
20 System FPC of Recursive Types

In this chapter, we study FPC, a language with products, sums, partial fucntions, and
recursive types. Recursive types are solutions to type equations t ∼= τ where there is no
restriction on where t may occur in τ . Equivalently, a recursive type is a fixed point up to
isomorphism of the associated unrestricted type operator t.τ . By removing the restrictions
on the type operator, we may consider the solution of a type equation such as t ∼= t ⇀ t ,
which describes a type that is isomorphic to the type of partial functions defined on itself.
If types were sets, such an equation could not be solved, because there are more partial
functions on a set than there are elements of that set. But types are not sets: they classify
computable functions, not arbitrary functions. With types we may solve such “dubious”
type equations, even though we cannot expect to do so with sets. The penalty is that we must
admit non-termination. For one thing, type equations involving functions have solutions
only if the functions involved are partial.

A benefit of working in the setting of partial functions is that type equations have unique
solutions (up to isomorphism). Therefore, it makes sense, as we shall do in this chapter,
to speak of the solution to a type equation. But what about the distinct solutions to a type
equation given in Chapter 15? These turn out to coincide for any fixed dynamics but give
rise to different solutions according to whether the dynamics is eager or lazy (as illustrated
in Section 19.4 for the special case of the natural numbers). Under a lazy dynamics
(where all constructs are evaluated lazily), recursive types have a coinductive flavor, and
the inductive analogs are inaccessible. Under an eager dynamics (where all constructs are
evaluated eagerly), recursive types have an inductive flavor. But the coinductive analogs
are accessible as well, using function types to selectively impose laziness. It follows that
the eager dynamics is more expressive than the lazy dynamics, because it is impossible to
go the other way around (one cannot define inductive types in a lazy language).

20.1 Solving Type Equations

The language FPC has products, sums, and partial functions inherited from the preceding
development, extended with the new concept of recursive types. The syntax of recursive
types is defined as follows:

Typ τ ::= t t self-reference
rec(t.τ) rec t is τ recursive type

Exp e ::= fold{t.τ }(e) fold(e) fold
unfold(e) unfold(e) unfold

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022
Chris Martens

172 System FPC of Recursive Types

The subscript on the concrete syntax of fold is often omitted when it is clear from context.
Recursive types have the same general form as the inductive and coinductive types

discussed in Chapter 15, but without restriction on the type operator involved. Recursive
type are formed according to the rule:

�, t type � τ type

� � rec(t.τ) type
(20.1)

The statics of folding and unfolding is given by the following rules:

� � e : [rec(t.τ)/t]τ
� � fold{t.τ }(e) : rec(t.τ)

(20.2a)

� � e : rec(t.τ)
� � unfold(e) : [rec(t.τ)/t]τ

(20.2b)

The dynamics of folding and unfolding is given by these rules:

[e val]
fold{t.τ }(e) val

(20.3a)

[
e �−→ e′

fold{t.τ }(e) �−→ fold{t.τ }(e′)
]

(20.3b)

e �−→ e′

unfold(e) �−→ unfold(e′)
(20.3c)

fold{t.τ }(e) val

unfold(fold{t.τ }(e)) �−→ e
(20.3d)

The bracketed premise and rule are included for an eager interpretation of the introduction
form, and omitted for a lazy interpretation. As mentioned in the introduction, the choice of
eager or lazy dynamics affects the meaning of recursive types.

Theorem 20.1 (Safety). 1. If e : τ and e �−→ e′, then e′ : τ .

2. If e : τ , then either e val, or there exists e′ such that e �−→ e′.

20.2 Inductive and Coinductive Types

Recursive types may be used to represent inductive types such as the natural numbers.
Using an eager dynamics for FPC, the recursive type

ρ = rec t is [z ↪→ unit, s ↪→ t]

satisfies the type equation

ρ ∼= [z ↪→ unit, s ↪→ ρ],

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022

173 20.2 Inductive and Coinductive Types

and is isomorphic to the type of eager natural numbers. The introduction and elimination
forms are defined on ρ by the following equations:1

z � fold(z · 〈〉)
s(e) � fold(s · e)

ifz e {z ↪→ e0 | s(x) ↪→ e1} � case unfold(e) {z · ↪→ e0 | s · x ↪→ e1}.
It is a good exercise to check that the eager dynamics of natural numbers in PCF is correctly
simulated by these definitions.

On the other hand, under a lazy dynamics for FPC, the same recursive type ρ ′,

rec t is [z ↪→ unit, s ↪→ t],

satisfies the same type equation,

ρ ′ ∼= [z ↪→ unit, s ↪→ ρ ′],

but is not the type of natural numbers! Rather, it is the type lnat of lazy natural numbers
introduced in Section 19.4. As discussed there, the type ρ ′ contains the “infinite number”
ω, which is of course not a natural number.

Similarly, using an eager dynamics for FPC, the type natlist of lists of natural numbers
is defined by the recursive type

rec t is [n ↪→ unit, c ↪→ nat× t],

which satisfies the type equation

natlist ∼= [n ↪→ unit, c ↪→ nat× natlist].

