
9 System T of Higher-Order Recursion

System T, well-known as Gödel’s T, is the combination of function types with the type of
natural numbers. In contrast to E, which equips the naturals with some arbitrarily chosen
arithmetic operations, the language T provides a general mechanism, called primitive
recursion, from which these primitives may be defined. Primitive recursion captures the
essential inductive character of the natural numbers, and hence may be seen as an intrinsic
termination proof for each program in the language. Consequently, we may only define total
functions in the language, those that always return a value for each argument. In essence,
every program in T “comes equipped” with a proof of its termination. Although this may
seem like a shield against infinite loops, it is also a weapon that can be used to show that
some programs cannot be written in T. To do so would demand a master termination proof
for every possible program in the language, something that we shall prove does not exist.

9.1 Statics

The syntax of T is given by the following grammar:

Typ τ ::= nat nat naturals
arr(τ1; τ2) τ1 → τ2 function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
rec{e0; x.y.e1}(e) rec e {z ↪→ e0 | s(x) with y ↪→ e1}

recursion
lam{τ }(x.e) λ (x : τ) e abstraction
ap(e1; e2) e1(e2) application

We write n for the expression s(. . . s(z)), in which the successor is applied n ≥ 0 times
to zero. The expression rec{e0; x.y.e1}(e) is called the recursor. It represents the e-fold
iteration of the transformation x.y.e1 starting from e0. The bound variable x represents
the predecessor and the bound variable y represents the result of the x-fold iteration. The
“with” clause in the concrete syntax for the recursor binds the variable y to the result of
the recursive call, as will become clear shortly.

Sometimes the iterator, iter{e0; y.e1}(e), is considered as an alternative to the recursor.
It has essentially the same meaning as the recursor, except that only the result of the recursive

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

70 System T of Higher-Order Recursion

call is bound to y in e1, and no binding is made for the predecessor. Clearly, the iterator
is a special case of the recursor, because we can always ignore the predecessor binding.
Conversely, the recursor is definable from the iterator, provided that we have product types
(Chapter 10) at our disposal. To define the recursor from the iterator, we simultaneously
compute the predecessor while iterating the specified computation.

The statics of T is given by the following typing rules:

�, x : τ � x : τ
(9.1a)

� � z : nat
(9.1b)

� � e : nat
� � s(e) : nat (9.1c)

� � e : nat � � e0 : τ �, x : nat, y : τ � e1 : τ

� � rec{e0; x.y.e1}(e) : τ
(9.1d)

�, x : τ1 � e : τ2

� � lam{τ1}(x.e) : arr(τ1; τ2)
(9.1e)

� � e1 : arr(τ2; τ) � � e2 : τ2

� � ap(e1; e2) : τ
(9.1f)

As usual, admissibility of the structural rule of substitution is crucially important.

Lemma 9.1. If � � e : τ and �, x : τ � e′ : τ ′, then � � [e/x]e′ : τ ′.

9.2 Dynamics

The closed values of T are defined by the following rules:

z val
(9.2a)

[e val]
s(e) val

(9.2b)

lam{τ }(x.e) val
(9.2c)

The premise of rule (9.2b) is included for an eager interpretation of successor, and excluded
for a lazy interpretation.

The transition rules for the dynamics of T are as follows:[
e �−→ e′

s(e) �−→ s(e′)

]
(9.3a)

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

71 9.3 Definability

e1 �−→ e′1
ap(e1; e2) �−→ ap(e′1; e2)

(9.3b)

[
e1 val e2 �−→ e′2

ap(e1; e2) �−→ ap(e1; e′2)

]
(9.3c)

[e2 val]
ap(lam{τ }(x.e); e2) �−→ [e2/x]e

(9.3d)

e �−→ e′

rec{e0; x.y.e1}(e) �−→ rec{e0; x.y.e1}(e′) (9.3e)

rec{e0; x.y.e1}(z) �−→ e0
(9.3f)

s(e) val

rec{e0; x.y.e1}(s(e)) �−→ [e, rec{e0; x.y.e1}(e)/x, y]e1
(9.3g)

The bracketed rules and premises are included for an eager successor and call-by-value
application, and omitted for a lazy successor and call-by-name application. Rules (9.3f) and
(9.3g) specify the behavior of the recursor on z and s(e). In the former case, the recursor
reduces to e0, and in the latter case, the variable x is bound to the predecessor e and y is
bound to the (unevaluated) recursion on e. If the value of y is not required in the rest of the
computation, the recursive call is not evaluated.

Lemma 9.2 (Canonical Forms). If e : τ and e val, then

1. If τ = nat, then e = s(e′) for some e′.
2. If τ = τ1 → τ2, then e = λ (x : τ1) e2 for some e2.

Theorem 9.3 (Safety). 1. If e : τ and e �−→ e′, then e′ : τ .

