
Theorems for free!

Philip Wadler

University of Glasgow

�

June 1989

Abstract

From the type of a polymorphic function we can de-

rive a theorem that it satis�es. Every function of the

same type satis�es the same theorem. This provides

a free source of useful theorems, courtesy of Reynolds'

abstraction theorem for the polymorphic lambda calcu-

lus.

1 Introduction

Write down the de�nition of a polymorphic function on

a piece of paper. Tell me its type, but be careful not

to let me see the function's de�nition. I will tell you a

theorem that the function satis�es.

The purpose of this paper is to explain the trick. But

�rst, let's look at an example.

Say that r is a function of type

r : 8X: X

�

! X

�

:

Here X is a type variable, and X

�

is the type \list of X ".

From this, as we shall see, it is possible to conclude that

r satis�es the following theorem: for all types A and A

0

and every total function a : A! A

0

we have

a

�

� r

A

= r

A

0

� a

�

:

Here � is function composition, and a

�

: A

�

! A

0

�

is

the function \map a" that applies a elementwise to a

�

Author's address: Department of Computing Science, Uni-

versity of Glasgow, G12 8QQ, Scotland. Electronic mail:

wadler@cs.glasgow.ac.uk.

This is a slightly revised version of a paper appearing in: 4'th

Internationl Symposium on Functional Programming Languages

and Computer Architecture, London, September 1989.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or speci�c permission.

list of A yielding a list of A

0

, and r

A

: A

�

! A

�

is the

instance of r at type A.

The intuitive explanation of this result is that r must

work on lists of X for any type X . Since r is provided

with no operations on values of type X , all it can do is

rearrange such lists, independent of the values contained

in them. Thus applying a to each element of a list and

then rearranging yields the same result as rearranging

and then applying a to each element.

For instance, r may be the function reverse :

8X: X

�

! X

�

that reverses a list, and a may be the

function code : Char ! Int that converts a character to

its ASCII code. Then we have

code

�

(reverse

Char

[`a', `b', `c'])

= [99 ; 98 ; 97 ]

= reverse

Int

(code

�

[`a', `b', `c'])

which satis�es the theorem. Or r may be the function

tail : 8X:X

�

! X

�

that returns all but the �rst element

of a list, and a may be the function inc : Int ! Int that

adds one to an integer. Then we have

inc

�

(tail

Int

[1 ; 2 ; 3 ])

= [3 ; 4 ]

= tail

Int

(inc

�

[1 ; 2 ; 3 ])

which also satis�es the theorem.

On the other hand, say r is the function odds : Int

�

!

Int

�

that removes all odd elements from a list of inte-

gers, and say a is inc as before. Now we have

inc

�

(odds

Int

[1 ; 2 ; 3 ])

= [2 ; 4 ]

6= [4 ]

= odds

Int

(inc

�

[1 ; 2 ; 3 ])

and the theorem is not satis�ed. But this is not a coun-

terexample, because odds has the wrong type: it is too

speci�c, Int

�

! Int

�

rather than 8X: X

�

! X

�

.

This theorem about functions of type 8X:X

�

! X

�

is

pleasant but not earth-shaking. What is more exciting

is that a similar theorem can be derived for every type.

1



The result that allows theorems to be derived from

types will be referred to as the parametricity result, be-

cause it depends in an essential way on parametric poly-

morphism (types of the form 8X: T ). Parametricity is

just a reformulation of Reynolds' abstraction theorem:

terms evaluated in related environments yield related

values [Rey83]. The key idea is that types may be read

as relations. This result will be explained in Section 2

and stated more formally in Section 6.

Some further applications of parametricity are shown

in Figure 1, which shows several types and the corre-

sponding theorems. Each name was chosen, of course,

to suggest a particular function of the named type, but

the associated theorems hold for any function that has

the same type (so long as it can be de�ned as a term in

the pure polymorphic lambda calculus). For example,

the theorem given for head also holds for last , and the

theorem given for sort also holds for nub (see Section 3).

The theorems are expressed using operations on func-

tions that correspond to operations on types. Corre-

sponding to the list type A

�

is the map operation a

�

that takes the function a : A ! A

0

into the func-

tion a

�

: A

�

! A

0

�

. Similarly, corresponding to the

product type A � B is the operation a � b that takes

the functions a : A ! A

0

and b : B ! B

0

into the

function a � b : A � B ! A

0

� B

0

; it is de�ned by

(a � b) (x ; y) = (a x ; b y). As we shall see, it will be

necessary to generalise to the case where a, b, a

�

, and

a � b are relations.

How useful are the theorems so generated? Only time

and experience will tell, but some initial results are en-

couraging:

� In general, the laws derived from types are of a

form useful for algebraic manipulation. For exam-

ple, many of the laws in Figure 1 allow one to \push

map through a function".

� Three years ago, Barrett and I wrote a paper

on the derivation of an algorithm for compiling

pattern-matching in functional languages [BW86].

The derivation used nine general theorems about

higher-order functions such as map and sort . Look-

ing at the paper again now, it turns out that of

the nine theorems, �ve follow immediately from the

types.

� Sheeran has developed a formal approach to the

design of VLSI circuits that makes heavy use of

mathematical laws. She has found that many of

the laws she needs can be generated from types

using the methods described here, and has already

written a paper describing how to do so [She89].

Not surprisingly, using a more speci�c type system al-

lows even more theorems to be derived from the type of

a function; this has already been explored to a certain

extent by Sheeran [She89]. So there is reason to believe

that further research will further extend the applicabil-

ity of this method.

Many functional languages, including Standard ML

[Mil84, Mil87], Miranda

1

[Tur85], and Haskell [HW88],

are based on the Hindley/Milner type system [Hin69,

Mil78, DM82]. This system is popular because types

need not be given explicitly; instead, the principal (most

general) type of a function can be inferred from its def-

inition. However, for the purposes of this paper it is

more convenient to use the Girard/Reynolds type sys-

tem [Gir72, Gir86, Rey74, Rey83] (also known as the

polymorphic lambda calculus, the second order lambda

calculus, and System F). In the Girard/Reynolds sys-

tem it is necessary to give the types of bound vari-

ables explicitly. Further, if a function has a polymorphic

type then type applicationsmust be explicitly indicated.

This is done via subscripting; for example, the instance

of the function r : 8X:X

�

! X

�

at the type A is written

r

A

: A

�

! A

�

.

Every program in the Hindley/Milner system can

automatically be translated into one in the Gi-

rard/Reynolds system. All that is required is a straight-

forward modi�cation of the type inference algorithm to

decorate programs with the appropriate type informa-

tion. On the other hand, the inverse translation is not

always possible, because the Girard/Reynolds system is

more powerful than Hindley/Milner.

