
21 The Untyped λ-Calculus

In this chapter, we study the premier example of a uni-typed programming language, the
(untyped) λ-calculus. This formalism was introduced by Church in the 1930s as a universal
language of computable functions. It is distinctive for its austere elegance. The λ-calculus
has but one “feature,” the higher-order function. Everything is a function, hence every
expression may be applied to an argument, which must itself be a function, with the result
also being a function. To borrow a turn of phrase, in the λ-calculus it’s functions all the
way down.

21.1 The λ-Calculus

The abstract syntax of the untyped λ-calculus, called �, is given by the following grammar:

Exp u ::= x x variable
λ(x.u) λ (x) u λ-abstraction
ap(u1; u2) u1(u2) application

The statics of � is defined by general hypothetical judgments of the form
x1 ok, . . . , xn ok � u ok, stating that u is a well-formed expression involving the vari-
ables x1, . . . , xn. (As usual, we omit explicit mention of the variables when they can be
determined from the form of the hypotheses.) This relation is inductively defined by the
following rules:

�, x ok � x ok
(21.1a)

� � u1 ok � � u2 ok

� � u1(u2) ok
(21.1b)

�, x ok � u ok

� � λ (x) u ok
(21.1c)

The dynamics of � is given equationally, rather than via a transition system. Definitional
equality for � is a judgment of the form � � u ≡ u′, where � = x1 ok, . . . , xn ok for some
n ≥ 0, and u and u′ are terms having at most the variables x1, . . . , xn free. It is inductively
defined by the following rules:

�, u ok � u ≡ u
(21.2a)

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

182 The Untyped λ-Calculus

� � u ≡ u′

� � u′ ≡ u
(21.2b)

� � u ≡ u′ � � u′ ≡ u′′

� � u ≡ u′′
(21.2c)

� � u1 ≡ u′1 � � u2 ≡ u′2
� � u1(u2) ≡ u′1(u′2)

(21.2d)

�, x ok � u ≡ u′

� � λ (x) u ≡ λ (x) u′
(21.2e)

�, x ok � u2 ok � � u1 ok

� � (λ (x) u2)(u1) ≡ [u1/x]u2
(21.2f)

We often write just u ≡ u′ when the variables involved need not be emphasized or are clear
from context.

21.2 Definability

Interest in the untyped λ-calculus stems from its surprising expressiveness. It is a Turing-
complete language in the sense that it has the same capability to express computations on
the natural numbers as does any other known programming language. Church’s Law states
that any conceivable notion of computable function on the natural numbers is equivalent to
the λ-calculus. This assertion is true for all known means of defining computable functions
on the natural numbers. The force of Church’s Law is that it postulates that all future
notions of computation will be equivalent in expressive power (measured by definability of
functions on the natural numbers) to the λ-calculus. Church’s Law is therefore a scientific
law in the same sense as, say, Newton’s Law of Universal Gravitation, which predicts the
outcome of all future measurements of the acceleration in a gravitational field.1

We will sketch a proof that the untyped λ-calculus is as powerful as the language PCF
described in Chapter 19. The main idea is to show that the PCF primitives for manipulating
the natural numbers are definable in the untyped λ-calculus. In particular, we must show
that the natural numbers are definable as λ-terms in such a way that case analysis, which
discriminates between zero and non-zero numbers, is definable. The principal difficulty is
with computing the predecessor of a number, which requires a bit of cleverness. Finally,
we show how to represent general recursion, completing the proof.

The first task is to represent the natural numbers as certain λ-terms, called the Church
numerals.

0 � λ (b) λ (s) b (21.3a)

n+ 1 � λ (b) λ (s) s(n(b)(s)) (21.3b)

It follows that

n(u1)(u2) ≡ u2(. . . (u2(u1))),

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

183 21.2 Definability

the n-fold application of u2 to u1. That is, n iterates its second argument (the induction
step) n times, starting with its first argument (the basis).

