
CS 4800: Algorithms &
Data

Lecture 7

January 30, 2018

Dynamic Programming

Log cutter

• Cut big piece of wood into
boards

• i-inch board is worth pi

• Want to make most money from n-inch thick raw
material

An example

• n=4

• p1=1, p2=5, p3=8, p4=7

• Greedy!

• Greedy1: Cut the board that is worth the most. Repeat.

• Total value = ?

• Greedy2: Cut the board with best ratio money/material.

• Total value = ?

• What is optimal solution?

Observation

• Consider optimal solution

• Say the first board to cut is of size s

• n-s units remain

• Claim. The rest of the solution is optimal for n-s

• Proof. If not, substitute in the best solution for size
n-s and get a better solution for size n

• Choice to make: pick s from 1,2,…,n

Optimal substructure!

Recursive solution

• Best(n):
• If n = 0, return 0

• Return max
𝑠=1…𝑛

(𝑝𝑠 + 𝐵𝑒𝑠𝑡 𝑛 − 𝑠)

Best(10)

Best(9)

Best(8)Best(8)

Best(7) Best(7)

Best(6)

Memoization

• Initialize 𝐵𝑒𝑠𝑡[0] ← 0

• ComputeBest(i):

• If Best[i] is calculated, return Best[i]

• Else

• 𝐵𝑒𝑠𝑡[𝑖] ← max
𝑠=1…𝑖

𝑝𝑠 + 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑒𝑠𝑡 𝑖 − 𝑠

• Return Best[i]

Bottom-up style

• Best[0] = 0

• For i from 1 to n
• 𝐵𝑒𝑠𝑡 𝑖 ← max

𝑠=1…𝑖
𝑝𝑠 + 𝐵𝑒𝑠𝑡 𝑖 − 𝑠

Implementation in python
def logcutter(p, n):

best = [-1] * (n+1) #-1 means not computed

best[0] = 0

def compute_best(i):

if best[i] == -1:

for j in range(1, i+1):

tmp = p[j-1] + compute_best(i-j)

if tmp > best[i]:

best[i] = tmp

return best[i]

return compute_best(n)

Caution: this is not a recommended style unless you know how to
set your stack size. This style can run into stack overflow!

Implementation in python
def logcutter(p, n):

best = [-1] * (n+1)

best[0] = 0

for i in range(1, n+1):

for j in range(1, i+1):

tmp = p[j-1] + best[i-j]

if tmp > best[i]:

best[i] = tmp

return best[n]

Retrace whole solution
def logcutter1(p, n):

best = [-1] * (n+1) #-1 means not computed

best[0] = 0

choice = [0] * (n+1)

for i in range(1, n+1):

for j in range(1, i+1):

tmp = p[j-1] + best[i-j]

if tmp > best[i]:

best[i] = tmp

choice[i] = j

i = n

while i > 0:

print('cut a board of thickness %d'%(choice[i]))

i -= choice[i]

Dynamic Programming

• Optimal substructure: reduce large problem to
small problems

• Memoization

Coin change

• Coin of denominations d1, d2, …, dk

• Wants to make change for n cents using as few
coins as possible

Example

• k=3, d1=1, d2=15, d3=25

• Wants to make change for 30 cents

• Greedy!
• Pick coin of maximal value not exceeding the remaining

change. Repeat.

• How many coins?

• What is optimal solution?

Memoization

• Initialize 𝐵𝑒𝑠𝑡[0] ← 0

• 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑒𝑠𝑡(𝑣):

• If 𝐵𝑒𝑠𝑡[𝑣] is calculated, return 𝐵𝑒𝑠𝑡[𝑣]

• Else

• 𝐵𝑒𝑠𝑡 𝑣 ← 1 + m𝑖𝑛
𝑖=1…𝑘,𝑑𝑖≤𝑣

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑒𝑠𝑡 𝑣 − 𝑑𝑖

• Return 𝐵𝑒𝑠𝑡[𝑣]

Bottom-up style

• 𝐵𝑒𝑠𝑡[0] ← 0

• For v from 1 to n
• 𝐵𝑒𝑠𝑡 𝑣 ← 1 + m𝑖𝑛

𝑖=1…𝑘,𝑑𝑖≤𝑣
𝐵𝑒𝑠𝑡[𝑣 − 𝑑𝑖]