The list introduction operations are given by the following equations:

nil � fold(n · 〈〉)
cons(e1; e2) � fold(c · 〈e1, e2〉).

A conditional list elimination form is given by the following equation:

case e {nil ↪→ e0 | cons(x; y) ↪→ e1} � case unfold(e) {n · ↪→ e0 | c · 〈x, y〉 ↪→ e1},
where we have used pattern-matching syntax to bind the components of a pair for the sake
of clarity.

Now consider the same recursive type, but in the context of a lazy dynamics for FPC.
What type is it? If all constructs are lazy, then a value of the recursive type

rec t is [n ↪→ unit, c ↪→ nat× t],

has the form fold(e), where e is an unevaluated computation of the sum type, whose
values are injections of unevaluated computations of either the unit type or of the product
type nat × t . And the latter consists of pairs of an unevaluated computation of a (lazy!)
natural number, and an unevaluated computation of another value of this type. In particular,
this type contains infinite lists whose tails go on without end, as well as finite lists that

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022

174 System FPC of Recursive Types

eventually reach an end. The type is, in fact, a version of the type of infinite streams defined
in Chapter 15, rather than a type of finite lists as is the case under an eager dynamics.

It is common in textbooks to depict data structures using “box-and-pointer” diagrams.
These work well in the eager setting, provided that no functions are involved. For example,
an eager list of eager natural numbers may be depicted using this notation. We may think
of fold as an abstract pointer to a tagged cell consisting of either (a) the tag n with no
associated data, or (b) the tag c attached to a pair consisting of an authentic natural number
and another list, which is an abstract pointer of the same type. But this notation does not
scale well to types involving functions, or to languages with a lazy dynamics. For example,
the recursive type of “lists” in lazy FPC cannot be depicted using boxes and pointers,
because of the unevaluated computations occurring in values of this type. It is a mistake to
limit one’s conception of data structures to those that can be drawn on the blackboard using
boxes and pointers or similar informal notations. There is no substitute for a programming
language to express data structures fully and accurately.

It is deceiving that the “same” recursive type can have two different meanings according
to whether the underlying dynamics is eager or lazy. For example, it is common for lazy
languages to use the name “list” for the recursive type of streams, or the name “nat” for
the type of lazy natural numbers. This terminology is misleading, considering that such
languages do not (and can not) have a proper type of finite lists or a type of natural numbers.
Caveat emptor!

20.3 Self-Reference

In the general recursive expression fix{τ }(x.e), the variable x stands for the expression
itself. Self-reference is effected by the unrolling transition

fix{τ }(x.e) �−→ [fix{τ }(x.e)/x]e,

which substitutes the expression itself for x in its body during execution. It is useful to
think of x as an implicit argument to e that is instantiated to itself when the expression is
used. In many well-known languages this implicit argument has a special name, such as
this or self, to emphasize its self-referential interpretation.

Using this intuition as a guide, we may derive general recursion from recursive types.
This derivation shows that general recursion may, like other language features, be seen as
a manifestation of type structure, instead of as an ad hoc language feature. The derivation
isolates a type of self-referential expressions given by the following grammar:

Typ τ ::= self(τ) τ self self-referential type
Exp e ::= self{τ }(x.e) self x is e self-referential expression

unroll(e) unroll(e) unroll self-reference

The statics of these constructs is given by the following rules:

�, x : self(τ) � e : τ

� � self{τ }(x.e) : self(τ)
(20.4a)

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022

175 20.3 Self-Reference

� � e : self(τ)
� � unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ }(x.e) val
(20.5a)

e �−→ e′

unroll(e) �−→ unroll(e′)
(20.5b)

unroll(self{τ }(x.e)) �−→ [self{τ }(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-
referential expressions, instead of having self-reference at every type. However, as we shall
see, the self-referential type suffices to implement general recursion, so the difference is a
matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type τ to depend on the expression itself. That is,
we seek to define the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ) ⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ , where t /∈ τ is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ }(x.e) is the expression

fold(λ (x : self(τ)) e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may
check that

unroll(self{τ }(y.e)) �−→∗ [self{τ }(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ .
The self-referential type self(τ) can be used to define general recursion for any type.

We may define fix{τ }(x.e) to stand for the expression

unroll(self{τ }(y.[unroll(y)/x]e))

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022
Chris Martens

176 System FPC of Recursive Types

where the recursion at each occurrence of x is unrolled within e. It is easy to check that
this verifies the statics of general recursion given in Chapter 19. Moreover, it also validates
the dynamics, as shown by the following derivation:

fix{τ }(x.e) = unroll(self{τ }(y.[unroll(y)/x]e))

�−→∗ [unroll(self{τ }(y.[unroll(y)/x]e))/x]e

= [fix{τ }(x.e)/x]e.

It follows that recursive types can be used to define a non-terminating expression of every
type, fix{τ }(x.x).