Both the Hindley/Milner and the Girard/Reynolds

system satisfy the strong normalisation property: every

term has a normal form, and every reduction sequence

leads to this normal form. As a corollary, it follows that

the �xpoint operator,

�x : 8X: (X ! X )! X

cannot be de�ned as a term in these systems. For many

purposes, we can get along �ne without the �xpoint

operator, because many useful functions (including all

those shown in Figure 1) may be de�ned in the Gi-

rard/Reynolds system without its use. Indeed, every

recursive function that can be proved total in second-

order Peano arithmetic can be written as a term in

the Girard/Reynolds calculus [FLO83, Gir72, GLT89].

This includes, for instance, Ackerman's function (see

[Rey85]), but it excludes interpreters for most languages

(including the Girard/Reynolds calculus itself).

If the power of unbounded recursion is truly required,

then �x can be added as a primitive. However, adding

�xpoints weakens the power of the parametricity the-

orem. In particular, if �xpoints are allowed then the

1

Miranda is a trademark of Research Software Limited.

2



Assume a : A! A

0

and b : B ! B

0

:

head : 8X: X

�

! X

a � head

A

= head

A

0

� a

�

tail : 8X: X

�

! X

�

a

�

� tail

A

= tail

A

0

� a

�

(++) : 8X: X

�

! X

�

! X

�

a

�

(xs ++

A

ys) = (a

�

xs) ++

A

0

(a

�

ys)

concat : 8X: X

��

! X

�

a

�

� concat

A

= concat

A

0

� a

��

fst : 8X: 8Y: X �Y ! X

a � fst

AB

= fst

A

0

B

0

� (a � b)

snd : 8X: 8Y: X � Y ! Y

b � snd

AB

= snd

A

0

B

0

� (a � b)

zip : 8X: 8Y: (X

�

� Y

�

)! (X � Y )

�

(a � b)

�

� zip

AB

= zip

A

0

B

0

� (a

�

� b

�

)

�lter : 8X: (X ! Bool)! X

�

! X

�

a

�

� �lter

A

(p

0

� a) = �lter

A

0

p

0

� a

�

sort : 8X: (X ! X ! Bool)! X

�

! X

�

if for all x ; y 2 A; (x < y) = (a x <

0

a y) then

a

�

� sort

A

(<) = sort

A

0

(<

0

) � a

�

fold : 8X: 8Y: (X ! Y ! Y )! Y ! X

�

! Y

if for all x 2 A; y 2 B ; b (x � y) = (a x ) 
 (b y) and b u = u

0

then

b � fold

AB

(�) u = fold

A

0

B

0

(
) u

0

� a

�

I : 8X: X ! X

a � I

A

= I

A

0

� a

K : 8X: 8Y: X ! Y ! X

a (K

AB

x y) = K

A

0

B

0

(a x ) (b y)

Figure 1: Examples of theorems from types

3



theorems in Figure 1 hold in general only when the

functions a and b are strict (that is, when a ? = ?

and b ? = ?)

2

. For this reason, the bulk of this pa-

per assumes that �xpoints are not provided; but the

necessary adjustment to allow �xpoints is described in

Section 7.

The fundamental idea of parametricity is not new.

A restricted version of it appears in Reynolds' origi-

nal paper on the polymorphic lambda calculus [Rey74],

where it is called the representation theorem, and a

version similar to that used here appears in [Rey83],

where it is called the abstraction theorem. Other

versions include the logical relations of Mitchell and

Meyer [MM85, Mit86]; and the dinatural transforma-

tions of Bainbridge, Freyd, Girard, Scedrov, and Scott

[BFSS87, FGSS88], from whom I have taken the name

\parametricity".

So far as I am aware, all uses of parametricity to date

have been \general": they say something about possible

implementations of the polymorphic lambda calculus

(e.g. that the implementation is correct independent of

the representation used) or about its models (e.g. that

models should only be allowed that satisfy parametric-

ity). The main contribution of this paper is to suggest

that parametricity also has \speci�c" applications: it

says interesting things about particular functions with

particular types

3

.

An updated statement and proof of the abstraction

theorem is presented. The main reason for including

these is to make the paper self-contained. In the pro-

cess, it is easy to repair a minor lacunae in Reynold's

original presentation [Rey83]. That version is expressed

in terms of a \naive" set-theoretic model of the polymor-

phic lambda calculus; Reynolds later proved that such

models do not exist [Rey84]. There is nothing wrong

with the theorem or the proof itself, just the context

in which it is set, and it is straightforward to transpose

it to another context. This paper uses the frame mod-

els of Bruce, Meyer, and Mitchell [BM84, MM85]. For

other models of the polymorphic lambda calculus, see

[BTC88, Mes89, Pit87].

The characterisation of parametricity given in this pa-

per can be formulated more concisely in terms of cat-

egory theory, where it can be re-expressed in terms of

lax natural transformations. This will be the subject of

a further paper.

The remainder of this paper is organised as follows.

Sections 2 and 3 present the main new results: Section 2

2

This is similar to the restriction to strict coercion functions

in [BCGS89], and is adopted for a similar reason.

3

Since this paper was written, I have learned that Peter de-

Bruin has recently discovered similar applications [deB89], and

that John Reynolds already knew of the application in Section 3.8.

presents the parametricity theorem, and Section 3 gives

further applications. Sections 4{6 �ll in the formali-

ties: Section 4 describes the syntax of the polymor-

phic lambda calculus, Section 5 shows how its syntax

can be given using frame models, and Section 6 gives

the full statement of the parametricity theorem. Sec-

tion 7 shows how the parametricity theorem should be

adjusted to account for languages that use the �xpoint

operator.

Acknowledgements. I am grateful to Harold Sim-

mons for helping to formulate and prove the result

about map in Section 3.5, and to Samson Abramsky,

Val Breazu-Tannen, Peter Freyd, John Hughes, John

Launchbury, John Reynolds, Andre Scedrov, and Mary

Sheeran for their comments on this work.

2 Parametricity explained

The key to extracting theorems from types is to read

types as relations. This section outlines the essential

ideas, using a naive model of the polymorphic lambda

calculus: types are sets, functions are set-theoretic func-

tions, etc. The approach follows that in [Rey83].

Cognoscenti will recognise a small problem here|

there are no naive set-theoretic models of polymorphic

lambda calculus! (See [Rey84].) That's ok; the essen-

tial ideas adopt easily to frame models [BM84, MM85].

This section sticks to the simple but naive view; the i's

will be dotted and the t's crossed in Sections 4{6, which

explain the same notions in the context of frame models.