Using this definition, it is not difficult to define the basic functions of arithmetic. For
example, successor, addition, and multiplication are defined by the following untyped
λ-terms:

succ � λ (x) λ (b) λ (s) s(x(b)(s)) (21.4)

plus � λ (x) λ (y) y(x)(succ) (21.5)

times � λ (x) λ (y) y(0)(plus(x)) (21.6)

It is easy to check that succ(n) ≡ n+ 1, and that similar correctness conditions hold for
the representations of addition and multiplication.

To define ifz{u0; x.u1}(u) requires a bit of ingenuity. The key is to define the “cut-off
predecessor,” pred, such that

pred(0) ≡ 0 (21.7)

pred(n+ 1) ≡ n. (21.8)

To compute the predecessor using Church numerals, we must show how to compute the
result for n+ 1 in terms of its value for n. At first glance, this seems simple—just take the
successor—until we consider the base case, in which we define the predecessor of 0 to be
0. This formulation invalidates the obvious strategy of taking successors at inductive steps,
and necessitates some other approach.

What to do? A useful intuition is to think of the computation in terms of a pair of
“shift registers” satisfying the invariant that on the nth iteration the registers contain the
predecessor of n and n itself, respectively. Given the result for n, namely the pair (n−1, n),
we pass to the result for n + 1 by shifting left and incrementing to obtain (n, n + 1).
For the base case, we initialize the registers with (0, 0), reflecting the stipulation that the
predecessor of zero be zero. To compute the predecessor of n, we compute the pair (n−1, n)
by this method, and return the first component.

To make this precise, we must first define a Church-style representation of ordered pairs.

〈u1, u2〉 � λ (f) f (u1)(u2) (21.9)

u · l � u(λ (x) λ (y) x) (21.10)

u · r � u(λ (x) λ (y) y) (21.11)

It is easy to check that under this encoding 〈u1, u2〉 · l ≡ u1, and that a similar equivalence
holds for the second projection. We may now define the required representation, up, of the
predecessor function:

u′p � λ (x) x(〈0, 0〉)(λ (y) 〈y · r, succ (y · r)〉) (21.12)

up � λ (x) u′p(x) · l (21.13)

It is easy to check that this gives us the required behavior. Finally, define ifz{u0; x.u1}(u)
to be the untyped term

u(u0)(λ () [up(u)/x]u1).

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

184 The Untyped λ-Calculus

This definition gives us all the apparatus of PCF, apart from general recursion. But
general recursion is also definable in � using a fixed point combinator. There are many
choices of fixed point combinator, of which the best known is the Y combinator:

Y � λ (F) (λ (f) F (f (f)))(λ (f) F (f (f))).

It is easy to check that

Y(F) ≡ F (Y(F)).

Using the Y combinator, we may define general recursion by writing Y(λ (x) u), where x

stands for the recursive expression itself.
Although it is clear that Y as just defined computes a fixed point of its argument, it is

probably less clear why it works or how we might have invented it in the first place. The
main idea is quite simple. If a function is recursive, it is given an extra first argument, which
is arranged at call sites to be the function itself. Whenever we wish to call a self-referential
function with an argument, we apply the function first to itself and then to its argument;
this protocol is imposed on both the “external” calls to the function and on the “internal”
calls that the function may make to itself. For this reason, the first argument is often called
this or self, to remind you that it will be, by convention, bound to the function itself.

With this in mind, it is easy to see how to derive the definition of Y. If F is the function
whose fixed point we seek, then the function F ′ = λ (f) F (f (f)) is a variant of F in
which the self-application convention has been imposed internally by substituting for each
occurrence of f in F (f) the self-application f (f). Now check that F ′(F ′) ≡ F (F ′(F ′)), so
that F ′(F ′) is the desired fixed point of F . Expanding the definition of F ′, we have derived
that the desired fixed point of F is

λ (f) F (f (f))(λ (f) F (f (f))).

To finish the derivation, we need only note that nothing depends on the particular choice
of F , which means that we can compute a fixed point for F uniformly in F . That is, we
may define a single function, the term Y as defined above, that computes the fixed point of
any F .