2. If e : τ , then either e val or e �−→ e′ for some e′.

9.3 Definability

A mathematical function f : N → N on the natural numbers is definable in T iff there
exists an expression ef of type nat→ nat such that for every n ∈ N,

ef (n) ≡ f (n) : nat. (9.4)

That is, the numeric function f : N → N is definable iff there is an expression ef of type
nat→ nat such that, when applied to the numeral representing the argument n ∈ N, the
application is definitionally equal to the numeral corresponding to f (n) ∈ N.

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

72 System T of Higher-Order Recursion

Definitional equality for T, written � � e ≡ e′ : τ , is the strongest congruence containing
these axioms:

�, x : τ1 � e2 : τ2 � � e1 : τ1

� � ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ2
(9.5a)

� � e0 : τ �, x : τ � e1 : τ

� � rec{e0; x.y.e1}(z) ≡ e0 : τ
(9.5b)

� � e0 : τ �, x : τ � e1 : τ

� � rec{e0; x.y.e1}(s(e)) ≡ [e, rec{e0; x.y.e1}(e)/x, y]e1 : τ
(9.5c)

For example, the doubling function, d(n) = 2 × n, is definable in T by the expression
ed : nat→ nat given by

λ (x : nat) rec x {z ↪→ z | s(u) with v ↪→ s(s(v))}.
To check that this defines the doubling function, we proceed by induction on n ∈ N. For
the basis, it is easy to check that

ed (0) ≡ 0 : nat.

For the induction, assume that

ed (n) ≡ d(n) : nat.

Then calculate using the rules of definitional equality:

ed (n+ 1) ≡ s(s(ed (n)))

≡ s(s(2× n))

= 2× (n+ 1)

= d(n+ 1).

As another example, consider the following function, called Ackermann’s function, de-
fined by the following equations:

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)).

The Ackermann function grows very quickly. For example, A(4, 2) ≈ 265,536, which is often
cited as being larger than the number of atoms in the universe! Yet we can show that the
Ackermann function is total by a lexicographic induction on the pair of arguments (m, n).
On each recursive call, either m decreases, or else m remains the same, and n decreases, so
inductively the recursive calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat→ nat that is defined
using the recursor, but without using any higher-order functions. Ackermann’s function is
defined so that it is not first-order primitive recursive but is higher-order primitive recursive.
The key to showing that it is definable in T is to note that A(m + 1, n) iterates n times

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

73 9.4 Undefinability

the function A(m,−), starting with A(m, 1). As an auxiliary, let us define the higher-order
function

it : (nat→ nat) → nat→ nat→ nat

to be the λ-abstraction

λ (f : nat→ nat) λ (n : nat) rec n {z ↪→ id | s() with g ↪→ f ◦ g},
where id = λ (x : nat) x is the identity, and f ◦g = λ (x : nat) f (g(x)) is the composition
of f and g. It is easy to check that

it(f)(n)(m) ≡ f (n)(m) : nat,

where the latter expression is the n-fold composition of f starting with m. We may then
define the Ackermann function

ea : nat→ nat→ nat

to be the expression

λ (m : nat) recm {z ↪→ s | s() with f ↪→ λ (n : nat) it(f)(n)(f (1))}.
It is instructive to check that the following equivalences are valid:

ea(0)(n) ≡ s(n) (9.6)

ea(m+ 1)(0) ≡ ea(m)(1) (9.7)

ea(m+ 1)(n+ 1) ≡ ea(m)(ea(s(m))(n)). (9.8)

That is, the Ackermann function is definable in T.

9.4 Undefinability

It is impossible to define an infinite loop in T.

Theorem 9.4. If e : τ , then there exists v val such that e ≡ v : τ .

Proof See Corollary 46.15.

Consequently, values of function type in T behave like mathematical functions: if e :
τ1 → τ2 and e1 : τ1, then e(e1) evaluates to a value of type τ2. Moreover, if e : nat, then
there exists a natural number n such that e ≡ n : nat.

Using this, we can show, using a technique called diagonalization, that there are functions
on the natural numbers that are not definable in T. We make use of a technique, called
Gödel-numbering, that assigns a unique natural number to each closed expression of T.
By assigning a unique number to each expression, we may manipulate expressions as data
values in T so that T is able to compute with its own programs.1

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

74 System T of Higher-Order Recursion

The essence of Gödel-numbering is captured by the following simple construction on
abstract syntax trees. (The generalization to abstract binding trees is slightly more difficult,
the main complication being to ensure that all α-equivalent expressions are assigned the
same Gödel number.) Recall that a general ast a has the form o(a1, . . . , ak), where o is an
operator of arity k. Enumerate the operators so that every operator has an index i ∈ N, and
let m be the index of o in this enumeration. Define the Gödel number �a� of a to be the
number

2m 3n1 5n2 . . . p
nk

k ,

where pk is the kth prime number (so that p0 = 2, p1 = 3, and so on), and n1, . . . , nk are
the Gödel numbers of a1, . . . , ak , respectively. This procedure assigns a natural number
to each ast. Conversely, given a natural number, n, we may apply the prime factorization
theorem to “parse” n as a unique abstract syntax tree. (If the factorization is not of the right
form, which can only be because the arity of the operator does not match the number of
factors, then n does not code any ast.)