The usual way to read a type is as a set. The type

Bool corresponds to the set of booleans, and the type

Int corresponds to the set of integers. If A and B are

types, then the type A�B corresponds to a set of pairs

drawn from A and B (the cartesian product), the type

A

�

corresponds to the set of lists with elements inA, and

the type A! B corresponds to a set of functions fromA

to B . Further, ifX is a type variable and A(X ) is a type

depending on X , then the type 8X: A(X ) corresponds

to a set of functions that take a set B and return an

element in A(B).

An alternative is to read a type as a relation. If A

and A

0

are sets, we write A : A , A

0

to indicate that

A is a relation between A and A

0

, that is, that A �

A � A

0

. If x 2 A and x

0

2 A

0

, we write (x ; x

0

) 2 A

to indicate that x and x

0

are related by A. A special

case of a relation is the identity relation I

A

: A , A,

de�ned by I

A

= f(x ; x ) j x 2 Ag. In other words, if

x ; x

0

2 A, then (x ; x

0

) 2 I

A

i� x = x

0

. More generally,

any function a : A! A

0

may also be read as a relation

f(x ; a x ) j x 2 Ag. In other words, if x 2 A and x

0

2 A

0

,

then (x ; x

0

) 2 a i� a x = x

0

.

4



To read types as relations, we give a relational equiva-

lent for constant types and for each of the type construc-

tors A�B , A

�

, A! B , and 8X: A(X ). Constant types,

such as Bool and Int , may simply be read as identity

relations, I

Bool

: Bool , Bool and I

Int

: Int , Int .

For any relations A : A , A

0

and B : B , B

0

, the

relation A � B : (A � B), (A

0

� B

0

) is de�ned by

((x ; y); (x

0

; y

0

)) 2 A � B

i�

(x ; x

0

) 2 A and (y ; y

0

) 2 B:

That is, pairs are related if their corresponding com-

ponents are related. In the special case where a and

b are function, then a � b is the function de�ned by

(a � b) (x ; y) = (a x ; b y).

For any relation A : A, A

0

, the relation A

�

: A

�

,

A

0�

is de�ned by

([x

1

; : : : ; x

n

]; [x

0

1

; : : : ; x

0

n

]) 2 A

�

i�

(x

1

; x

0

1

) 2 a and : : : and (x

n

; x

0

n

) 2 A:

That is, lists are related if they have the same length

and corresponding elements are related. In the special

case where a is a function, a

�

is the familiar \map"

function de�ned by a

�

[x

1

; : : : ; x

n

] = [a x

1

; : : : ; a x

n

].

For any relations A : A , A

0

and B : B , B

0

, the

relation A ! B : (A! B), (A

0

! B

0

) is de�ned by

(f ; f

0

) 2 A ! B

i�

for all (x ; x

0

) 2 A; (f x ; f

0

x

0

) 2 B:

That is, functions are related if they take related argu-

ments into related results. In the special case where a

and b are functions, the relation a ! b will not neces-

sarily be a function, but in this case (f ; f

0

) 2 a ! b is

equivalent to f

0

� a = b � f .

Finally, we have to interpret 8 as an operation on re-

lations. Let F(X ) be a relation depending on X . Then

F corresponds to a function from relations to relations,

such that for every relation A : A , A

0

there is a cor-

responding relation F(A) : F (A) , F

0

(A

0

). Then the

relation 8X: F(X ) : 8X: F (X ), 8X

0

: F

0

(X

0

) is de�ned

by

(g ; g

0

) 2 8X: F(X )

i�

for all A : A, A

0

; (g

A

; g

0

A

0

) 2 F(A):

That is, polymorphic functions are related if they take

related types into related results. (Note the similarities

in the de�nitions of A ! B and 8X: F(X ).)

Using the de�nitions above, any closed type T (one

containing no free variables) can be read as a relation

T : T , T . The main result of this paper can now be

described as follows:

Proposition. (Parametricity.) If t is a

closed term of type T , then (t ; t) 2 T , where

T is the relation corresponding to the type T .

A more formal statement of this result appears in Sec-

tion 6, where it is extended to types and terms contain-

ing free variables.

3 Parametricity applied

This section �rst explains in detail how parametricity

implies some of the theorems listed in the introduction

and then presents some more general results.

3.1 Rearrangements

The result in the introduction is a simple consequence

of parametricity. Let r be a closed term of type

r : 8X: X

�

! X

�

:

Parametricity ensures that

(r ; r) 2 8X: X

�

! X

�

:

By the de�nition of 8 on relations, this is equivalent to

for all A : A, A

0

;

(r

A

; r

A

0

) 2 A

�

!A

�

By the de�nition of! on relations, this in turn is equiv-

alent to

for all A : A, A

0

;

for all (xs; xs

0

) 2 A

�

;

(r

A

xs; r

A

0

xs

0

) 2 A

�

This can be further expanded in terms of the de�nition

of A

�

. A more convenient version can be derived by

specialising to the case where the relationA is a function

a : A! A

0

. The above then becomes

for all a : A! A

0

;

for all xs;

a

�

xs = xs

0

implies a

�

(r

A

xs) = r

A

0

xs

0

or, equivalently,

for all a : A! A

0

;

a

�

� r

A

= r

0

A

� a

�

:

This is the version given in the introduction.

3.2 Fold

The function fold has the type

fold : 8X: 8Y: (X ! Y ! Y )! Y ! X

�

! Y :

5



Parametricity implies that

(fold ; fold) 2 8X: 8Y: (X ! Y ! Y)! Y ! X

�

! Y :

Let a : A ! A

0

and b : B ! B

0

be two functions. Ap-

plying the de�nition of 8 on relations, twice, specialised

to functions, gives

(fold

AB

; fold

A

0

B

0

) 2 (a ! b ! b)! b ! a

�

! b

Applying the de�nition of ! on relations, twice, gives

for all (�;�

0

) 2 (a ! b ! b);

for all (u; u

0

) 2 b;

(fold

AB

(�) u; fold

A

0

B

0

(�

0

) u

0

) 2 a

�

! b:

Here (�) is just the name of a function of two argu-

ments; by the usual convention, (�) x y may be written

in the in�x form x � y . Further expansion shows that

the condition (�;�

0

) 2 (a ! b ! b) is equivalent to

for all x 2 A; x

0

2 A

0

; y 2 B ; y

0

2 B

0

;

a x = x

0

and b y = y

0

implies b (x � y) = x

0

�

0

y

0

:

The result as a whole may then be rephrased,

for all a : A! A

0

; b : B ! B

0

;

if for all x 2 A; y 2 B ; b (x � y) = (a x ) �

0

(b y);

and b u = u

0

then b � fold

AB

(�) u = fold

A

0

B

0

(�

0

) u

0

� a

�

:

The theorems derived from types can often be given a

reading with an algebraic avour, and the result about

fold provides an illustration of this. Let (A;B ;�; u)

and (A

0

;B

0

;�

0

; u

0

) be two algebraic structures. The

functions a and b form a homomorphism between

these if b (x � y) = (a x ) �

0

(b y) for all x and y ,

and if b u = u

0

. Similarly, let (A

�

; B ; fold

AB

(�) u)

and (A

0�

; B

0

; fold

A

0

B

0

(�

0

) u

0

) also be two algebraic

structures. The functions a

�

and b form a homo-

morphism between these if b (fold

AB

(�) u xs) =

fold

A

0

B

0

(�

0

) u

0

(a

�

xs). The result about fold

states that if a and b form a homomorphism between

(A;B ; c; n) and (A

0

;B

0

; c

0

; n

0

), then a

�

and b form

a homomorphism between (A

�

;B ; fold

AB

(�) u) and

(A

0�

;B

0

; fold

A

0

B

0

(�

0

) u

0

).

3.3 Sorting

Let s be a closed term of the type

s : 8X :(X ! X ! Bool)! (X

�

! X

�

)

Functions of this type include sort and nub:

sort

Int

(<

Int

)[3 ; 1 ; 4 ; 2 ; 5 ] = [1 ; 2 ; 3 ; 4 ; 5 ]

nub

Int

(=

Int

)[1 ; 1 ; 2 ; 2 ; 2 ;1 ] = [1 ; 2 ; 1 ]

The function sort takes an ordering function and a list

and returns the list sorted in ascending order, and the

function nub takes an equality predicate and a list and

returns the list with adjacent duplicates removed.

Applying parametricity to the type of s yields, for all

a : A! A

0

,

if for all x ; y 2 A; (x � y) = (a x �

0

a y) then

a

�

� s

A

(�) = s

A

0

(�

0

) � a

�

(Recall that Bool as a relation is just the identity rela-

tion of booleans.) As a corollary, we have

if for all x ; y 2 A; (x < y) = (a x <

0

a y) then

sort

A

0

(<) � a

�

= a

�

� sort

A

(<

0

)

so maps commute with sort , when the function mapped

preserves ordering. (If < and <

0

are linear orderings,

then the hypothesis is equivalent to requiring that a is

monotonic.) As a second corollary, we have

if for all x ; y 2 A; (x � y) = (a x �

0

a y) then

nub

A

0

(�) � a

�

= a

�

� nub

A

(�

0

)

so maps commute with nub, when the function mapped

preserves equivalence. (If � and �

0

are equality on A

and A

0

, then the hypothesis is equivalent to requiring

that a is one-to-one.)

3.4 Polymorphic equality

The programming language Miranda [Tur85] provides a

polymorphic equality function, with type

(=) : 8X: X ! X ! Bool :

Applying parametricity to the type of (=) yields, for all

a : A! A

0

,

for all x ; y 2 A; (x =

A

y) = (a x =

A

0

a y):

This is obviously false; it does not hold for all a, but

only for functions a that are one-to-one.

This is not a contradiction to the parametricity theo-

rem; rather, it provides a proof that polymorphic equal-

ity cannot be de�ned in the pure polymorphic lambda

calculus. Polymorphic equality can be added as a con-

stant, but then parametricity will not hold (for terms

containing the constant).

This suggests that we need some way to tame the

power of the polymorphic equality operator. Exactly

such taming is provided by the eqtype variables of Stan-

dard ML [Mil87], or more generally by the type classes

of Haskell [HW88, WB89]. In these languages, we can

think of polymorphic equality as having the type

(=) : 8

(=)

X : X ! X ! Bool :

6



Here 8

(=)

X :F (X ) is a new type former, where X ranges

only over types for which equality is de�ned. Corre-

sponding to the type constructor 8

(=)

is a new relation

constructor:

(g ; g

0

) 2 8

(=)

X : F(X )

i�

for all A : A, A

0

respecting (=); (g

A

; g

0

A

0

) 2 F(A):

A relation A : A , A

0

respects (=) if A relates equals

to equals; that is, if whenever x =

A

y and (x ; x

0

) 2 A

and (y ; y

0

) 2 A then x

0

=

A

0

y

0

, where (=

A

) is equality

on A and (=

A

0

) is equality on A

0

. In the case where A

is a function a, this is equivalent to requiring that a be

one-to-one.

With this de�nition, we can prove that the polymor-

phic equality operator, typed as above, satis�es the

parametricity theorem. In our extended language we

can de�ne, for example, the function

nub : 8

(=)

X : X

�

! X

�

and the corresponding parametricity condition is the

same as that for the previous version of nub.

Thus, the more re�ned type structures of Standard

ML and Haskell add exactly the information necessary

to maintain parametricity. In Standard ML this trick

works only for equality (which is built into the lan-

guage), whereas in Haskell it works for any operators

de�ned using the type class mechanism.

3.5 A result about map

Suppose that I tell you that I am thinking of a function

m with the type

m : 8X :8Y :(X ! Y )! (X

�

! Y

�

)

You will immediately guess that I am thinking of the

map function,m(f ) = f

�

. Of course, I could be thinking

of a di�erent function, for instance, one that reverses a

list and then applies f

�

to it. But intuitively, you know

that map is the only interesting function of this type:

that all others must be rearranging functions composed

with map.

We can formalise this intuition as follows. Let m be

a function with the type above. Then

m

AB

(f ) = f

�

�m

AA

(I

A

) = m

BB

(I

B

) � f

�

where I

A

is the identity function on A. The function

m

AA

(I

A

) is a rearranging function, as discussed in the

preceding section. Thus, every function m of the above

type can be expressed as a rearranging function com-

posed with map, or equivalently, as map composed with

a rearranging function.

The proof is simple. As we have already seen, the

parametricity condition for m is that

if f

0

� a = b � f then m

A

0

B

0

(f

0

) � a

�

= b

�

�m

AB

(f )

Taking A

0

= B

0

= B , b = f

0

= I

B

, a = f satis�es the

hypotheses, giving as the conclusion

m

BB

(I

B

) � f

�

= (I

B

)

�

�m

AB

(f )

which gives us the second equality above, since (I

B

)

�

=

I

B

�

. The �rst equality may be derived by commuting

the permuting function with map; or may be derived

directly by a di�erent substitution.