21.3 Scott’s Theorem

Scott’s Theorem states that definitional equality for the untyped λ-calculus is undecidable:
there is no algorithm to determine whether two untyped terms are definitionally equal. The
proof uses the concept of inseparability. Any two properties, A0 and A1, of λ-terms are
inseparable if there is no decidable property, B, such that A0 u implies that B u holds,
and A1 u implies that B u does not hold. We say that a property, A, of untyped terms is
behavioral iff whenever u ≡ u′, then A u iff A u′.

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

185 21.3 Scott’s Theorem

The proof of Scott’s Theorem decomposes into two parts:

1. For any untyped λ-term u, we may find an untyped term v such that u(�v�) ≡ v, where
�v� is the Gödel number of v, and �v� is its representation as a Church numeral. (See
Chapter 9 for a discussion of Gödel-numbering.)

2. Any two non-trivial2 behavioral properties A0 and A1 of untyped terms are inseparable.

Lemma 21.1. For any u, there exists v such that u(�v�) ≡ v.

Proof Sketch The proof relies on the definability of the following two operations in the
untyped λ-calculus:

1. ap(�u1�)(�u2�) ≡ �u1(u2)�.
2. nm(n) ≡ �n�.

Intuitively, the first takes the representations of two untyped terms and builds the represen-
tation of the application of one to the other. The second takes a numeral for n, and yields
the representation of the Church numeral n. Given these, we may find the required term v

by defining v � w(�w�), where w � λ (x) u(ap(x)(nm(x))). We have

v = w(�w�)
≡ u(ap(�w�)(nm(�w�)))

≡ u(�w(�w�)�)
≡ u(�v�).

The definition is very similar to that of Y(u), except that u takes as input the representation
of a term, and we find a v such that, when applied to the representation of v, the term u

yields v itself.

Lemma 21.2. Suppose thatA0 andA1 are two non-trivial behavioral properties of untyped
terms. Then there is no untyped term w such that

1. For every u, either w(�u�) ≡ 0 or w(�u�) ≡ 1.

2. If A0 u, then w(�u�) ≡ 0.

3. If A1 u, then w(�u�) ≡ 1.

Proof Suppose there is such an untyped term w. Let v be the untyped term

λ (x) ifz{u1; .u0}(w(x)),

where u0 and u1 are chosen such that A0 u0 and A1 u1. (Such a choice must exist by non-
triviality of the properties.) By Lemma 21.1 there is an untyped term t such that v(�t�) ≡ t .
If w(�t�) ≡ 0, then t ≡ v(�t�) ≡ u1, and so A1 t , because A1 is behavioral and A1 u1.

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

186 The Untyped λ-Calculus

But then w(�t�) ≡ 1 by the defining properties of w, which is a contradiction. Similarly, if
w(�t�) ≡ 1, then A0 t , and hence w(�t�) ≡ 0, again a contradiction.

Corollary 21.3. There is no algorithm to decide whether u ≡ u′.

Proof For fixed u, the property Eu u′ defined by u′ ≡ u is a non-trivial behavioral property
of untyped terms. So it is inseparable from its negation, and hence is undecidable.

21.4 Untyped Means Uni-Typed

The untyped λ-calculus can be faithfully embedded in a typed language with recursive
types. Thus, every untyped λ-term has a representation as a typed expression in such a way
that execution of the representation of a λ-term corresponds to execution of the term itself.
This embedding is not a matter of writing an interpreter for the λ-calculus in FPC, but
rather a direct representation of untyped λ-terms as typed expressions in a language with
recursive types.

The key observation is that the untyped λ-calculus is really the uni-typed λ-calculus. It
is not the absence of types that gives it its power, but rather that it has only one type, the
recursive type

D � rec t is t ⇀ t.

A value of type D is of the form fold(e) where e is a value of type D ⇀ D—a function
whose domain and range are both D. Any such function can be regarded as a value of type
D by “folding”, and any value of type D can be turned into a function by “unfolding”.
As usual, a recursive type is a solution to a type equation, which in the present case is the
equation

D ∼= D ⇀ D.

