
2 Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages.
In this chapter we will develop the basic framework of inductive definitions and give
some examples of their use. An inductive definition consists of a set of rules for deriving
judgments, or assertions, of a variety of forms. Judgments are statements about one or more
abstract binding trees of some sort. The rules specify necessary and sufficient conditions
for the validity of a judgment, and hence fully determine its meaning.

2.1 Judgments

We start with the notion of a judgment, or assertion, about an abstract binding tree. We
shall make use of many forms of judgment, including examples such as these:

n nat n is a natural number
n1 + n2 = n n is the sum of n1 and n2

τ type τ is a type
e : τ expression e has type τ

e ⇓ v expression e has value v

A judgment states that one or more abstract binding trees have a property or stand in
some relation to one another. The property or relation itself is called a judgment form, and
the judgment that an object or objects have that property or stand in that relation is said
to be an instance of that judgment form. A judgment form is also called a predicate, and
the objects constituting an instance are its subjects. We write a J or J a, for the judgment
asserting that J holds of the abt a. Correspondingly, we sometimes notate the judgment
form J by − J, or J −, using a dash to indicate the absence of an argument to J. When it is
not important to stress the subject of the judgment, we write J to stand for an unspecified
judgment, that is, an instance of some judgment form. For particular judgment forms, we
freely use prefix, infix, or mix-fix notation, as illustrated by the above examples, in order
to enhance readability.

2.2 Inference Rules

An inductive definition of a judgment form consists of a collection of rules of the form

J1 . . . Jk

J
(2.1)

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


13 2.2 Inference Rules

in which J and J1, . . . , Jk are all judgments of the form being defined. The judgments
above the horizontal line are called the premises of the rule, and the judgment below the
line is called its conclusion. If a rule has no premises (that is, when k is zero), the rule is
called an axiom; otherwise, it is called a proper rule.

An inference rule can be read as stating that the premises are sufficient for the conclusion:
to show J , it is enough to show J1, . . . , Jk . When k is zero, a rule states that its conclusion
holds unconditionally. Bear in mind that there may be, in general, many rules with the same
conclusion, each specifying sufficient conditions for the conclusion. Consequently, if the
conclusion of a rule holds, then it is not necessary that the premises hold, for it might have
been derived by another rule.

For example, the following rules form an inductive definition of the judgment form− nat:

zero nat
(2.2a)

a nat
succ(a) nat

(2.2b)

These rules specify that a nat holds whenever either a is zero, or a is succ(b) where b nat

for some b. Taking these rules to be exhaustive, it follows that a nat iff a is a natural
number.

Similarly, the following rules constitute an inductive definition of the judgment
form − tree:

empty tree
(2.3a)

a1 tree a2 tree

node(a1;a2) tree
(2.3b)

These rules specify that a tree holds if either a is empty, or a is node(a1;a2), where a1 tree

and a2 tree. Taking these to be exhaustive, these rules state that a is a binary tree, which is
to say it is either empty, or a node consisting of two children, each of which is also a binary
tree.

The judgment form a is b expresses the equality of two abt’s a and b such that a nat

and b nat is inductively defined by the following rules:

zero is zero
(2.4a)

a is b
succ(a) is succ(b) (2.4b)

In each of the preceding examples, we have made use of a notational convention for
specifying an infinite family of rules by a finite number of patterns, or rule schemes. For
example, rule (2.2b) is a rule scheme that determines one rule, called an instance of the rule
scheme, for each choice of object a in the rule. We will rely on context to determine whether
a rule is stated for a specific object a or is instead intended as a rule scheme specifying a
rule for each choice of objects in the rule.

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


14 Inductive Definitions

A collection of rules is considered to define the strongest judgment form that is closed
under, or respects, those rules. To be closed under the rules simply means that the rules are
sufficient to show the validity of a judgment: J holds if there is a way to obtain it using the
given rules. To be the strongest judgment form closed under the rules means that the rules
are also necessary: J holds only if there is a way to obtain it by applying the rules. The
sufficiency of the rules means that we may show that J holds by deriving it by composing
rules. Their necessity means that we may reason about it using rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation
of it. A derivation of a judgment is a finite composition of rules, starting with axioms and
ending with that judgment. It can be thought of as a tree in which each node is a rule whose
children are derivations of its premises. We sometimes say that a derivation of J is evidence
for the validity of an inductively defined judgment J .

