
29 Exceptions

Exceptions effect a non-local transfer of control from the point at which the exception is
raised to an enclosing handler for that exception. This transfer interrupts the normal flow
of control in a program in response to unusual conditions. For example, exceptions can
be used to signal an error condition, or to signal the need for special handling in unusual
circumstances. We could use conditionals to check for and process errors or unusual
conditions, but using exceptions is often more convenient, particularly because the transfer
to the handler is conceptually direct and immediate, rather than indirect via explicit checks.

In this chapter, we will consider two extensions of PCF with exceptions. The first, FPCF,
enriches PCF with the simplest form of exception, called a failure, with no associated data.
A failure can be intercepted and turned into a success (or another failure!) by transferring
control to another expression. The second, XPCF, enriches PCF with exceptions, with
associated data that is passed to an exception handler that intercepts it. The handler may
analyze the associated data to determine how to recover from the exceptional condition. A
key choice is to decide on the type of the data associated to an exception.

29.1 Failures

The syntax of FPCF is defined by the following extension of the grammar of PCF:

Exp e ::= fail fail signal a failure
catch(e1; e2) catch e1 ow e2 catch a failure

The expression fail aborts the current evaluation, and the expression catch(e1; e2) catches
any failure in e1 by evaluating e2 instead. Either e1 or e2 may themselves abort, or they may
diverge or return a value as usual in PCF.

The statics of FPCF is given by these rules:

� � fail : τ
(29.1a)

� � e1 : τ � � e2 : τ

� � catch(e1; e2) : τ
(29.1b)

A failure can have any type, because it never returns. The two expressions in a catch

expression must have the same type, because either might determine the value of that
expression.

https://doi.org/10.1017/CBO9781316576892.031 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.031

261 29.1 Failures

The dynamics of FPCF is given using a technique called stack unwinding. Evaluation
of a catch pushes a frame of the form catch(−; e) onto the control stack that awaits the
arrival of a failure. Evaluation of a fail expression pops frames from the control stack
until it reaches a frame of the form catch(−; e), at which point the frame is removed from
the stack and the expression e is evaluated. Failure propagation is expressed by a state of
the form k � , which extends the two forms of state considered in Chapter 28 to express
failure propagation.

The FPCF machine extends the PCF machine with the following additional rules:

k * fail �−→ k �
(29.2a)

k * catch(e1; e2) �−→ k;catch(−; e2) * e1
(29.2b)

k;catch(−; e2) , v �−→ k , v
(29.2c)

k;catch(−; e2) � �−→ k * e2
(29.2d)

(f �= catch(−; e))
k;f � �−→ k � (29.2e)

Evaluating fail propagates a failure up the stack. The act of failing itself, fail, will, of
course, give rise to a failure. Evaluating catch(e1; e2) consists of pushing the handler on
the control stack and evaluating e1. If a value reaches to the handler, the handler is removed
and the value is passed to the surrounding frame. If a failure reaches the handler, the stored
expression is evaluated with the handler removed from the control stack. Failures propagate
through all frames other than the catch frame.

The initial and final states of the FPCF machine are defined by the following rules:

ε initial
(29.3a)

e val
ε , e final

(29.3b)

ε � final
(29.3c)

The definition of stack typing given in Chapter 28 can be extended to account for the new
forms of frame so that safety can be proved in the same way as before. The only difference
is that the statement of progress must be weakened to take account of failure: a well-typed
expression is either a value, or may take a step, or may signal failure.

Theorem 29.1 (Safety for FPCF). 1. If s ok and s �−→ s ′, then s ′ ok.

