
8 Function Definitions and Values

In the language E, we may perform calculations such as the doubling of a given expression,
but we cannot express doubling as a concept in itself. To capture the pattern of doubling
a number, we abstract away from the particular number being doubled using a variable
to stand for a fixed, but unspecified, number, to express the doubling of an arbitrary
number. Any particular instance of doubling may then be obtained by substituting a numeric
expression for that variable. In general, an expression may involve many distinct variables,
necessitating that we specify which of several possible variables is varying in a particular
context, giving rise to a function of that variable.

In this chapter, we will consider two extensions of E with functions. The first, and perhaps
most obvious, extension is by adding function definitions to the language. A function is
defined by binding a name to an abt with a bound variable that serves as the argument of
that function. A function is applied by substituting a particular expression (of suitable type)
for the bound variable, obtaining an expression.

The domain and range of defined functions are limited to the types nat and str, because
these are the only types of expression. Such functions are called first-order functions,
in contrast to higher-order functions, which permit functions as arguments and results
of other functions. Because the domain and range of a function are types, this requires
that we introduce function types whose elements are functions. Consequently, we may
form functions of higher type, those whose domain and range may themselves be function
types.

8.1 First-Order Functions

The language ED extends E with function definitions and function applications as described
by the following grammar:

Exp e ::= apply{f }(e) f (e) application
fun{τ1; τ2}(x1.e2; f.e) fun f (x1 : τ1) : τ2 = e2 in e definition

The expression fun{τ1; τ2}(x1.e2; f.e) binds the function name f within e to the pattern
x1.e2, which has argument x1 and definition e2. The domain and range of the function are,
respectively, the types τ1 and τ2. The expression apply{f }(e) instantiates the binding of f

with the argument e.

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010


62 Function Definitions and Values

The statics of ED defines two forms of judgment:

1. Expression typing, e : τ , stating that e has type τ ;
2. Function typing, f (τ1) : τ2, stating that f is a function with argument type τ1 and result

type τ2.

The judgment f (τ1) : τ2 is called the function header of f ; it specifies the domain type and
the range type of a function.

The statics of ED is defined by the following rules:

�, x1 : τ1 � e2 : τ2 �, f (τ1) : τ2 � e : τ

� � fun{τ1; τ2}(x1.e2; f.e) : τ
(8.1a)

� � f (τ1) : τ2 � � e : τ1

� � apply{f }(e) : τ2
(8.1b)

Function substitution, written [[x.e/f ]]e′, is defined by induction on the structure of e′

much like ordinary substitution. However, a function name f does not stand for an expres-
sion and can only occur in an application of the form apply{f }(e). Function substitution
is defined by the following rule:

[[x.e/f ]]apply{f }(e′) = let([[x.e/f ]]e′; x.e)
(8.2)

At application sites to f with argument e′, function substitution yields a let expression
that binds x to the result of expanding any further applications to f within e′.

Lemma 8.1. If �, f (τ1) : τ2 � e : τ and �, x1 : τ1 � e2 : τ2, then � � [[x1.e2/f ]]e : τ .

Proof By rule induction on the first premise, similarly to the proof of Lemma 4.4.

The dynamics of ED is defined using function substitution:

fun{τ1; τ2}(x1.e2; f.e) �−→ [[x1.e2/f ]]e
(8.3)

Because function substitution replaces all applications of f by appropriate let expressions,
there is no need to give a rule for application expressions (essentially, they behave like
variables that are replaced during evaluation, and not like a primitive operation of the
language).

The safety of ED may, with some effort, be derived from the safety theorem for higher-
order functions, which we discuss next.

8.2 Higher-Order Functions

The similarity between variable definitions and function definitions in ED is striking. Is it
possible to combine them? The gap that must be bridged is the segregation of functions

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010


63 8.2 Higher-Order Functions

from expressions. A function name f is bound to an abstractor x.e specifying a pattern that
is instantiated when f is applied. To reduce function definitions to ordinary definitions, we
reify the abstractor into a form of expression, called a λ-abstraction, written lam{τ1}(x.e).
Applications generalize to ap(e1; e2), where e1 is an expression denoting a function, and
not just a function name. λ-abstraction and application are the introduction and elimination
forms for the function type arr(τ1; τ2), which classifies functions with domain τ1 and
range τ2.

The language EF enriches E with function types, as specified by the following
grammar:

Typ τ ::= arr(τ1; τ2) τ1 → τ2 function
Exp e ::= lam{τ }(x.e) λ (x : τ ) e abstraction

ap(e1; e2) e1(e2) application

In EF functions are first-class in that they are a form of expression that can be used like any
other. In particular, functions may be passed as arguments to, and returned as results from,
other functions. For this reason, first-class functions are said to be higher-order, rather than
first-order.

The statics of EF is given by extending rules (4.1) with the following rules:

�, x : τ1 � e : τ2

� � lam{τ1}(x.e) : arr(τ1; τ2)
(8.4a)

� � e1 : arr(τ2; τ ) � � e2 : τ2

� � ap(e1; e2) : τ
(8.4b)

Lemma 8.2 (Inversion). Suppose that � � e : τ .