This isomorphism specifies that D is a type that is isomorphic to the space of partial
functions on D itself, which is impossible if types are just sets.

This isomorphism leads to the following translation, of � into FPC:

x† � x (21.14a)

λ (x) u† � fold(λ (x : D) u†) (21.14b)

u1(u2)† � unfold(u†
1)(u†

2) (21.14c)

Note that the embedding of a λ-abstraction is a value, and that the embedding of an
application exposes the function being applied by unfolding the recursive type. And so

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

187 Exercises

we have

λ (x) u1(u2)† = unfold(fold(λ (x : D) u
†
1))(u†

2)

≡ λ (x : D) u
†
1(u†

2)

≡ [u†
2/x]u†

1

= ([u2/x]u1)†.

The last step, stating that the embedding commutes with substitution, is proved by induction
on the structure of u1. Thus β-reduction is implemented by evaluation of the embedded
terms.

Thus, we see that the canonical untyped language, �, which by dint of terminology
stands in opposition to typed languages, turns out to be but a typed language after all.
Rather than eliminating types, an untyped language consolidates an infinite collection of
types into a single recursive type. Doing so renders static type checking trivial, at the cost of
incurring dynamic overhead to coerce values to and from the recursive type. In Chapter 22,
we will take this a step further by admitting many different types of data values (not just
functions), each of which is a component of a “master” recursive type. This generalization
shows that so-called dynamically typed languages are, in fact, statically typed. Thus, this
traditional distinction cannot be considered an opposition, because dynamic languages are
but particular forms of static languages in which undue emphasis is placed on a single
recursive type.

21.5 Notes

The untyped λ-calculus was introduced by Church (1941) as a formalization of the informal
concept of a computable function. Unlike the well-known machine models, such as the
Turing machine or the random access machine, the λ-calculus codifies mathematical and
programming practice. Barendregt (1984) is the definitive reference for all aspects of the
untyped λ-calculus; the proof of Scott’s theorem is adapted from Barendregt’s account.
Scott (1980a) gave the first model of the untyped λ-calculus in terms of an elegant theory
of recursive types. This construction underlies Scott’s apt description of the λ-calculus
as “uni-typed,” rather than “untyped.” The idea to characterize Church’s Law as such was
communicated to the author, independently of each other, by Robert L. Constable and Mark
Lillibridge.

Exercises

21.1. Define an encoding of finite products as defined in Chapter 10 in �.
21.2. Define the factorial function in � two ways, one without using Y, and one using Y.

In both cases, show that your solution, u, has the property that u(n) ≡ n!.

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

188 The Untyped λ-Calculus

21.3. Define the “Church booleans” in � by defining terms true and false such that
(a) true(u1)(u2) ≡ u1.
(b) false(u1)(u2) ≡ u2.
What is the encoding of if u then u1 else u2?

21.4. Define an encoding of finite sums as defined in Chapter 11 in �.
21.5. Define an encoding of finite lists of natural numbers as defined in Chapter 15 in �.
21.6. Define an encoding of the infinite streams of natural numbers as defined in Chapter 15

in �.
21.7. Show that � can be “compiled” to sk-combinators using bracket abstraction (see

Exercises 3.4 and 3.5. Define a translation u∗ from � into sk combinators such that

if u1 ≡ u2, then u∗1 ≡ u∗2.

Hint: Define u∗ by induction on the structure of u, using the compositional form
of bracket abstraction considered in Exercise 3.5. Show that the translation is itself
compositional in that it commutes with substitution:

([u2/x]u1)∗ = [u∗2/x]u∗.

Then proceed by rule induction on rules (21.2) to show the required correctness
condition.

Notes

1 It is debatable whether there are any scientific laws in Computer Science. In the opinion of the
author Church’s Law, which is usually called Church’s Thesis, is a strong candidate for being a
scientific law.

2 A property of untyped terms is trivial if it either holds for all untyped terms or never holds for any
untyped term.

https://doi.org/10.1017/CBO9781316576892.023 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.023

