
28 Control Stacks

Structural dynamics is convenient for proving properties of languages, such as a type
safety theorem, but is less convenient as a guide for implementation. A structural dynamics
defines a transition relation using rules that determine where to apply the next instruction
without spelling out how to find where the instruction lies within an expression. To make
this process explicit, we introduce a mechanism, called a control stack, that records the
work that remains to be done after an instruction is executed. Using a stack eliminates the
need for premises on the transition rules so that the transition system defines an abstract
machine whose steps are determined by information explicit in its state, much as a concrete
computer does.

In this chapter, we develop an abstract machine K for evaluating expressions in PCF.
The machine makes explicit the context in which primitive instruction steps are executed,
and the process by which the results are propagated to determine the next step of execution.
We prove that K and PCF are equivalent in the sense that both achieve the same outcomes
for the same expressions.

28.1 Machine Definition

A state s of the stack machine K for PCF consists of a control stack k and a closed
expression e. States take one of two forms:

1. An evaluation state of the form k * e corresponds to the evaluation of a closed expression
e on a control stack k.

2. A return state of the form k , e, where e val, corresponds to the evaluation of a stack k

on a closed value e.

As an aid to memory, note that the separator “points to” the focal entity of the state, the
expression in an evaluation state and the stack in a return state.

The control stack represents the context of evaluation. It records the “current location” of
evaluation, the context into which the value of the current expression is returned. Formally,
a control stack is a list of frames:

ε stack (28.1a)

f frame k stack

k;f stack
(28.1b)

https://doi.org/10.1017/CBO9781316576892.030 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.030


254 Control Stacks

The frames of the K machine are inductively defined by the following rules:

s(−) frame
(28.2a)

ifz{e0; x.e1}(−) frame
(28.2b)

ap(−; e2) frame
(28.2c)

The frames correspond to search rules in the dynamics of PCF. Thus, instead of relying
on the structure of the transition derivation to keep a record of pending computations, we
make an explicit record of them in the form of a frame on the control stack.

The transition judgment between states of the PCF machine is inductively defined by a
set of inference rules. We begin with the rules for natural numbers, using an eager semantics
for the successor.

k * z �−→ k , z
(28.3a)

k * s(e) �−→ k;s(−) * e
(28.3b)

k;s(−) , e �−→ k , s(e)
(28.3c)

To evaluate z, we simply return it. To evaluate s(e), we push a frame on the stack to record
the pending successor and evaluate e; when that returns with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k * ifz{e0; x.e1}(e) �−→ k;ifz{e0; x.e1}(−) * e
(28.4a)

k;ifz{e0; x.e1}(−) , z �−→ k * e0
(28.4b)

k;ifz{e0; x.e1}(−) , s(e) �−→ k * [e/x]e1
(28.4c)

The test expression is evaluated, recording the pending case analysis on the stack. Once the
value of the test expression is determined, the zero or non-zero branch of the condition is
evaluated, substituting the predecessor in the latter case.

Finally, we give the rules for functions, which are evaluated by-name, and the rule for
general recursion.

k * lam{τ }(x.e) �−→ k , lam{τ }(x.e)
(28.5a)

k * ap(e1; e2) �−→ k;ap(−; e2) * e1
(28.5b)

https://doi.org/10.1017/CBO9781316576892.030 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.030


255 28.2 Safety

k;ap(−; e2) , lam{τ }(x.e) �−→ k * [e2/x]e
(28.5c)

k * fix{τ }(x.e) �−→ k * [fix{τ }(x.e)/x]e
(28.5d)

It is important that evaluation of a general recursion requires no stack space.
The initial and final states of the K machine are defined by the following rules:

ε * e initial
(28.6a)

e val
ε , e final

(28.6b)

28.2 Safety

To define and prove safety for the PCF machine requires that we introduce a new typing
judgment, k ,: τ , which states that the stack k expects a value of type τ . This judgment is
inductively defined by the following rules:

ε ,: τ
(28.7a)

k ,: τ ′ f : τ � τ ′

k;f ,: τ
(28.7b)

This definition makes use of an auxiliary judgment, f : τ � τ ′, stating that a frame f

transforms a value of type τ to a value of type τ ′.

s(−) : nat� nat
(28.8a)

e0 : τ x : nat � e1 : τ

ifz{e0; x.e1}(−) : nat� τ
(28.8b)

e2 : τ2

ap(−; e2) : parr(τ2; τ )� τ
(28.8c)

The states of the PCF machine are well-formed if their stack and expression components
match:

k ,: τ e : τ
k * e ok

(28.9a)

k ,: τ e : τ e val
k , e ok

(28.9b)

We leave the proof of safety of the PCF machine as an exercise.