20.4 The Origin of State

The concept of state in a computation—which will be discussed in Part XIV—has its
origins in the concept of recursion, or self-reference, which, as we have just seen, arises
from the concept of recursive types. For example, the concept of a flip-flop or a latch is
a circuit built from combinational logic elements (typically, nor or nand gates) that have
the characteristic that they maintain an alterable state over time. An RS latch, for example,
maintains its output at the logical level of zero or one in response to a signal on the R or S
inputs, respectively, after a brief settling delay. This behavior is achieved using feedback,
which is just a form of self-reference, or recursion: the output of the gate feeds back into its
input so as to convey the current state of the gate to the logic that determines its next state.

We can implement an RS latch using recursive types. The idea is to use self-reference to
model the passage of time, with the current output being computed from its input and its
previous outputs. Specifically, an RS latch is a value of type τrsl given by

rec t is 〈X ↪→ bool, Q ↪→ bool, N ↪→ t〉.
The X and Q components of the latch represent its current outputs (of which Q represents
the current state of the latch), and the N component represents the next state of the latch. If
e is of type τrsl, then we define e @ X to mean unfold(e) · X, and define e @ Q and e @ N

similarly. The expressions e @ X and e @ Q evaluate to the boolean outputs of the latch e,
and e @ N evaluates to another latch representing its evolution over time based on these
inputs.

For given values r and s, a new latch is computed from an old latch by the recursive
function rsl defined as follows:2

fix rsl is λ (l : τrsl) ersl,

where ersl is the expression

fix this is fold(〈X ↪→ enor(〈s, l @ Q〉), Q ↪→ enor(〈r, l @ X〉), N ↪→ rsl(this)〉),
where enor is the obvious binary function on booleans. The outputs of the latch are computed
in terms of the r and s inputs and the outputs of the previous state of the latch. To get the

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022
Chris Martens

177 Exercises

construction started, we define an initial state of the latch in which the outputs are arbitrarily
set to false, and whose next state is determined by applying the recursive function rsl to
that state:

fix this is fold(〈X ↪→ false, Q ↪→ false, N ↪→ rsl(this)〉).
Selection of the N component causes the outputs to be recalculated based on their current
values. Notice the role of self-reference in maintaining the state of the latch.

20.5 Notes

The systematic study of recursive types in programming was initiated by Scott (1976, 1982)
to give a mathematical model of the untyped λ-calculus. The derivation of recursion from
recursive types is an application of Scott’s theory. The category-theoretic view of recursive
types was developed by Wand (1979) and Smyth and Plotkin (1982). Implementing state
using self-reference is fundamental to digital logic (Ward and Halstead, 1990). The example
given in Section 20.4 is inspired by Cook (2009) and Abadi and Cardelli (1996). The
account of signals as streams (explored in the exercises) is inspired by the pioneering work
of Kahn (MacQueen, 2009). The language name FPC is taken from Gunter (1992).

Exercises

20.1. Show that the recursive type D � rec t is t ⇀ t is non-trivial by interpreting the
sk-combinators defined in Exercise 3.1 into it. Specifically, define elements k : D and
s : D and a (left-associative) “application” function

x : D y : D � x · y : D

such that
(a) k · x · y �−→∗ x;
(b) s · x · y · z �−→∗ (x · z) · (y · z).

20.2. Recursive types admit the structure of both inductive and coinductive types. Consider
the recursive type τ � rec t is τ ′ and the associated inductive and coinductive types
μ(t.τ ′) and ν(t.τ ′). Complete the following chart consistently with the statics of
inductive and coinductive types on the left-hand side and with the statics of recursive
types on the right:

foldt.t opt(e) � fold(e)

rec(x.e′; e) � ?

unfoldt.t opt(e) � unfold(e)

gen(x.e′; e) � ?

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022

178 System FPC of Recursive Types

Check that the statics is derivable under these definitions. Hint: you will need to use
general recursion on the right to fill in the missing cases. You may also find it useful
to use generic programming.

Now consider the dynamics of these definitions, under both an eager and a lazy
interpretation. What happens in each case?

20.3. Define the type signal of signals to be the coinductive type of infinite streams
of booleans (bits). Define a signal transducer to be a function of type signal ⇀

signal. Combinational logic gates, such as the nor gate, can be defined as signal
transducers. Give a coinductive definition of the type signal, and define nor as a
signal transducer. Be sure to take account of the underlying dynamics of PCF.

The passage from combinational to digital logic (circuit elements that maintain
state) relies on self-reference. For example, an RS latch can be built from nor two
nor gates in this way. Define an RS latch using general recursion and two of the nor
gates just defined.

20.4. The type τrsl given in Section 20.4 above is the type of streams of pairs of booleans.
Give another formulation of an RS latch as a value of type τrsl, but this time using the
coinductive interpretation of the recursive type proposed in Exercise 20.2 (using the
lazy dynamics for FPC). Expand and simplify this definition using your solution to
Exercise 20.2, and compare it with the formulation given in Section 20.4. Hint: the
internal state of the stream is a pair of booleans corresponding to the X and Q outputs
of the latch.

Notes

1 The “underscore” stands for a variable that does not occur free in e0.
2 For convenience, we assume that fold is evaluated lazily.

https://doi.org/10.1017/CBO9781316576892.022 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.022