Now, using this representation, we may define a (mathematical) function funiv : N →
N → N such that, for any e : nat→ nat, funiv(�e�)(m) = n iff e(m) ≡ n : nat.2

The determinacy of the dynamics, together with Theorem 9.4, ensure that funiv is a well-
defined function. It is called the universal function for T because it specifies the behavior
of any expression e of type nat → nat. Using the universal function, let us define an
auxiliary mathematical function, called the diagonal function δ : N → N, by the equation
δ(m) = funiv(m)(m). The δ function is chosen so that δ(�e�) = n iff e(�e�) ≡ n : nat.
(The motivation for its definition will become clear in a moment.)

The function funiv is not definable in T. Suppose that it were definable by the expression
euniv, then the diagonal function δ would be definable by the expression

eδ = λ (m : nat) euniv(m)(m).

But in that case we would have the equations

eδ(�e�) ≡ euniv(�e�)(�e�)
≡ e(�e�).

Now let e� be the function expression

λ (x : nat) s(eδ(x)),

so that we may deduce

e�(�e��) ≡ s(eδ(�e��))
≡ s(e�(�e��)).

But the termination theorem implies that there exists n such that e�(�e��) ≡ n, and hence
we have n ≡ s(n), which is impossible.

We say that a language L is universal if it is possible to write an interpreter for L in
L itself. It is intuitively clear that funiv is computable in the sense that we can define it in

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

75 Exercises

some sufficiently powerful programming language. But the preceding argument shows that
T is not up to the task; it is not a universal programming language. Examination of the
foregoing proof reveals an inescapable trade-off: by insisting that all expressions terminate,
we necessarily lose universality—there are computable functions that are not definable in
the language.

9.5 Notes

System T was introduced by Gödel (1958) in his study of the consistency of arithmetic
(Gödel, 1980). Gödel showed how to “compile” proofs in arithmetic into well-typed terms
of system T, and to reduce the consistency problem for arithmetic to the termination of
programs in T. It was perhaps the first programming language whose design was directly
influenced by the verification (of termination) of its programs.

Exercises

9.1. Prove Lemma 9.2.
9.2. Prove Theorem 9.3.
9.3. Attempt to prove that if e : nat is closed, then there exists n such that e �−→∗ n under

the eager dynamics. Where does the proof break down?
9.4. Attempt to prove termination for all well-typed closed terms: if e : τ , then there exists

e′ val such that e �−→∗ e′. You are free to appeal to Lemma 9.2 and Theorem 9.3 as
necessary. Where does the attempt break down? Can you think of a stronger inductive
hypothesis that might evade the difficulty?

9.5. Define a closed term e of type τ in T to be hereditarily terminating at type τ by
induction on the structure of τ as follows:
(a) If τ = nat, then e is hereditarily terminating at type τ iff e is terminating (that is,

iff e �−→∗ n for some n.)
(b) If τ = τ1 → τ2, then e is hereditarily terminating iff when e1 is hereditarily

terminating at type τ1, then e(e1) is hereditarily terminating at type τ2.
Attempt to prove hereditary termination for well-typed terms: if e : τ , then e is
hereditarily terminating at type τ . The stronger inductive hypothesis bypasses the
difficulty that arose in Exercise 9.4 but introduces another obstacle. What is the
complication? Can you think of an even stronger inductive hypothesis that would
suffice for the proof?

9.6. Show that if e is hereditarily terminating at type τ , e′ : τ , and e′ �−→ e, then e is also
hereditarily terminating at type τ . (The need for this result will become clear in the
solution to Exercise 9.5.)

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

76 System T of Higher-Order Recursion

9.7. Define an open, well-typed term

x1 : τ1, . . . , xn : τn � e : τ

to be open hereditarily terminating iff every substitution instance

[e1, . . . , en/x1, . . . , xn]e

is closed hereditarily terminating at type τ when each ei is closed hereditarily termi-
nating at type τi for each 1 ≤ i ≤ n. Derive Exercise 9.3 from this result.

Notes

1 The same technique lies at the heart of the proof of Gödel’s celebrated incompleteness theorem.
The undefinability of certain functions on the natural numbers within T may be seen as a form of
incompleteness like that considered by Gödel.

2 The value of funiv(k)(m) may be chosen arbitrarily to be zero when k is not the code of any
expression e.

https://doi.org/10.1017/CBO9781316576892.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.011