Theorem 28.1 (Safety). 1. If s ok and s �−→ s ′, then s ′ ok.

2. If s ok, then either s final or there exists s ′ such that s �−→ s ′.

https://doi.org/10.1017/CBO9781316576892.030 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.030


256 Control Stacks

28.3 Correctness of the K Machine

Does evaluation of an expression e using the K machine yield the same result as does the
structural dynamics of PCF? The answer to this question can be derived from the following
facts.

Completeness If e �−→∗ e′, where e′ val, then ε * e �−→∗ ε , e′.
Soundness If ε * e �−→∗ ε , e′, then e �−→∗ e′ with e′ val.

To prove completeness a plausible first step is to consider a proof by induction on the
definition of multi-step transition, which reduces the theorem to the following two lemmas:

1. If e val, then ε * e �−→∗ ε , e.
2. If e �−→ e′, then, for every v val, if ε * e′ �−→∗ ε , v, then ε * e �−→∗ ε , v.

The first can be proved easily by induction on the structure of e. The second requires an
inductive analysis of the derivation of e �−→ e′ that gives rise to two complications. The
first complication is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the K machine is

ε * ap(e1; e2) �−→ ε;ap(−; e2) * e1.

To handle such situations, we consider the evaluation of e1 on any stack, not just the empty
stack.

Specifically, we prove that if e �−→ e′ and k * e′ �−→∗ k , v, then k * e �−→∗ k , v.
Reconsider the case e = ap(e1; e2), e′ = ap(e′1; e2), with e1 �−→ e′1. We are given that
k * ap(e′1; e2) �−→∗ k , v, and we are to show that k * ap(e1; e2) �−→∗ k , v. It is easy to
show that the first step of the former derivation is

k * ap(e′1; e2) �−→ k;ap(−; e2) * e′1.

We would like to apply induction to the derivation of e1 �−→ e′1, but to do so, we need a
value v1 such that e′1 �−→∗ v1, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information
is given by the evaluation dynamics described in Chapter 7, which has the property that
e ⇓ e′ iff e �−→∗ e′ and e′ val.

Lemma 28.2. If e ⇓ v, then for every k stack, k * e �−→∗ k , v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states that e ⇓ v

iff e �−→∗ v.
To prove soundness, we note that it is awkward to reason inductively about a multi-

step transition from ε * e �−→∗ ε , v. The intermediate steps could involve alternations
of evaluation and return states. Instead, we consider a K machine state to encode an

https://doi.org/10.1017/CBO9781316576892.030 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.030


257 28.3 Correctness of the K Machine

expression, and show that the machine transitions are simulated by the transitions of the
structural dynamics.

To do so, we define a judgment, s � e, stating that state s “unravels to” expression
e. It will turn out that for initial states, s = ε * e, and final states, s = ε , e, we have
s � e. Then we show that if s �−→∗ s ′, where s ′ final, s � e, and s ′ � e′, then e′ val and
e �−→∗ e′. For this, it is enough to show the following two facts:

1. If s � e and s final, then e val.
2. If s �−→ s ′, s � e, s ′ � e′, and e′ �−→∗ v, where v val, then e �−→∗ v.

The first is quite simple, we need only note that the unraveling of a final state is a value.
For the second, it is enough to prove the following lemma.

Lemma 28.3. If s �−→ s ′, s � e, and s ′ � e′, then e �−→∗ e′.

Corollary 28.4. e �−→∗ n iff ε * e �−→∗ ε , n.

28.3.1 Completeness

Proof of Lemma 28.2 The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e1 ⇓ lam{τ2}(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(28.10)

For an arbitrary control stack k, we are to show that k * ap(e1; e2) �−→∗ k , v. Applying
both of the inductive hypotheses in succession, interleaved with steps of the K machine,
we obtain

k * ap(e1; e2) �−→ k;ap(−; e2) * e1

�−→∗ k;ap(−; e2) , lam{τ2}(x.e)

�−→ k * [e2/x]e

�−→∗ k , v.