We usually depict derivations as trees with the conclusion at the bottom, and with the
children of a node corresponding to a rule appearing above it as evidence for the premises
of that rule. Thus, if

J1 . . . Jk

J

is an inference rule and
�

1, . . . ,
�

k are derivations of its premises, then
�

1 . . .
�

k

J

is a derivation of its conclusion. In particular, if k = 0, then the node has no children.
For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat

succ(succ(succ(zero))) nat
.

(2.5)

Similarly, here is a derivation of node(node(empty;empty);empty) tree:

empty tree empty tree

node(empty;empty) tree empty tree

node(node(empty;empty);empty) tree
.

(2.6)

To show that an inductively defined judgment is derivable, we need only find a deriva-
tion for it. There are two main methods for finding derivations, called forward chaining,
or bottom-up construction, and backward chaining, or top-down construction. Forward

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


15 2.4 Rule Induction

chaining starts with the axioms and works forward towards the desired conclusion, whereas
backward chaining starts with the desired conclusion and works backwards towards the
axioms.

More precisely, forward chaining search maintains a set of derivable judgments and
continually extends this set by adding to it the conclusion of any rule all of whose premises
are in that set. Initially, the set is empty; the process terminates when the desired judgment
occurs in the set. Assuming that all rules are considered at every stage, forward chaining
will eventually find a derivation of any derivable judgment, but it is impossible (in general)
to decide algorithmically when to stop extending the set and conclude that the desired
judgment is not derivable. We may go on and on adding more judgments to the derivable
set without ever achieving the intended goal. It is a matter of understanding the global
properties of the rules to determine that a given judgment is not derivable.

Forward chaining is undirected in the sense that it does not take account of the end goal
when deciding how to proceed at each step. In contrast, backward chaining is goal-directed.
Backward chaining search maintains a queue of current goals, judgments whose derivations
are to be sought. Initially, this set consists solely of the judgment we wish to derive. At each
stage, we remove a judgment from the queue and consider all rules whose conclusion is
that judgment. For each such rule, we add the premises of that rule to the back of the queue,
and continue. If there is more than one such rule, this process must be repeated, with the
same starting queue, for each candidate rule. The process terminates whenever the queue is
empty, all goals having been achieved; any pending consideration of candidate rules along
the way can be discarded. As with forward chaining, backward chaining will eventually
find a derivation of any derivable judgment, but there is, in general, no algorithmic method
for determining in general whether the current goal is derivable. If it is not, we may futilely
add more and more judgments to the goal set, never reaching a point at which all goals
have been satisfied.

2.4 Rule Induction

Because an inductive definition specifies the strongest judgment form closed under a
collection of rules, we may reason about them by rule induction. The principle of rule
induction states that to show that a property a P holds whenever a J is derivable, it is
enough to show that P is closed under, or respects, the rules defining the judgment form J.
More precisely, the property P respects the rule

a1 J . . . ak J

a J

if P(a) holds whenever P(a1), . . . ,P(ak) do. The assumptions P(a1), . . . ,P(ak) are called
the inductive hypotheses, and P(a) is called the inductive conclusion of the inference.

The principle of rule induction is simply the expression of the definition of an inductively
defined judgment form as the strongest judgment form closed under the rules comprising
the definition. Thus, the judgment form defined by a set of rules is both (a) closed under

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


16 Inductive Definitions

those rules, and (b) sufficient for any other property also closed under those rules. The
former means that a derivation is evidence for the validity of a judgment; the latter means
that we may reason about an inductively defined judgment form by rule induction.

