
7 Evaluation Dynamics

In Chapter 5, we defined evaluation of expressions in E using a structural dynamics.
Structural dynamics is very useful for proving safety, but for some purposes, such as writing
a user manual, another formulation, called evaluation dynamics, is preferable. An evaluation
dynamics is a relation between a phrase and its value that is defined without detailing the
step-by-step process of evaluation. A cost dynamics enriches an evaluation dynamics with
a cost measure specifying the resource usage of evaluation. A prime example is time,
measured as the number of transition steps required to evaluate an expression according to
its structural dynamics.

7.1 Evaluation Dynamics

An evaluation dynamics consists of an inductive definition of the evaluation judgment e ⇓ v

stating that the closed expression e evaluates to the value v. The evaluation dynamics of E

is defined by the following rules:

num[n] ⇓ num[n] (7.1a)

str[s] ⇓ str[s] (7.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 is n nat

plus(e1; e2) ⇓ num[n]
(7.1c)

e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s str

cat(e1; e2) ⇓ str[s]
(7.1d)

e ⇓ str[s] |s| = n nat

len(e) ⇓ num[n]
(7.1e)

[e1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.1f)

The value of a let expression is determined by substitution of the binding into the body.
The rules are not syntax-directed, because the premise of rule (7.1f) is not a sub-expression
of the expression in the conclusion of that rule.

https://doi.org/10.1017/CBO9781316576892.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.009

54 Evaluation Dynamics

Rule (7.1f) specifies a by-name interpretation of definitions. For a by-value interpretation,
the following rule should be used instead:

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.2)

Because the evaluation judgment is inductively defined, we prove properties of it by rule
induction. Specifically, to show that the property P(e ⇓ v) holds, it is enough to show that
P is closed under rules (7.1):

1. Show that P(num[n] ⇓ num[n]).
2. Show that P(str[s] ⇓ str[s]).
3. Show that P(plus(e1; e2) ⇓ num[n]), if P(e1 ⇓ num[n1]), P(e2 ⇓ num[n2]), and

n1 + n2 is n nat.
4. Show that P(cat(e1; e2) ⇓ str[s]), if P(e1 ⇓ str[s1]), P(e2 ⇓ str[s2]), and

s1 ˆ s2 = s str.
5. Show that P(let(e1; x.e2) ⇓ v2), if P([e1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e itself, because the
evaluation rules are not syntax-directed.

Lemma 7.1. If e ⇓ v, then v val.

Proof By induction on rules (7.1). All cases except rule (7.1f) are immediate. For the latter
case, the result follows directly by an appeal to the inductive hypothesis for the premise of
the evaluation rule.

7.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for E. It is natural to ask whether they
are equivalent, but to do so first requires that we consider carefully what we mean by
equivalence. The structural dynamics describes a step-by-step process of execution, whereas
the evaluation dynamics suppresses the intermediate states, focusing attention on the initial
and final states alone. This remark suggests that the right correspondence is between
complete execution sequences in the structural dynamics and the evaluation judgment in
the evaluation dynamics.

Theorem 7.2. For all closed expressions e and values v, e �−→∗ v iff e ⇓ v.

How might we prove such a theorem? We will consider each direction separately. We
consider the easier case first.

Lemma 7.3. If e ⇓ v, then e �−→∗ v.

https://doi.org/10.1017/CBO9781316576892.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.009

55 7.3 Type Safety, Revisited

Proof By induction on the definition of the evaluation judgment. For example, suppose
that plus(e1; e2) ⇓ num[n] by the rule for evaluating additions. By induction, we know that
e1 �−→∗ num[n1] and e2 �−→∗ num[n2]. We reason as follows:

plus(e1; e2) �−→∗ plus(num[n1]; e2)
�−→∗ plus(num[n1]; num[n2])
�−→ num[n1 + n2]

Therefore, plus(e1; e2) �−→∗ num[n1 + n2], as required. The other cases are handled
similarly.

For the converse, recall from Chapter 5 the definitions of multi-step evaluation and
complete evaluation. Because v ⇓ v when v val, it suffices to show that evaluation is closed
under converse evaluation:1

Lemma 7.4. If e �−→ e′ and e′ ⇓ v, then e ⇓ v.

Proof By induction on the definition of the transition judgment. For example, suppose that
plus(e1; e2) �−→ plus(e′1; e2), where e1 �−→ e′1. Suppose further that plus(e′1; e2) ⇓ v, so
that e′1 ⇓ num[n1], and e2 ⇓ num[n2], and n1 + n2 is n nat, and v is num[n]. By induction
e1 ⇓ num[n1], and hence plus(e1; e2) ⇓ num[n], as required.

7.3 Type Safety, Revisited

Type safety is defined in Chapter 6 as preservation and progress (Theorem 6.1). These
concepts are meaningful when applied to a dynamics given by a transition system, as
we shall do throughout this book. But what if we had instead given the dynamics as an
evaluation relation? How is type safety proved in that case?

The answer, unfortunately, is that we cannot. Although there is an analog of the preserva-
tion property for an evaluation dynamics, there is no clear analog of the progress property.
Preservation may be stated as saying that if e ⇓ v and e : τ , then v : τ . It can be readily
proved by induction on the evaluation rules. But what is the analog of progress? We might
be tempted to phrase progress as saying that if e : τ , then e ⇓ v for some v. Although
this property is true for E, it demands much more than just progress—it requires that every
expression evaluate to a value! If E were extended to admit operations that may result in
an error (as discussed in Section 6.3), or to admit non-terminating expressions, then this
property would fail, even though progress would remain valid.