1. If e = lam{τ1}(x.e2), then τ = arr(τ1; τ2) and �, x : τ1 � e2 : τ2.

2. If e = ap(e1; e2), then there exists τ2 such that � � e1 : arr(τ2; τ ) and � � e2 : τ2.

Proof The proof proceeds by rule induction on the typing rules. Observe that for each rule,
exactly one case applies and that the premises of the rule provide the required result.

Lemma 8.3 (Substitution). If �, x : τ � e′ : τ ′, and � � e : τ , then � � [e/x]e′ : τ ′.

Proof By rule induction on the derivation of the first judgment.

The dynamics of EF extends that of E with the following rules:

lam{τ }(x.e) val
(8.5a)

e1 �−→ e′1
ap(e1; e2) �−→ ap(e′1; e2)

(8.5b)

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010


64 Function Definitions and Values

[
e1 val e2 �−→ e′2

ap(e1; e2) �−→ ap(e1; e′2)

]
(8.5c)

[e2 val]
ap(lam{τ2}(x.e1); e2) �−→ [e2/x]e1

(8.5d)

The bracketed rule and premise are included for a call-by-value interpretation of function
application and excluded for a call-by-name interpretation.1

When functions are first class, there is no need for function declarations: sim-
ply replace the function declaration fun f (x1 : τ1) : τ2 = e2 in e by the definition
let λ (x : τ1) e2 be f in e, and replace second-class function application f (e) by the first-
class function application f (e). Because λ-abstractions are values, it makes no difference
whether the definition is evaluated by-value or by-name for this replacement to make sense.
However, using ordinary definitions, we may, for example, give a name to a partially applied
function, as in the following example:

let k be λ (x1 : num) λ (x2 : num) x1

in let kz be k(0) in kz(3)+ kz(5).

Without first-class functions, we cannot even form the function k, which returns a function
as result when applied to its first argument.

Theorem 8.4 (Preservation). If e : τ and e �−→ e′, then e′ : τ .

Proof The proof is by induction on rules (8.5), which define the dynamics of the language.
Consider rule (8.5d),

ap(lam{τ2}(x.e1); e2) �−→ [e2/x]e1
.

Suppose that ap(lam{τ2}(x.e1); e2) : τ1. By Lemma 8.2, we have e2 : τ2 and x : τ2 � e1 : τ1,
so by Lemma 8.3, [e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 8.5 (Canonical Forms). If e : arr(τ1; τ2) and e val, then e = λ (x : τ1) e2 for some
variable x and expression e2 such that x : τ1 � e2 : τ2.

Proof By induction on the typing rules, using the assumption e val.

Theorem 8.6 (Progress). If e : τ , then either e val, or there exists e′ such that e �−→ e′.

Proof The proof is by induction on rules (8.4). Note that because we consider only closed
terms, there are no hypotheses on typing derivations.

Consider rule (8.4b) (under the by-name interpretation). By induction either e1 val or
e1 �−→ e′1. In the latter case, we have ap(e1; e2) �−→ ap(e′1; e2). In the former case, we

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010


65 8.3 Evaluation Dynamics and Definitional Equality

have by Lemma 8.5 that e1 = lam{τ2}(x.e) for some x and e. But then ap(e1; e2) �−→
[e2/x]e.

8.3 Evaluation Dynamics and Definitional Equality

An inductive definition of the evaluation judgment e ⇓ v for EF is given by the following
rules:

lam{τ }(x.e) ⇓ lam{τ }(x.e)
(8.6a)

e1 ⇓ lam{τ }(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(8.6b)

It is easy to check that if e ⇓ v, then v val, and that if e val, then e ⇓ e.

Theorem 8.7. e ⇓ v iff e �−→∗ v and v val.

Proof In the forward direction, we proceed by rule induction on rules (8.6), following
along similar lines as the proof of Theorem 7.2.

In the reverse direction, we proceed by rule induction on rules (5.1). The proof relies on
an analog of Lemma 7.4, which states that evaluation is closed under converse execution,
which is proved by induction on rules (8.5).

Definitional equality for the call-by-name dynamics of EF is defined by extension of
rules (5.10).

� � ap(lam{τ }(x.e2); e1) ≡ [e1/x]e2 : τ2
(8.7a)

� � e1 ≡ e′1 : τ2 → τ � � e2 ≡ e′2 : τ2

� � ap(e1; e2) ≡ ap(e′1; e′2) : τ
(8.7b)

�, x : τ1 � e2 ≡ e′2 : τ2

� � lam{τ1}(x.e2) ≡ lam{τ1}(x.e′2) : τ1 → τ2
(8.7c)

Definitional equality for call-by-value requires a bit more machinery. The main idea is
to restrict rule (8.7a) to require that the argument be a value. In addition, values must be
expanded to include variables, because in call-by-value, the argument variable of a function
stands for the value of its argument. The call-by-value definitional equality judgment takes
the form

� � e1 ≡ e2 : τ,

where � consists of paired hypotheses x : τ, x val stating, for each variable x in scope,
its type and that it is a value. We write � � e val to show that e is a value under these
hypotheses, so that x : τ, x val � x val.

