CS 4800: Algorithms & Data Lecture 17

March 20, 2018

Shortest paths

What is the fastest way to get from A to B?

Directed graphs

Dynamic programming

- Source vertex s
- d(v): length of shortest tentative path from s to v
- d*(v): length of shortest path from s to v
- pred(v): predecessor of v in shortest tentative path from s to v

Optimal substructure

- Consider shortest path P from s to v
- Let u be a vertex on P
- The subpath of P from s to u must be shortest path from s to u
- If there is a shorter path from s to u then there is a shorter path from s to v than P

Relation among shortest distances

- Consider arbitrary edge (u,v)
- $d^*(v) \leq d^*(u) + w(u,v)$
- The path $s \rightarrow u \rightarrow v$ is a feasible path from s to v

- Edge (u,v) is tense if d(v) > d(u) + w(u, v)
- When a tense edge is found, can improve d(v)

Generic shortest path algorithm

- Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- $Q \leftarrow \{s\}$
- While $Q \neq \emptyset$
 - Remove some u from Q
 - For all edges $u \rightarrow v$
 - If d(v) > d(u) + w(u, v)
 - $d(v) \leftarrow d(u) + w(u, v)$
 - $pred(v) \leftarrow u$
 - If $v \notin Q$, put v in Q. Otherwise, DecreaseKey(v).

Dijkstra's algorithm

- Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- $Q \leftarrow \{s\}$
- While $Q \neq \emptyset$
 - Remove u with minimum d(u) from Q
 - For all edges $u \rightarrow v$
 - If d(v) > d(u) + w(u, v)
 - $d(v) \leftarrow d(u) + w(u, v)$
 - $pred(v) \leftarrow u$
 - If $v \notin Q$, put v in Q. Otherwise, DecreaseKey(v).

Correctness of Dijkstra's

Theorem. Let S be set of nodes removed from Q. For all v in S, we have $d(v)=d^*(v)$ when v is removed from Q.

Proof. Induction over number of iterations.

First node to be removed is s and $d(s) = d^*(s) = 0$.

Assume claim is true for first k nodes.

Let v be the $k+1^{st}$ about to be removed. Let u = pred(v).

Correctness of Dijkstra's

Let v be the $k+1^{st}$ about to be removed. Let u = pred(v). u is removed from Q before (when we set pred(v) = u), so $d(u) = d^{*}(u)$. Consider any other path P from s to v not via edge (u,v). P must leave S at some point via edge (x,y). v is about to be removed, not y, so $d(v) \leq d(y)$. x is removed from Q so $d(x) = d^*(x)$ $d(y) \le d(x) + w(x, y) \le \text{distance from s to y on P}$ Thus, $d(v) \leq Length(P)$. Therefore, $d(v) = d^*(v)$.

Running time

- Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- $Q \leftarrow \{s\}$
- While $Q \neq \emptyset$

- For all edges $u \rightarrow v$
 - If d(v) > d(u) + w(u, v)
 - $d(v) \leftarrow d(u) + w(u, v)$
 - $pred(v) \leftarrow u$

E times

• if $v \notin Q$, insert v into Q. Otherwise DecreaseKey(v)

O((V+E)log V) time

O(log V)

Breadth-first search

- All edge weights are 1
- Distance = #edges on the path

Breadth-first search

- Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- $Q \leftarrow (s,)$ Q is a queue: first in first out
- While $Q \neq \emptyset$
 - Remove first *u* in *Q*
 - For all edges $u \rightarrow v$
 - If d(v) > d(u) + 1
 - $d(v) \leftarrow d(u) + 1$
 - $pred(v) \leftarrow u$
 - Put v last in Q

Negative weights?

What goes wrong with previous proof?

 When v is removed, d(v) < d(y) for all unremoved y so no way shortest path goes from s to v via y

Infinitely short path?

Restrict our attention to the case with no negative cycles