3.6 A result about fold

Analogous to the previous result about map is a similar

result about fold . Let f be a function with the type

f : 8X :8Y :(X ! Y ! Y )! Y ! X

�

! Y

Then

f

AB

c n = fold

AB

c n � f

AA

�

cons

A

nil

A

Note that f

AA

�

cons

A

nil

A

: A

�

! A

�

is a function that

rearranges a list, so this says that every function with

the type of fold can be expressed as fold composed with

a rearranging function.

The proof is similar to the previous one. The para-

metricity condition for f is that

if c

0

� (a � b) = b � c and n

0

= b(n) then

f

A

0

B

0

c

0

n

0

� a

�

= b � f

AB

c n

Taking A = A

0

, B = A

�

, a = I

A

, b = fold

A

0

B

0

c

0

n

0

,

c = cons

A

, n = nil

A

satis�es the hypothesis, giving as

the conclusion

f

AB

0

c

0

n

0

� I

�

A

= fold

AB

0

c

0

n

0

� f

AA

�

cons

A

nil

A

The I

�

A

term is just an identity, and so drops out, leaving

us with the desired equality if we rename c

0

; n

0

;B

0

to

c; n;B .

3.7 A result about �lter

Let f be a function with the type

f : 8X :(X ! Bool)! X

�

! X

�

Three functions with this type are �lter , takewhile, and

dropwhile. For example,

�lter odd [3 ; 1 ; 4 ; 5 ;2 ] = [3 ; 1 ; 5 ]

takewhile odd [3 ; 1 ; 4 ; 5 ;2 ] = [3 ; 1 ]

dropwhile odd [3 ; 1 ; 4 ; 5 ;2 ] = [4 ; 5 ; 2 ]

7



See [BW88] for the de�nitions of these functions.

For every such f we can de�ne a corresponding func-

tion of type

g : 8X :(X � Bool)

�

! X

�

such that f and g are related by the equation

f

A

(p) = g

A

� hI

A

; pi (�)

where hI

A

; pi x = (x ; p x ). That is, f

A

is passed a pred-

icate p of type A! Bool and a list of A, whereas g

A

is

passed a list of A � Bool pairs, the second component

of the pair being the result of applying p to the �rst

component. Intuitively, this transformation is possible

because the only values that p can be applied to are of

type A, so it su�ces to pair each value of type A with

the result of applying p to it.

A little thought shows that a suitable de�nition of g

is

g

A

= fst

�

� f

A�Bool

(snd)

We can use parametricity to show that f and g sat-

isfy (�), for all functions f of the given type. The

parametricity conditions for f tells us that for any

a : A ! A

0

and any p : A ! Bool and p

0

: A

0

! Bool

we have

if p

0

� a = I

Bool

� p then f

A

0

(p

0

) � a

�

= a

�

� f

A

(p)

Take A

0

= A � Bool and a = hI

A

; pi and p

0

= snd .

Then the hypothesis becomes snd � hI

A

; pi = p, which

is satis�ed, yielding the conclusion

f

A�Bool

(snd) � hI

A

; pi

�

= hI

A

; pi

�

� f

A

(p):

Compose both sides with fst

�

, giving

fst

�

� f

A�Bool

(snd) � hI

A

; pi

�

= fst

�

� hI

A

; pi

�

� f

A

(p):

Then apply the de�nition of g , and observe that fst �

hI

A

; pi = I

A

, resulting in the equation

g

A

� hI

A

; pi

�

= f

A

(p)

as desired.

3.8 An isomorphism

The preceding applications can all be expressed in the

Hindley/Milner fragment of the polymorphic lambda

calculus: all universal quanti�ers appear at the outside

of a type. This section presents an application that

utilises the full power of the Girard/Reynolds system.

Let A be an arbitrary type. Intuitively, this type

is isomorphic to the type 8X: (A ! X ) ! X , which

we will abbreviate as

~

A. The apparent isomorphism

between A and

~

A is expressed by the functions:

i : A!

~

A

i = �x : A: �X: �g : A! X: g x

j :

~

A! A

j = �h :

~

A: h

A

(�x : A: x )

That is, i takes an element x of A to the element of

~

A

that maps a function g (of type A ! X ) to the value

g x (of type X ). The inverse function j recovers the

original element by applying a value in

~

A to the identity

function.

To prove that this truly is an isomorphism, we must

verify that j � i and i � j are both identities. It is easy

enough to verify the former:

j (i x )

= j (�X: �g : A! X: g x )

= (�g : A! A: g x ) (�x : A: x )

= (�x : A: x ) x

= x

However, the inverse identity is problematic. We can

get as far as

i (j h)

= i (h

A

(�x : A: x ))

= �X: �g : A! X: g (h

A

(�x : A: x ))

and now we are stuck. Here is where parametricity

helps. The parametricity condition for h : 8X: (A !

X )! X is that, for all b : B ! B

0

and all f : A! B ,

b (h

B

f ) = h

B

0

(b � f )

Taking B = A, B

0

= X , b = g , and f = (�x : A: x )

gives

�X: �g : A! X: g (h

A

(�x : A: x ))

= �X: �g : A! X: h

X

(g � (�x : A: x ))

= �X: �g : A! X: h

X

g

= h

which completes the second identity.

The second identity depends critically on parametric-

ity, so the isomorphism holds only for models in which

all elements satisfy the parametricity constraint. Alas,

the parametricity theorem guarantees only that ele-

ments of the model that correspond to lambda terms

will be parametric; many models contain additional el-

ements that are non-parametric. One model that con-

tains only parametric elements is that in [BTC88].

8



�

X ;�x ; x : T ` x : T

!I

�

X ;�x ; x : U ` v : V

�

X ;�x ` �x : U: v : U ! V

!E

�

X ;�x ` t : U ! V

�

X ;�x ` u : U

�

X ;�x ` t u : V

8I

�

X ;�x ` t : T

�

X ;X ;�x ` �X: t : 8X: T

8E

�

X ;�x ` t : 8X: T

�

X ;�x ` t

U

: T [U =X ]

Figure 2: Typing rules

4 Polymorphic lambda calculus

We now turn to a more formal development of the

parametricity theorem. We begin with a quick review

of the polymorphic lambda calculus.

We will use X ;Y ;Z to range over type variables, and

T ;U ;V to range over types. Types are formed from

type variables, function types, and type abstraction:

T ::= X j T ! U j 8X: T

We will use x ; y ; z to range over individual variables,

and t ; u; v to range over terms. Terms are formed from

individual variables, abstraction and application of in-

dividuals, and abstraction and application of types:

t ::= x j �x : U: t j t u j �X: t j t

U

We write T [U =X ] to denote substitution of U for the

free occurrences of X in T , and t [u=x ] and t [U =X ] sim-

ilarly.