When specialized to rules (2.2), the principle of rule induction states that to show P(a)
whenever a nat, it is enough to show:

1. P(zero).
2. for every a, if P(a), then P(succ(a)).

The sufficiency of these conditions is the familiar principle of mathematical induction.
Similarly, rule induction for rules (2.3) states that to show P(a) whenever a tree, it is

enough to show

1. P(empty).
2. for every a1 and a2, if P(a1), and if P(a2), then P(node(a1;a2)).

The sufficiency of these conditions is called the principle of tree induction.
We may also show by rule induction that the predecessor of a natural number is also a

natural number. Although this may seem self-evident, the point of the example is to show
how to derive this from first principles.

Lemma 2.1. If succ(a) nat, then a nat.

Proof It suffices to show that the property P(a) stating that a nat and that a = succ(b)
implies b nat is closed under rules (2.2).

Rule (2.2a) Clearly zero nat, and the second condition holds vacuously, because zero
is not of the form succ(−).

Rule (2.2b) Inductively, we know that a nat and that if a is of the form succ(b),
then b nat. We are to show that succ(a) nat, which is immediate, and that if succ(a) is
of the form succ(b), then b nat, and we have b nat by the inductive hypothesis.

Using rule induction, we may show that equality, as defined by rules (2.4) is reflexive.

Lemma 2.2. If a nat, then a is a.

Proof By rule induction on rules (2.2):

Rule (2.2a) Applying rule (2.4a) we obtain zero is zero.
Rule (2.2b) Assume that a is a. It follows that succ(a) is succ(a) by an application of

rule (2.4b).

Similarly, we may show that the successor operation is injective.

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


17 2.5 Iterated and Simultaneous Inductive Definitions

Lemma 2.3. If succ(a1) is succ(a2), then a1 is a2.

Proof Similar to the proof of Lemma 2.1.

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top
of another. In an iterated inductive definition, the premises of a rule

J1 . . . Jk

J

may be instances of either a previously defined judgment form, or the judgment form being
defined. For example, the following rules define the judgment form− list, which states that
a is a list of natural numbers:

nil list
(2.7a)

a nat b list
cons(a;b) list

(2.7b)

The first premise of rule (2.7b) is an instance of the judgment form a nat, which was
defined previously, whereas the premise b list is an instance of the judgment form being
defined by these rules.

Frequently two or more judgments are defined at once by a simultaneous inductive
definition. A simultaneous inductive definition consists of a set of rules for deriving instances
of several different judgment forms, any of which may appear as the premise of any rule.
Because the rules defining each judgment form may involve any of the others, none of the
judgment forms can be taken to be defined prior to the others. Instead, we must understand
that all of the judgment forms are being defined at once by the entire collection of rules.
The judgment forms defined by these rules are, as before, the strongest judgment forms that
are closed under the rules. Therefore, the principle of proof by rule induction continues to
apply, albeit in a form that requires us to prove a property of each of the defined judgment
forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive
definition of the judgments a even, stating that a is an even natural number, and a odd,
stating that a is an odd natural number:

zero even
(2.8a)

b odd
succ(b) even

(2.8b)

a even
succ(a) odd (2.8c)

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


18 Inductive Definitions

The principle of rule induction for these rules states that to show simultaneously that
P(a) whenever a even and Q(b) whenever b odd, it is enough to show the following:

1. P(zero);
2. if Q(b), then P(succ(b));
3. if P(a), then Q(succ(a)).

As an example, we may use simultaneous rule induction to prove that (1) if a even, then
either a is zero or a is succ(b) with b odd, and (2) if a odd, then a is succ(b) with b even.
We define P(a) to hold iff a is zero or a is succ(b) for some b with b odd, and define
Q(b) to hold iff b is succ(a) for some a with a even. The desired result follows by rule
induction, because we can prove the following facts:

1. P(zero), which holds because zero is zero.
2. If Q(b), then succ(b) is succ(b′) for some b′ with Q(b′). Take b′ to be b and apply the

inductive assumption.
3. If P(a), then succ(a) is succ(a′) for some a′ with P(a′). Take a′ to be a and apply the

inductive assumption.

