CS 4800: Algorithms \& Data

Lecture 17

March 20, 2018

Shortest paths

What is the fastest way to get from A to B ?

Directed graphs

Dynamic programming

- Source vertex s
- $d(v)$: length of shortest tentative path from s to v
- $d^{*}(v)$: length of shortest path from s to v
- pred(v): predecessor of v in shortest tentative path from s to v

Optimal substructure

- Consider shortest path P from s to v
- Let u be a vertex on P
- The subpath of P from s to u must be shortest path from s to u
- If there is a shorter path from s to u then there is a shorter path from s to v than P

Relation among shortest distances

- Consider arbitrary edge (u,v)
- $d^{*}(v) \leq d^{*}(u)+w(u, v)$
- The path $s \rightarrow u \rightarrow v$ is a feasible path from s to v

- Edge (u, v) is tense if $d(v)>d(u)+w(u, v)$
- When a tense edge is found, can improve $d(v)$

Generic shortest path algorithm

- Initialize $d(s)=0$ and $d(v)=\infty$ for all $v \neq s$
- $Q \leftarrow\{s\}$
- While $Q \neq \varnothing$
- Remove some u from Q
- For all edges $u \rightarrow v$
- If $d(v)>d(u)+w(u, v)$
- $d(v) \leftarrow d(u)+w(u, v)$
- $\operatorname{pred}(v) \leftarrow u$
- If $v \notin Q$, put v in Q. Otherwise, DecreaseKev(v).

Dijkstra's algorithm

- Initialize $d(s)=0$ and $d(v)=\infty$ for all $v \neq s$
- $Q \leftarrow\{s\}$
- While $Q \neq \varnothing$
- Remove u with minimum d(u) from \mathbf{Q}
- For all edges $u \rightarrow v$
- If $d(v)>d(u)+w(u, v)$
- $d(v) \leftarrow d(u)+w(u, v)$
- $\operatorname{pred}(v) \leftarrow u$
- If $v \notin Q$, put v in Q. Otherwise, DecreaseKey(v).

Example

Correctness of Dijkstra's

Theorem. Let S be set of nodes removed from Q . For all v in S , we have $d(v)=d^{*}(v)$ when v is removed from Q.

Proof. Induction over number of iterations.
First node to be removed is s and $d(s)=d^{*}(s)=0$. Assume claim is true for first k nodes.

Let v be the $\mathrm{k}+1^{\text {st }}$ about to be removed. Let $\mathrm{u}=\operatorname{pred}(\mathrm{v})$.

Correctness of Dijkstra's

Let v be the $k+1^{\text {st }}$ about to be removed. Let $u=p r e d(v)$. u is removed from Q before (when we set pred $(v)=u)$, so $d(u)=d^{*}(u)$.
Consider any other path P from s to v not via edge (u, v).
P must leave S at some point via edge (x, y).
v is about to be removed, not y , so $d(v) \leq d(y)$.

x is removed from Q so $d(x)=d^{*}(x)$ $d(y) \leq d(x)+w(x, y) \leq$ distance from s to y on P
Thus, $d(v) \leq$ Length (P).
Therefore, $d(v)=d^{*}(v)$.

Running time

- Initialize $d(s)=0$ and $d(v)=\infty$ for all $v \neq s$
- $Q \leftarrow\{s\}$
- While $Q \neq \varnothing$

V times ${ }^{\circ}$ Remove u with minimum d(u) from $\mathrm{Q} \longleftarrow \mathrm{O}(\log \mathrm{V})$

- For all edges $u \rightarrow v$
- If $d(v)>d(u)+w(u, v)$
- $d(v) \leftarrow d(u)+w(u, v)$
- $\operatorname{pred}(v) \leftarrow u$

E times • if $v \notin Q$, insert v into Q. Otherwise DecreaseKey(v)

$\mathrm{O}((\mathrm{V}+\mathrm{E}) \log \mathrm{V})$ time

Breadth-first search

- All edge weights are 1
- Distance = \#edges on the path

Breadth-first search

- Initialize $d(s)=0$ and $d(v)=\infty$ for all $v \neq s$
- $Q \leftarrow(s,) \longleftarrow Q$ is a queue: first in first out
- While $Q \neq \varnothing$
- Remove first u in Q
- For all edges $u \rightarrow v$
- If $d(v)>d(u)+1$
- $d(v) \leftarrow d(u)+1$
- $\operatorname{pred}(v) \leftarrow u$

Negative weights?

- What goes wrong with previous proof?

- When v is removed, $d(v)<d(y)$ for all unremoved y so no way shortest path goes from s to v via y

Infinitely short path?

Restrict our attention to the case with no negative cycles