A term is legal only if it is well typed. Typings are

expressed as assertions of the form

�

X ;�x ` t : T

where

�

X is a list of distinct type variables X

1

; : : : ;X

m

,

and �x is a list of distinct individual variables, with types,

x

1

: T

1

; : : : ; x

n

: T

n

. This assertion may be read as

stating that t has type T in a context where each x

i

has type T

i

. Each individual variable that appears free

in t should appear in �x , and each type variable that

appears free in T of �x should appear in

�

X . The type

inference rules are shown in Figure 2.

Two terms are equivalent if one can be derived from

the other by renaming bound individual or type vari-

ables (� conversion). In addition, we have the familiar

reduction rules:

(�) (�x : U: t) u ) t [u=x ]

(�X: t)

U

) t [U =X ]

(�) �x : U: t x ) t

�X: t

X

) t

where in the � rules x and X do not occur free in t .

As is well known, familiar types such as booleans,

pairs, lists, and natural numbers can be de�ned as types

constructed from just! and 8; see for example [Rey85]

or [GLT89]. Alternatively, we could add suitable types

and individual constants to the pure language described

above.

5 Semantics of polymorphic

lambda calculus

We will give a semantics using a version of the frame

semantics outlined in [BM84] and [MM85]. We �rst

discuss the semantics of types, and then discuss the se-

mantics of terms.

5.1 Types

A type model consists of a universe U of type values,

and two operations, ! and 8 that construct types from

other types. There is a distinguished set [U ! U] of

functions from U to U. If A and B are in U, then

9



A! B must be in U, and if F is in [U!U], then 8F

must be in U.

Let T be a type with its free variables in

�

X . We say

that

�

A is a type environment for

�

X if it maps each type

variable in

�

X into a type value inU. The corresponding

value of T in the environment

�

A is written [[T ]]

�

A and is

de�ned as follows:

[[X ]]

�

A =

�

A[[X ]]

[[T ! U ]]

�

A = [[T ]]

�

A! [[U ]]

�

A

[[8X: T ]]

�

A = 8(�A: [[T ]]

�

A[A=X ])

Here

�

A[[X ]] is the value that

�

AmapsX into, and

�

A[A=X ]

is the environment that maps X into A and otherwise

behaves as

�

A. (The reader may �nd that the above

looks more familiar if

�

A is replaced everywhere by a

Greek letter such as �.)

5.2 Terms

Associated with each type A in U is a set D

A

of the

values of that type.

For each A and B inU, the elements inD

A!B

repre-

sent functions from D

A

to D

B

. We do not require that

the elements are functions, merely that they represent

functions. In particular, associated with each A and B

in U there must be a set [D

A

!D

B

] of functions from

D

A

to D

B

, and functions

�

A;B

: D

A!B

! [D

A

!D

B

]

 

A;B

: [D

A

!D

B

]!D

A!B

such that �

A;B

�  

A;B

is the identity on [D

A

! D

B

].

We will usually omit the subscripts and just write � and

 .

If F is a function in [U ! U], the elements in D

8F

represent functions that take a type A into an element

of D

F (A)

. In particular, associated with each F there

must be a set [8A : U: D

F (A)

] of functions that map

each A in U into an element of D

F (A)

, and functions

�

F

: D

8F

! [8A :U: D

F (A)

]

	

F

: [8A :U: D

F (A)

]!D

8F

such that �

F

� 	

F

is the identity on [8A : U: D

F (A)

].

Again, we will usually omit the subscripts and just write

� and 	 .

Let t be a term such that

�

X ;�x ` t : T . We say that

�

A;�a are environments respecting

�

X ;�x if

�

A is a type

environment for

�

X and �a is an environment mapping

variables to values such that for each

�

x

i

: T

i

in �x , we

have that �a[[x

i

]] 2 D

[[T

i

]]

�

A

. The value of t in the envi-

ronments

�

A and �a is written [[t ]]

�

A�a and is de�ned as

follows:

[[x ]]

�

A�a = �a[[x ]]

[[�x : U: v ]]

�

A�a =  (�a: [[v ]]

�

A�a [a=x ])

[[t u]]

�

A�a = � ([[t ]]

�

A�a) ([[u]]

�

A�a)

[[�X: v ]]

�

A�a = 	 (�A: [[v ]]

�

A[A=X ]�a)

[[t

U

]]

�

A�a = � ([[t ]]

�

A�a) ([[U ]]

�

A)

Here �a [[x ]] is the value that �a maps x into, and �a [a=x ]

is the environment that maps x into a and otherwise

behaves as �a .

A frame is a structure specifying U;!; 8 and

D; �;  ;�;	 satisfying the constraints above. A frame

is an environment model if for every

�

X ;�x ` t : T and

every

�

A;�a respecting

�

X ;�x , the meaning of [[t ]]

�

A�a as

given above exists. (That is, a frame is a model if the

sets [U ! U], [[D

A

! D

B

], and [8A : U: D

F (A)

] are

\big enough".)

We write

�

X ;�x j= t : T if for all environments

�

A;�a

respecting

�

X ;�x , we have [[t ]]

�

A�a 2D

[[T ]]

�

A

.

Proposition. (Soundness of types.) For all

�

X ;�x ; t and T , if

�

X ;�x ` t : T then

�

X ;�x j= t :

T.

The type soundness result simply states that the mean-

ing of a typed term corresponds to the meaning of the

corresponding type. The proof is a straightforward in-

duction over the structure of type inferences. Para-

metricity is an analogue of this result, as we shall see in

the next section.

6 The parametricity theorem

In the previous section, we de�ned a semantics where

a type environment

�

A consists of a mapping of type

variables onto types, and the semantics of a type T

in the environment

�

A is a set denoted D

[[T ]]

�

A

. In this

section, we de�ne an alternative semantics where a type

environment

�

A consists of a mapping of type variables

onto relations, and the semantics of a type T in the

environment

�

A is a relation denoted [[T ]]

�

A.

We can then formally state the parametricity theo-

rem: terms in related environments have related val-

ues. We can think of environments

�

A and

�

A

0

as specify-

ing two di�erent representations of types, related by

�

A,

which is why Reynolds' called his version of this result

\the abstraction theorem". A key point of this paper

is that this theorem has applications other than change

of representation, hence the change in name from \ab-

straction" to \parametricity"

A function type may be regarded as a relation as fol-

lows. If A : A, A

0

and B : B , B

0

are two relations,

10



then we de�ne

A! B : (A! B), (A

0

! B

0

)

to be the relation

A ! B = f (f ; f

0

) j (a; a

0

) 2 A implies

(� f a; � f

0

a

0

) 2 B g

In other words, functions are related if they map related

arguments into related results.

