1)
j

xi ≥
m∑
j=1

w
(t−1)
j

xi ≥ 0 ∀i

Notice that the solution is to set exactly one coordinate of x to non-zero (which one?) and the

rest to zero.

4



Note that any solution for the original LP is also a solution here. Thus, if OPT is the optimal

value for the original LP then the solution x(t) for the problem in round t has
∑m

i=1 x
(t)
i ≤ OPT .

We have the constraints as experts so we need to assign the costs for their actions. The cost for

expert i is de�ned as how much the solution x(t) �over�ows� constraint i.

ai =
1

OPT

 ∑
i:j∈Si

x
(t)
i


Note that ai ∈ [0, 1]. What is the meaning of the reweighting? when a set is over-covered, we

lower its weight so that we don't try to cover it as much next time.

Question. What is our expected cost in round t?
It turns out to be exactly 1

OPT times the ratio between the LHS and the RHS of the constraint,

which is at least 1
OPT .

We apply multiplicative weights with T = 4OPT 2 lnn
γ2

iterations and ε = γ
2OPT . At the end, we

will consider the average solution

x̄ =
1

T

T∑
i=1

x(t)

Because each x(t) has small objective value, the average also has small objective value. The

question is, does it satisfy the constraints?

To reason about this, we look at the guarantee of the multiplicative weight algorithm. Our cost

per round is at least 1/OPT so the total cost is at least T/OPT . We now compare our cost with

the cost of expert j:

T

OPT
≤ 1

OPT

T ∑
i:j∈Si

x̄i

 + εT +
lnn

ε

Substituting in the value of T, ε, we get ∑
i:j∈Si

x̄i ≥ 1− γ

Thus, our solution is nearly-feasible and has optimal objective value. We can also obtain a

solution that is feasible and near-optimal objective value by scaling the solution up by a factor 1
1−γ .

5