2. If s ok, then either s final or there exists s ′ such that s �−→ s ′.

https://doi.org/10.1017/CBO9781316576892.031 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.031

262 Exceptions

29.2 Exceptions

The language XPCF enriches FPCF with exceptions, failures to which a value is attached.
The syntax of XPCF extends that of PCF with the following forms of expression:

Exp e ::= raise(e) raise(e) raise an exception
try(e1; x.e2) try e1 ow x ↪→ e2 handle an exception

The argument to raise is evaluated to determine the value passed to the handler. The
expression try(e1; x.e2) binds a variable x in the handler e2. The associated value of the
exception is bound to that variable within e2, should an exception be raised when e1 is
evaluated.

The statics of exceptions extends the statics of failures to account for the type of the
value carried with the exception:

� � e : τexn

� � raise(e) : τ
(29.4a)

� � e1 : τ �, x : τexn � e2 : τ

� � try(e1; x.e2) : τ
(29.4b)

The type τexn is some fixed, but as yet unspecified, type of exception values. (The choice
of τexn is discussed in Section 29.3.)

The dynamics of XPCF is similar to that of FPCF, except that the failure state k � is
replaced by the exception state k � e which passes an exception value e to the stack k.
There is only one notion of exception, but the associated value can be used to identify the
source of the exception. We use a by-value interpretation to avoid the problem of imprecise
exceptions that arises under a by-name interpretation.

The stack frames of the PCF machine are extended to include raise(−) and
try(−; x.e2). These are used in the following rules:

k * raise(e) �−→ k;raise(−) * e
(29.5a)

k;raise(−) , e �−→ k � e
(29.5b)

k * try(e1; x.e2) �−→ k;try(−; x.e2) * e1
(29.5c)

k;try(−; x.e2) , e �−→ k , e
(29.5d)

k;try(−; x.e2) � e �−→ k * [e/x]e2
(29.5e)

(f �= try(−; x.e2))
k;f � e �−→ k � e

(29.5f)

https://doi.org/10.1017/CBO9781316576892.031 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.031

263 29.3 Exception Values

The main difference compared to rules (29.2) is that an exception passes a values to the
stack, whereas a failure does not.

The initial and final states of the XPCF machine are defined by the following rules:

ε * e initial
(29.6a)

e val
ε , e final

(29.6b)

ε � e final
(29.6c)

Theorem 29.2 (Safety for XPCF). 1. If s ok and s �−→ s ′, then s ′ ok.

2. If s ok, then either s final or there exists s ′ such that s �−→ s ′.

29.3 Exception Values

The statics of XPCF is parameterized by the type τexn of values associated to exceptions.
The choice of τexn is important because it determines how the source of an exception is
identified in a program. If τexn is the one-element type unit, then exceptions degenerate
to failures, which are unable to identify their source. Thus, τexn must have more than one
value to be useful.

This fact suggests that τexn should be a finite sum. The classes of the sum identify the
sources of exceptions, and the classified value carries information about the particular
instance. For example, τexn might be a sum type of the form

[div ↪→ unit, fnf ↪→ string, . . .].

Here the class div might represent an arithmetic fault, with no associated data, and the
class fnf might represent a “file not found” error, with associated data being the name of
the file that was not found.

Using a sum means that an exception handler can dispatch on the class of the exception
value to identify its source and cause. For example, we might write

handle e1 ow x ↪→
match x {
div 〈〉 ↪→ ediv

| fnf s ↪→ efnf }

to handle the exceptions specified by the above sum type. Because the exception and its
associated data are coupled in a sum type, there is no possibility of misinterpreting the data
associated to one exception as being that of another.

https://doi.org/10.1017/CBO9781316576892.031 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.031

264 Exceptions

The disadvantage of choosing a finite sum for τexn is that it specifies a closed world of
possible exception sources. All sources must be identified for the entire program, which
impedes modular development and evolution. A more modular approach admits an open
world of exception sources that can be introduced as the program evolves and even as it exe-
cutes. A generalization of finite sums, called dynamic classification, defined in Chapter 33,
is required for an open world. (See that Chapter for further discussion.)