A type abstraction may be regarded as a relation as

follows. Let F be a function from U to U, and F

0

be a

function from U

0

to U

0

, and for each A in U and A

0

in

U

0

, let F be a function that takes a relation A : A, A

0

and returns a relation F(A) : F (A), F

0

(A

0

). Then we

de�ne

8F : 8F , 8F

0

to be the relation

8F = f (g ; g

0

) j for all A, A

0

, and A : A, A

0

,

(�(g)(A);�(g

0

)(A

0

)) 2 F(A) g

In other words, type abstractions are related if they map

related types into related results.

A relation environment maps each type variable into

a relation. Let

�

A be a relation environment for

�

X , and

let

�

A;

�

A

0

be two type environments for

�

X . We write

�

A :

�

A,

�

A

0

if for each X in

�

X we have

�

A[[X ]] :

�

A[[X ]],

�

A

0

[[X ]].

Given a relation environment

�

A we can interpret a

type T as a relation [[T ]]

�

A as follows:

[[X ]]

�

A =

�

A[[X ]]

[[U ! V ]]

�

A = [[U ]]

�

A! [[V ]]

�

A

[[8X: V ]]

�

A = 8(�A: [[V ]]

�

A[A=X ])

Let

�

A;�a respect

�

X ;�x and

�

A

0

;�a

0

respect

�

X ;�x . We

say that

�

A;

�

A;

�

A

0

;�a;�a

0

respect

�

X ;�x if

�

A :

�

A ,

�

A

0

and

(�a [[x

i

]];�a

0

[[x

i

]]) 2 [[T

i

]]

�

A for each x

i

: T

i

in �x . It is easy to

see that if

�

A;

�

A;

�

A

0

;�a;�a

0

respect

�

X ;�x then

�

A;�a respect

�

X ;�x and

�

A

0

;�a

0

respect

�

X ;�x .

We say that

�

X ;�x jj= t : T i� for every

�

A;

�

A;

�

A

0

;�a;�a

0

that respect

�

X ;�x we have ([[t ]]

�

A�a; [[t ]]

�

A

0

�a

0

) 2 [[T ]]

�

A.

Proposition. (Parametricity.) For all

�

X ,

�x , t, and T , if

�

X ;�x ` t : T then

�

X ;�x jj= t : T.

Proof. The proof is a straightforward induction over

the structure of type inferences. For each of the infer-

ence rules in Figure 2, we replace ` by jj= and show that

the resulting inference is valid. (End of proof.)

As mentioned previously, data types such as booleans,

pairs, lists, and natural numbers can be de�ned in terms

of ! and 8.

As an example, consider the construction for pairs.

The type X �Y is de�ned as an abbreviation:

X � Y

def

= 8Z: (X ! Y ! Z )! Z

Every term of type X �Y is equivalent to a term of the

form pair

XY

x y , where x : X and y : Y , and pair is

de�ned by

pair

def

= �X: �Y: �x : X: �y : Y:

�Z: �p : X ! Y ! Z: p x y

The type of pair is, of course,

pair : 8X: 8Y: X ! Y ! X � Y

where X � Y stands for the abbreviation above. It

follows from the parametricity theorem that if A : A!

A

0

and B : B ! B

0

, and (a; a

0

) 2 A and (b; b

0

) 2 B,

then

( [[pair

XY

x y ]][A=X ;B=Y ] [a=x ; b=y ];

[[pair

XY

x y ]][A

0

=X ;B

0

=Y ] [a

0

=x ; b

0

=y ] )

2 [[X � Y ]][A=X ;B=Y ]:

That is, pairs are related if their corresponding compo-

nents are related, as we would expect.

It can be shown similarly, using the standard con-

struction for lists, that lists are related if they have the

same length and corresponding elements are related.

Alternatively, suitable type constructors and individ-

ual constants may be added to the pure polymorphic

lambda calculus. In this case, for each new type con-

structor an appropriate corresponding relation must be

de�ned; suitable de�nitions of relations for pair and list

types were given in Section 2. Further, for each new

constant the parametricity condition must be veri�ed:

if c is a constant of type T , we must check that jj= c : T

holds. It then follows that parametricity holds for any

terms built from the new type constructors and con-

stants.

7 Fixpoints

Every term in typed lambda calculus is strongly nor-

malising, so if a �xpoint operator is desired it must be

added as a primitive. This section mentions the addi-

tional requirements necessary to ensure that the �xpoint

primitive satis�es the abstraction theorem.

Frame models associate with each type A a set D

A

.

In order to discuss �xpoints, we require that each set

have su�cient additional structure to be a domain: it

11



must be provided with an ordering v such that each

domain has a least element, ?, and such that limits of

directed sets exist. Obviously, we also require that all

functions are continuous.

What are the requirements on relations? The obvious

requirement is that they, too, be continuous. That is,

if A : A , A

0

, and x

i

is a chain in A, and x

0

i

is a

chain in A

0

, and (x

i

; x

0

i

) 2 A for every i , then we require

that (

F

x

i

;

F

x

0

i

) 2 A also. But in addition to this, we

need a second requirement, namely that each relation

A is strict, that is, that (?

A

;?

A

0

) 2 A. If we restrict

relations in this way, then it is no longer true that every

function a : A! A

0

may be treated as a relation; only

strict functions may be treated as such.

With this restricted view of relations, it is easy to

show that the �xpoint operator satis�es the parametric-

ity theorem. As usual, for each type A de�ne �x

A

as the

function

�x : 8X: (X ! X )! X

such that �x

A

f =

F

f

i

?

A

. Parametricity holds if

(�x ; �x ) 2 8A: (A ! A) ! A. This will be true if

for each A : A , A

0

and each (f ; f

0

) 2 A ! A we

have (�x

A

f ; �x

A

0

f

0

) 2 A. Recall that the condition on

f and f

0

means that if (x ; x

0

) 2 A then (f x ; f

0

x

0

) 2

A. Now, since all relations are strict, it follows that

(?

A

;?

A

0

) 2 A; hence (f ?

A

; f

0

?

A

0

) 2 A; and, in gen-

eral, (f

i

?

A

; f

0

i

?

A

0

) 2 A. It follows, since all relations

are continuous, that (

F

f

i

?

A

;

F

f

0

i

?

A

0

) 2 A, as re-

quired.

Note that the restriction to strict relations here is

similar to the restriction to strict coercion functions in

[BCGS89], and is adopted for similar reasons.

The requirement that relations are strict is essen-

tial. For a counterexample, take A to be the domain

f?; true; falseg, and take A : A! A to be the constant

relation such that (x ; true) 2 A for all x . The relation

A is continuous but not strict. Let f be the constant

function f x = false and let f

0

be the identity function

f

0

x = x . Then A ! A relates f to f

0

, but A does not

relate �x

A

f = false to �x

A

f

0

= ?.