The other cases of the proof are handled similarly.

28.3.2 Soundness

The judgment s � e′, where s is either k * e or k , e, is defined in terms of the auxiliary
judgment k *, e = e′ by the following rules:

k *, e = e′

k * e� e′
(28.11a)

k *, e = e′

k , e� e′
(28.11b)

https://doi.org/10.1017/CBO9781316576892.030 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.030


258 Control Stacks

In words, to unravel a state, we wrap the stack around the expression to form a complete
program. The unraveling relation is inductively defined by the following rules:

ε *, e = e
(28.12a)

k *, s(e) = e′

k;s(−) *, e = e′
(28.12b)

k *, ifz{e0; x.e1}(e) = e′

k;ifz{e0; x.e1}(−) *, e = e′
(28.12c)

k *, ap(e1; e2) = e

k;ap(−; e2) *, e1 = e
(28.12d)

These judgments both define total functions.

Lemma 28.5. The judgment s � e relates every state s to a unique expression e, and the
judgment k *, e = e′ relates every stack k and expression e to a unique expression e′.

We are therefore justified in writing k *, e for the unique e′ such that k *, e = e′.
The following lemma is crucial. It states that unraveling preserves the transition relation.

Lemma 28.6. If e �−→ e′, k *, e = d, k *, e′ = d ′, then d �−→ d ′.

Proof The proof is by rule induction on the transition e �−→ e′. The inductive cases,
where the transition rule has a premise, follow easily by induction. The base cases, where
the transition is an axiom, are proved by an inductive analysis of the stack k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ = ap(e′1; e2), and
e1 �−→ e′1. We have k *, e = d and k *, e′ = d ′. It follows from rules (28.12) that
k;ap(−; e2) *, e1 = d and k;ap(−; e2) *, e′1 = d ′. So by induction d �−→ d ′, as desired.

For an example of a base case, suppose that e = ap(lam{τ2}(x.e); e2) and e′ = [e2/x]e
with e �−→ e′ directly. Assume that k *, e = d and k *, e′ = d ′; we are to show
that d �−→ d ′. We proceed by an inner induction on the structure of k. If k = ε, the
result follows immediately. Consider, say, the stack k = k′;ap(−; c2). It follows from
rules (28.12) that k′ *, ap(e; c2) = d and k′ *, ap(e′; c2) = d ′. But by the structural
dynamics ap(e; c2) �−→ ap(e′; c2), so by the inner inductive hypothesis we have d �−→ d ′,
as desired.

We may now complete the proof of Lemma 28.3.

Proof of Lemma 28.3 The proof is by case analysis on the transitions of the K machine.
In each case, after unraveling, the transition will correspond to zero or one transitions of
the PCF structural dynamics.

Suppose that s = k * s(e) and s ′ = k;s(−) * e. Note that k *,s(e) = e′ iff k;s(−)*,e =
e′, from which the result follows immediately.

https://doi.org/10.1017/CBO9781316576892.030 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.030


259 Exercises

Suppose that s = k;ap(lam{τ }(x.e1);−) , e2 and s ′ = k * [e2/x]e1. Let e′ be such that
k;ap(lam{τ }(x.e1);−) *, e2 = e′ and let e′′ be such that k *, [e2/x]e1 = e′′. Observe that
k *, ap(lam{τ }(x.e1); e2) = e′. The result follows from Lemma 28.6.

28.4 Notes

The abstract machine considered here is typical of a wide class of machines that make
control flow explicit in the state. The prototype is the SECD machine (Landin, 1965), which
is a linearization of a structural operational semantics (Plotkin, 1981). The advantage of a
machine model is that the explicit treatment of control is needed for languages that allow
the control state to be manipulated (see Chapter 30 for a prime example). The disadvantage
is that the control state of the computation must be made explicit, necessitating rules for
manipulating it that are left implicit in a structural dynamics.

Exercises

28.1. Give the proof of Theorem 28.1 for conditional expressions.
28.2. Formulate a call-by-value variant of the PCF machine.
28.3. Analyze the worst-case asymptotic complexity of executing each instruction of the

K machine.
28.4. Refine the proof of Lemma 28.2 by bounding the number of machine steps taken for

each step of the PCF dynamics.

https://doi.org/10.1017/CBO9781316576892.030 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.030