One possible attitude towards this situation is to conclude that type safety cannot be
properly discussed in the context of an evaluation dynamics, but only by reference to a
structural dynamics. Another point of view is to instrument the dynamics with explicit
checks for dynamic type errors, and to show that any expression with a dynamic type fault
must be statically ill-typed. Re-stated in the contrapositive, this means that a statically
well-typed program cannot incur a dynamic type error. A difficulty with this point of view

https://doi.org/10.1017/CBO9781316576892.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.009

56 Evaluation Dynamics

is that we must explicitly account for a form of error solely to prove that it cannot arise!
Nevertheless, a semblance of type safety can be established using evaluation dynamics.

We define a judgment e err stating that the expression e goes wrong when executed. The
exact definition of “going wrong” is given by a set of rules, but the intention is that it should
cover all situations that correspond to type errors. The following rules are representative of
the general case:

plus(str[s]; e2) err (7.3a)

e1 val

plus(e1; str[s]) err
(7.3b)

These rules explicitly check for the misapplication of addition to a string; similar rules
govern each of the primitive constructs of the language.

Theorem 7.5. If e err, then there is no τ such that e : τ .

Proof By rule induction on rules (7.3). For example, for rule (7.3a), we note that str[s] :
str, and hence plus(str[s]; e2) is ill-typed.

Corollary 7.6. If e : τ , then ¬(e err).

Apart from the inconvenience of having to define the judgment e err only to show that it is
irrelevant for well-typed programs, this approach suffers a very significant methodological
weakness. If we should omit one or more rules defining the judgment e err, the proof of
Theorem 7.5 remains valid; there is nothing to ensure that we have included sufficiently
many checks for run-time type errors. We can prove that the ones we define cannot arise
in a well-typed program, but we cannot prove that we have covered all possible cases. By
contrast the structural dynamics does not specify any behavior for ill-typed expressions.
Consequently, any ill-typed expression will “get stuck” without our explicit intervention,
and the progress theorem rules out all such cases. Moreover, the transition system cor-
responds more closely to implementation—a compiler need not make any provisions for
checking for run-time type errors. Instead, it relies on the statics to ensure that these can-
not arise, and assigns no meaning to any ill-typed program. Therefore, execution is more
efficient, and the language definition is simpler.

7.4 Cost Dynamics

A structural dynamics provides a natural notion of time complexity for programs, namely
the number of steps required to reach a final state. An evaluation dynamics, however, does
not provide such a direct notion of time. Because the individual steps required to complete
an evaluation are suppressed, we cannot directly read off the number of steps required to
evaluate to a value. Instead, we must augment the evaluation relation with a cost measure,
resulting in a cost dynamics.

https://doi.org/10.1017/CBO9781316576892.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.009

57 Exercises

Evaluation judgments have the form e ⇓k v, with the meaning that e evaluates to v in k

steps.

num[n] ⇓0 num[n] (7.4a)

e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]
plus(e1; e2) ⇓k1+k2+1 num[n1 + n2]

(7.4b)

str[s] ⇓0 str[s] (7.4c)

e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1; e2) ⇓k1+k2+1 str[s1 ˆ s2]
(7.4d)

[e1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k2+1 v2
(7.4e)

For a by-value interpretation of let, rule (7.4e) is replaced by the following rule:

e1 ⇓k1 v1 [v1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k1+k2+1 v2
(7.5)

Theorem 7.7. For any closed expression e and closed value v of the same type, e ⇓k v iff
e �−→k v.

Proof From left to right, proceed by rule induction on the definition of the cost dynamics.
From right to left, proceed by induction on k, with an inner rule induction on the definition
of the structural dynamics.

7.5 Notes

The structural similarity between evaluation dynamics and typing rules was first developed
in The Definition of Standard ML (Milner et al., 1997). The advantage of evaluation
semantics is its directness; its disadvantage is that it is not well-suited to proving properties
such as type safety. Robin Milner introduced the apt phrase “going wrong” as a description
of a type error. Cost dynamics was introduced by Blelloch and Greiner (1996) in a study
of parallel computation (see Chapter 37).

Exercises

7.1. Show that evaluation is deterministic: if e ⇓ v1 and e ⇓ v2, then v1 = v2.
7.2. Complete the proof of Lemma 7.3.
7.3. Complete the proof of Lemma 7.4. Then show that if e �−→∗ e′ with e′ val, then e ⇓ e′.

https://doi.org/10.1017/CBO9781316576892.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.009

58 Evaluation Dynamics

7.4. Augment the evaluation dynamics with checked errors, along the lines sketched in
Chapter 5, using e err to say that e incurs a checked (or an unchecked) error. What
remains unsatisfactory about the type safety proof? Can you think of a better alterna-
tive?

7.5. Consider generic hypothetical judgments of the form

x1 ⇓ v1, . . . , xn ⇓ vn � e ⇓ v

where v1 val, . . . , vn val, and v val. The hypotheses, written �, are called the en-
vironment of the evaluation; they provide the values of the free variables in e. The
hypothetical judgment � � e ⇓ v is called an environmental evaluation dynamics.

Give a hypothetical inductive definition of the environmental evaluation dynamics
without making any use of substitution. In particular, you should include the rule

�, x ⇓ v � x ⇓ v

defining the evaluation of a free variable.
Show that x1 ⇓ v1, . . . , xn ⇓ vn � e ⇓ v iff [v1, . . . , vn/x1, . . . , xn]e ⇓ v (using

the by-value form of evaluation).

Note

1 Converse evaluation is also known as head expansion.

https://doi.org/10.1017/CBO9781316576892.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.009