2.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an inductive
definition of its graph relating inputs to outputs, and then showing that the relation uniquely
determines the outputs for given inputs. For example, we may define the addition function
on natural numbers as the relation sum(a;b;c), with the intended meaning that c is the sum
of a and b, as follows:

b nat
sum(zero;b;b) (2.9a)

sum(a;b;c)
sum(succ(a);b;succ(c))

(2.9b)

The rules define a ternary (three-place) relation sum(a;b;c) among natural numbers a, b,
and c. We may show that c is determined by a and b in this relation.

Theorem 2.4. For every a nat and b nat, there exists a unique c nat such that sum(a;b;c).

Proof The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a;b;c).
2. (Uniqueness) If sum(a;b;c), and sum(a;b;c′), then c is c′.

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


19 Exercises

For existence, let P(a) be the proposition if b nat then there exists c nat such that
sum(a;b;c). We prove that if a nat then P(a) by rule induction on rules (2.2). We have two
cases to consider:

Rule (2.2a) We are to show P(zero). Assuming b nat and taking c to be b, we obtain
sum(zero;b;c) by rule (2.9a).

Rule (2.2b) Assuming P(a), we are to show P(succ(a)). That is, we assume that if
b nat then there exists c such that sum(a;b;c) and are to show that if b′ nat, then
there exists c′ such that sum(succ(a);b′;c′). To this end, suppose that b′ nat. Then by
induction there exists c such that sum(a;b′;c). Taking c′ to be succ(c), and applying
rule (2.9b), we obtain sum(succ(a);b′;c′), as required.

For uniqueness, we prove that if sum(a;b;c1), then if sum(a;b;c2), then c1 is c2 by rule
induction based on rules (2.9).

Rule (2.9a) We have a is zero and c1 is b. By an inner induction on the same rules, we
may show that if sum(zero;b;c2), then c2 is b. By Lemma 2.2, we obtain b is b.

Rule (2.9b) We have that a is succ(a′) and c1 is succ(c′1), where sum(a′;b;c′1). By an
inner induction on the same rules, we may show that if sum(a;b;c2), then c2 issucc(c′2)
where sum(a′;b;c′2). By the outer inductive hypothesis, c′1 is c′2 and so c1 is c2.

2.7 Notes

Aczel (1977) provides a thorough account of the theory of inductive definitions on which the
present account is based. A significant difference is that we consider inductive definitions
of judgments over abt’s as defined in Chapter 1, rather than with natural numbers. The
emphasis on judgments is inspired by Martin-Löf’s logic of judgments (Martin-Löf, 1983,
1987).

Exercises

2.1. Give an inductive definition of the judgment max(m;n;p), where m nat, n nat,
and p nat, with the meaning that p is the larger of m and n. Prove that every m and n

are related to a unique p by this judgment.
2.2. Consider the following rules, which define the judgment hgt(t ;n) stating that the binary

tree t has height n.

hgt(empty;zero)
(2.10a)

hgt(t1;n1) hgt(t2;n2) max(n1;n2;n)
hgt(node(t1;t2);succ(n))

(2.10b)

Prove that the judgment hgt defines a function from trees to natural numbers.

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004


20 Inductive Definitions

2.3. Given an inductive definition of ordered variadic trees whose nodes have a finite, but
variable, number of children with a specified left-to-right ordering among them. Your
solution should consist of a simultaneous definition of two judgments, t tree, stating
that t is a variadic tree, and f forest, stating that f is a “forest” (finite sequence) of
variadic trees.

2.4. Give an inductive definition of the height of a variadic tree of the kind defined in
Exercise 2.3. Your definition should make use of an auxiliary judgment defining the
height of a forest of variadic trees and will be defined simultaneously with the height
of a variadic tree. Show that the two judgments so defined each define a function.

2.5. Give an inductive definition of the binary natural numbers, which are either zero,
twice a binary number, or one more than twice a binary number. The size of such a
representation is logarithmic, rather than linear, in the natural number it represents.

2.6. Give an inductive definition of addition of binary natural numbers as defined in Exer-
cise 2.5. Hint: Proceed by analyzing both arguments to the addition, and make use of
an auxiliary function to compute the successor of a binary number. Hint: Alternatively,
define both the sum and the sum-plus-one of two binary numbers mutually recursively.

https://doi.org/10.1017/CBO9781316576892.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.004