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010


66 Function Definitions and Values

8.4 Dynamic Scope

The dynamics of function application given by rules (8.5) is defined only for expressions
without free variables. When a function is applied, the argument is substituted for the
argument variable, ensuring that the result remains closed. Moreover, because substitution
of closed expressions can never incur capture, the scopes of variables are not disturbed by
the dynamics, ensuring that the principles of binding and scope described in Chapter 1 are
respected. This treatment of variables is called static scoping, or static binding, to contrast
it with an alternative approach that we now describe.

Another approach, called dynamic scoping, or dynamic binding, is sometimes advocated
as an alternative to static binding. The crucial difference is that with dynamic scoping the
principle of identification of abt’s up to renaming of bound variables is denied. Conse-
quently, capture-avoiding substitution is not available. Instead, evaluation is defined for
open terms, with the bindings of free variables provided by an environment mapping vari-
able names to (possibly open) values. The binding of a variable is determined as late as
possible, at the point where the variable is evaluated, rather than where it is bound. If the
environment does not provide a binding for a variable, evaluation is aborted with a run-time
error.

For first-order functions, dynamic and static scoping coincide, but in the higher-order
case, the two approaches diverge. For example, there is no difference between static and
dynamic scope when it comes to evaluation of an expression such as (λ (x : num) x + 7)(42).
Whether 42 is substituted for x in the body of the function before evaluation, or the body
is evaluated in the presence of the binding of x to 42, the outcome is the same.

In the higher-order case, the equivalence of static and dynamic scope breaks down. For
example, consider the expression

e � (λ (x : num) λ (y : num) x + y)(42).

With static scoping e evaluates to the closed value v � λ (y : num) 42+ y, which, if applied,
would add 42 to its argument. It makes no difference how the bound variable x is chosen,
the outcome will always be the same. With dynamic scoping, e evaluates to the open
value v′ � λ (y : num) x + y in which the variable x occurs free. When this expression is
evaluated, the variable x is bound to 42, but this is irrelevant because the binding is not
needed to evaluate the λ-abstraction. The binding of x is not retrieved until such time as v′

is applied to an argument, at which point the binding for x in force at that time is retrieved,
and not the one in force at the point where e is evaluated.

Therein lies the difference. For example, consider the expression

e′ � (λ (f : num→ num) (λ (x : num) f (0))(7))(e).

When evaluated using dynamic scope, the value of e′ is 7, whereas its value is 42 under
static scope. The discrepancy can be traced to the re-binding of x to 7 before the value of
e, namely v′, is applied to 0, altering the outcome.

Dynamic scope violates the basic principle that variables are given meaning by capture-
avoiding substitution as defined in Chapter 1. Violating this principle has at least two

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010


67 Exercises

undesirable consequences. One is that the names of bound variables matter, in contrast
to static scope which obeys the identification principle. For example, had the innermost
λ-abstraction of e′ bound the variable y, rather than x, then its value would have been 42,
rather than 7. Thus, one component of a program may be sensitive to the names of bound
variables chosen in another component, a clear violation of modular decomposition.

Another problem is that dynamic scope is not, in general, type-safe. For example, consider
the expression

e′ � (λ (f : num→ num) (λ (x : str) f ("zero"))(7))(e).

Under dynamic scoping this expression gets stuck attempting to evaluate x+y with x bound
to the string “zero,” and no further progress can be made. For this reason dynamic scope
is only ever advocated for so-called dynamically typed languages, which replace static
consistency checks by dynamic consistency checks to ensure a weak form of progress.
Compile-time errors are thereby transformed into run-time errors.

(For more on dynamic typing, see Chapter 22, and for more on dynamic scope, see
Chapter 32.)

8.5 Notes

Nearly all programming languages provide some form of function definition mechanism of
the kind illustrated here. The main point of the present account is to demonstrate that a more
natural, and more powerful, approach is to separate the generic concept of a definition from
the specific concept of a function. Function types codify the general notion in a systematic
way that encompasses function definitions as a special case, and moreover, admits passing
functions as arguments and returning them as results without special provision. The essential
contribution of Church’s λ-calculus (Church, 1941) was to take functions as primary, and
to show that nothing more is needed to get a fully expressive programming language.

Exercises

8.1. Formulate an environmental evaluation dynamics (see Exercise 7.5) for ED. Hint:
Introduce a new form of judgment for evaluation of function identifiers.

8.2. Consider an environmental dynamics for EF, which includes higher-order functions.
What difficulties arise? Can you think of a way to evade these difficulties? Hint: One
approach is to “substitute away” all free variables in a λ-abstraction at the point at
which it is evaluated. The second is to “freeze” the values of each of the free variables
in a λ-abstraction, and to “thaw” them when such a function is applied. What problems
arise in each case?

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010


68 Function Definitions and Values

Note

1 Although the term “call-by-value” is accurately descriptive, the origin of the term “call-by-name”
remains shrouded in mystery.

https://doi.org/10.1017/CBO9781316576892.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.010