When τexn is a type of classified values, its classes are often called exceptions, so that
one may speak of “the fnf exception” in the above example. This terminology is harmless,
and all but unavoidable, but it invites confusion between two separate ideas:

1. Exceptions as a control mechanism that allows the course of evaluation to be altered by
raising and handling exceptions.

2. Exceptions as a data value associated with such a deviation of control that allows the
source of the deviation to be identified.

As a control mechanism, exceptions can be eliminated using explicit exception passing.
A computation of type τ that may raise an exception is interpreted as an exception-free
computation of type τ + τexn; see Exercise 29.5 for more on this method.

29.4 Notes

Various forms of exceptions were considered in Lisp (Steele, 1990). The original formula-
tion of ML (Gordon et al., 1979) as a metalanguage for mechanized logic used failures to
implement backtracking proof search. Most modern languages now have exceptions, but
differ in the forms of data that may be associated with them.

Exercises

29.1. Prove Theorem 29.2. Are any properties of τexn required for the proof?
29.2. Give an evaluation dynamics for XPCF using the following judgment forms:

• Normal evaluation: e ⇓ v, where e : τ , v : τ , and v val.
• Exceptional evaluation: e ⇑ v, where e : τ , and v : τexn, and v val.
The first states that e evaluates normally to value v, the second that e raises an
exception with value v.

29.3. Give a structural operational dynamics to XPCF by inductively defining the following
judgment forms:
• e �−→ e′, stating that expression e transitions to expression e′;
• e val, stating that expression e is a value.

https://doi.org/10.1017/CBO9781316576892.031 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.031

265 Exercises

Ensure that e ⇓ v iff e �−→∗ v, and e ⇑ v iff e �−→∗ raise(v), where v val in both
cases.

29.4. The closed world assumption on exceptions amounts to choosing the type of exception
values to be a finite sum type shared by the entire program. Under such an assumption,
it is possible to track exceptions by placing an upper bound on the possible classes
of an exception value.

Type refinements (defined in Chapter 25) can be used for exception tracking in a
closed-world setting. Define finite sum refinements by the rule

X′ ⊆ X (∀x ∈ X′) φx (τx

[φx]x∈X′ ([τx]x∈X

.

In particular, the refinement ∅ is the vacuous sum refinement [] satisfied by no value.
Entailment of finite sum refinements is defined by the rule

X′ ⊆ X′′ (∀x ∈ X′) φx ≤ φ′x
[φx]x∈X′ ≤ [φ′x]x∈X′′

So, in particular, ∅ ≤ φ for all sum refinements φ of τexn. Entailment weakens
knowledge of the class of a value of sum type, which is crucial to their application to
exception tracking.

The goal of this exercise is to develop a system of type refinements for the modal
formulation of exceptions in MPCF using sum refinements to perform exception
tracking.
(a) Define the command refinement judgment m ∈τ φ owχ , where m ∼·· τ , φ (τ ,

and χ (τexn, to mean that if m returns e, then e ∈τ φ, and if m raises e, then
e ∈τexn

χ .
(b) Define satisfaction and entailment for the expression refinement cmd(φ; χ) (

cmd(τ), where φ (τ and χ (τexn. This refinement classifies encapsulated
commands that satisfy the stated value and exception refinements in the sense of
the preceding problem.

29.5. Show that exceptions in MPCF can be eliminated by a translation into PCF enriched
with sum types by what is called the exception-passing style transformation. Each
command m ∼·· τ of MPCF is translated to a pure expression m̂ of type τ̂ + τexn

whose value is either l ·e, where e : τ , for normal return, or r ·e, where e : τexn, for an
exceptional return. The command translation is extended to an expression translation
ê that replaces occurrences of cmd(m) by m̂. The corresponding type translation, τ̂ ,
replaces cmd(τ) by τ̂ + τexn. Define the command translation from MPCF to PCF

enriched with sums, and show that it has the required type and correctly simulates
the behavior of exceptions.

https://doi.org/10.1017/CBO9781316576892.031 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.031