The restriction to strict arrows is not to be taken

lightly. For instance, given a function r of type

r : 8A:A

�

! A

�

parametricity implies that

r

A

0

� a

�

= a

�

� r

A

for all functions a : A! A

0

. If the �xpoint combinator

appears in the de�nition of r , then we can only conclude

that the above holds for strict a, which is a signi�cant

restriction.

The desire to derive theorems from types therefore

suggests that it would be valuable to explore program-

ming languages that prohibit recursion, or allow only

its restricted use. In theory, this is well understood; we

have already noted that any computable function that is

provably total in second-order Peano arithmetic can be

de�ned in the pure polymorphic lambda calculus, with-

out using the �xpoint as a primitive. However, practical

languages based on this notion remain terra incognita.

References

[BCGS89] V. Breazu-Tannen, T. Coquand, C. A.

Gunter, and A. Scedrov, Inheritance and ex-

plicit coercion. In 4'th Annual Symposium on

Logic in Computer Science, Asilomar, Cali-

fornia, June 1989.

[BFSS87] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and

P. J. Scott, Functorial polymorphism. In G.

Huet, editor, Logical Foundations of Func-

tional Programming, Austin, Texas, 1987.

Addison-Wesley, to appear.

[BM84] K. B. Bruce and A. R. Meyer, The seman-

tics of second-order polymorphic lambda cal-

culus. In Kahn, MacQueen, and Plotkin,

editors, Semantics of Data Types, Sophia-

Antipolis, France, 1984, pp. 131{144. LNCS

173, Springer-Verlag.

[BTC88] V. Breazu-Tannen and T. Coquand, Exten-

sional models for polymorphism. Theoretical

Computer Science, 59:85{114, 1988.

[BW86] G. Barrett and P. Wadler, Derivation of a

pattern-matching compiler. Manuscript, Pro-

gramming Research Group, Oxford, 1986.

[BW88] R. Bird and P. Wadler, Introduction to Func-

tional Programming. Prentice Hall, 1988.

[DM82] L. Damas and R. Milner, Principal type

schemes for functional programs. In Pro-

ceedings of the 9'th Annual Symposium on

Principles of Programming Languages, Albu-

querque, N.M., January 1982.

[deB89] P. J. deBruin, Naturalness of polymorphism.

Submitted to Category Theory and Computer

Science, Manchester, 1989.

[FGSS88] P. J. Freyd, J. Y. Girard, A. Scedrov, and P.

J. Scott, Semantic parametricity in polymor-

phic lambda calculus. In 3'rd Annual Sym-

posium on Logic in Computer Science, Edin-

burgh, Scotland, June 1988.

12



[FLO83] S. Fortune, D. Leivant, and M. O'Donnell,

The expressiveness of simple and second-

order type structures. Journal of the ACM,

30(1):151{185, January 1983.

[Gir72] J.-Y. Girard, Interpr�etation functionelle et

�elimination des coupures dans l'arithm�etique

d'ordre sup�erieure. Ph.D. thesis, Universit�e

Paris VII, 1972.

[Gir86] J.-Y. Girard, The system F of variable types,

�fteen years later. Theoretical Computer Sci-

ence, 45, pp. 159{192.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor,

Proofs and Types. Cambridge University

Press, 1989.

[Hin69] R. Hindley, The principal type scheme of

an object in combinatory logic. Trans. Am.

Math. Soc. 146, pp. 29{60, December 1969.

[HW88] P. Hudak and P. Wadler, editors, Report

on the Functional Programming Language

Haskell. Technical Report YALEU/DCS/

RR656, Yale University, Department of Com-

puter Science, December 1988; also Technical

Report, Glasgow University, Department of

Computer Science, December 1988.

[Mes89] J. Meseguer, Relating models of polymor-

phism. In 16'th ACM Symposium on Prin-

ciples of Programming Languages, Austin,

Texas, January 1989.

[Mil78] R. Milner, A theory of type polymorphism in

programming. J. Comput. Syst. Sci. 17, pp.

348{375, 1978.

[Mil84] R. Milner, A proposal for Standard ML. In

ACM Symposium on Lisp and Functional

Programming, Austin, Texas, August 1984.

[Mil87] R. Milner, Changes to the Standard ML

core language. Report ECS-LFCS-87-33, Ed-

inburgh University, Computer Science Dept.,

1987.

[Mit86] J. C. Mitchell, Representation independence

and data abstraction. In 13'th ACM Sym-

posium on Principles of Programming Lan-

guages, pp. 263{276.

[MM85] J. C. Mitchell and A. R. Meyer, Second-order

logical relations. In R. Parikh, editor, Log-

ics of Programs, Brooklyn, New York, 1985.

LNCS 193, Springer-Verlag.

[Pit87] A. M. Pitts, Polymorphism is set theoretic,

constructively. In D. H. Pitt, et al., editors,

Category Theory and Computer Science, Ed-

inburgh, 1987. LNCS 283, Springer-Verlag.

[Rey74] J. C. Reynolds, Towards a theory of type

structure. In B. Robinet, editor, Proc. Col-

loque sur la Programmation, LNCS 19,

Springer-Verlag.

[Rey83] J. C. Reynolds, Types, abstraction, and para-

metric polymorphism. In R. E. A. Mason, ed-

itor, Information Processing 83, pp. 513{523.

North-Holland, Amsterdam.

[Rey84] J. C. Reynolds, Polymorphism is not set the-

oretic. In Kahn, MacQueen, and Plotkin,

editors, Semantics of Data Types, Sophia-

Antipolis, France, 1984, pp. 145{156. LNCS

173, Springer-Verlag.

[Rey85] J. C. Reynolds, Three approaches to type

structure. In Mathematical Foundations of

Software Development, LNCS 185, Springer-

Verlag, 1985.

[She89] M. Sheeran, Categories for the working hard-

ware designer. In Workshop on Hardware

Speci�cation, Veri�cation, and Synthesis:

Mathematical Aspects, Cornell, July 1989.

[Tur85] D. A. Turner, Miranda: A non-strict func-

tional language with polymorphic types. In

Proceedings of the 2'nd International Confer-

ence on Functional Programming Languages

and Computer Architecture, Nancy, France,

September 1985. LNCS 201, Springer-Verlag,

1985.

[WB89] P. Wadler and S. Blott, How to make ad-

hoc polymorphism less ad hoc. In 16'th ACM

Symposium on Principles of Programming

Languages, Austin, Texas, January 1989.

13


